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Abstrat. The aim of this paper is to investigate, as preisely as possible, a boundary valueproblem involving a third order ordinary di�erential equation. Its solutions are the similaritysolutions of a problem arising in the study of the phenomenon of high frequeny exitation ofliquid metal systems in an antisymmetri magneti �eld within the framework of boundary layerapproximation.1. Introdution. In this paper we study the third order nonlinear autonomous di�er-ential equation

f ′′′ +
m + 1

2
ff ′′ − mf ′2 = 0 (1)on [0,∞), with the boundary onditions

f(0) = a, (2)
f ′(0) = −1, (3)

f ′(∞) = 0, (4)where m ∈ R, a ∈ R and f ′(∞) := limt→∞ f ′(t).2000 Mathematis Subjet Classi�ation: 34B15, 34C11, 76D10.Key words and phrases: third order di�erential equations, boundary value problems, planedynamial systems, blowing up oordinates.The seond author thanks the Department of Mathematis of the Tehnion for supportinghis researh through a Postdotoral Fellowship.The paper is in �nal form and no version of it will be published elsewhere.
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42 B. BRIGHI AND J.-D. HOERNELThis boundary value problem appears in the paper of H. K. Mo�att [31℄ and is relatedto the behavior of a liquid metal in an antisymmetri �eld, in the framework of boundarylayer approximation.The study of similarity solutions for free onvetion in a �uid saturated porous mediumnear a semi-in�nite vertial �at plate on whih the heat is presribed or high frequenyexitation of liquid metal systems in a symmetri magneti �eld, both in the frameworkof boundary layer approximation, leads to the same third order ordinary di�erentialequation (1) subjeted to the boundary onditions f(0) = a, f ′(0) = 1 and f ′(∞) = 0.This problem also appears when studying boundary layer �ows adjaent to strethingwalls. One an �nd expliit solutions of this problem for some partiular values of min [5℄, [6℄, [9℄, [21℄, [26℄, [28℄, [30℄ and [33℄. For mathematial results about existene,nonexistene, uniqueness, nonuniqueness and asymptoti behavior, see [3℄, [5℄, [6℄ and [28℄for a = 0, and [9℄, [13℄, [16℄, [23℄ and [24℄ for the general ase. Numerial investigationsan be found in [3℄, [7℄, [17℄, [19℄, [28℄, [30℄ and [36℄. For the high frequeny exitation ofliquid metal systems in a symmetri magneti �eld, see [31℄.When studying similarity solutions for free onvetion in a �uid saturated porousmedium near a semi-in�nite vertial �at plate on whih the heat �ux is presribed againin the framework of boundary layer approximation, we obtain this time the equation
f ′′′ + (m + 2)ff ′′ − (2m + 1)f ′2 = 0 whih di�ers from (1) only by its oe�ients, withthe boundary onditions f(0) = a, f ′′(0) = −1 and f ′(∞) = 0. Numerial results anbe found in [18℄ and the mathematial study of existene, uniqueness and qualitativeproperties of the solutions of this problem is made in [11℄.For a survey of the previously desribed problems, see [12℄.One partiular ase of all these equations is the Blasius equation f ′′′ + ff ′′ = 0introdued in [8℄. The Blasius equation is obtained by setting m = 0 and doing someproper resaling in (1). The orresponding problem with the boundary onditions f(0) =

a, f ′(0) = b ≥ 0 and f ′(∞) = λ admits an unique solution for λ ≥ 0, and no solution for
λ < 0. This well known ase is studied, for example, in [4℄, [20℄ and [27℄. On the otherhand, with the boundary onditions (2)�(4), the situation is ompletely di�erent. In fat,one an show that for a =

√
3, the Blasius problem

{

f ′′′ + ff ′′ = 0,

f(0) = a, f ′(0) = −1, f ′(∞) = 0admits in�nitely many solutions, and for every n ∈ N, there are values of a suh that thisproblem has exatly n solutions. See [10℄ for the proofs of these results. In the remainderof the paper we will only onsider m 6= 0.The study of similarity solutions for mixed onvetion in a �uid saturated porousmedium near a semi-in�nite vertial �at plate on whih the heat is presribed, leads tothe equation f ′′′+(m+1)ff ′′+2m(1−f ′)f ′ = 0 with the boundary onditions f(0) = a,
f ′(0) = b and f ′(∞) = 1. Results about it an be found in [2℄, [14℄, [25℄ and [32℄.The Falkner-Skan equation f ′′′ + ff ′′ + m(1 − f ′2) = 0 is in the same family ofproblems. See, for example, [20℄, [22℄, [27℄, [29℄, [35℄, [37℄ and [38℄ for results aboutit.



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 43New results about the more general equation f ′′′+ff ′′+g(f ′) = 0 with the boundaryonditions f(0) = a, f ′(0) = b and f ′(∞) = c for some given funtion g an be found in[15℄, see also [34℄.For some new results about the full model of free onvetion in a plane and bounded�uid saturated porous medium, see [1℄.2. Preliminary results. First of all, let us notie that for every τ > 0, the funtion
t 7→ 6

t+τ
is a solution of the equation (1) for any value of m, and thus for a =

√
6, thefuntion f(t) = 6

t+
√

6
is a solution of the problem (1)�(4).Now, we remark that, if f veri�es (1), then

(f ′′e
m+1

2
F )′ = mf ′2e

m+1

2
F (5)with F any anti-derivative of f.Lemma 1. Let f be a nononstant solution of the equation (1) on some interval I. Forall t0 in I we have that

• if m < 0, then f ′′(t0) ≤ 0 ⇒ f ′′(t) < 0 for t > t0,

• if m > 0, then f ′′(t0) ≥ 0 ⇒ f ′′(t) > 0 for t > t0.Proof. Immediate using (5) and the fat that f ′ and f ′′ annot vanish at the same pointwithout being identially equal to zero.Proposition 1. Let m < 0. If f is a solution of the problem (1)�(4) then f ′′(0) > 0,and
• either f is onvex and dereasing on [0,∞),
• or there exists t0 with f ′′(t0) = 0 and f ′(t0) ≥ 0 suh that f is onvex and �rstdereasing then inreasing on [0, t0), and onave and inreasing on [t0,∞). More-over, f is negative at in�nity for m ≤ −1, and positive at in�nity for −1 ≤ m < 0

(and in partiular this implies that suh solutions annot exist for m = −1).Proof. Suppose that f ′′(0) ≤ 0, then, using Lemma 1, we have f ′′ < 0 and f ′ is dereasing.This is a ontradition with f ′(0) = −1 and f ′(∞) = 0. Hene f ′′(0) > 0.If f ′′ never vanishes, then f is onvex and f ′ is inreasing. Sine f ′(0) = −1 and
f ′(∞) = 0 we get −1 ≤ f ′ < 0.If there exists a t0 suh that f ′′ > 0 on [0, t0) and f ′′(t0) = 0 then, by Lemma 1 wehave f ′′ < 0 on (t0,∞). Hene f ′ is dereasing on (t0,∞) and sine f ′(∞) = 0, we shouldhave f ′ > 0 on [t0,∞) and f is inreasing on [t0,∞).For −1 ≤ m < 0, if f is negative at in�nity, there exists t1 suh that f < 0, f ′ > 0and f ′′ < 0 on (t1,∞). Therefore

f ′′′ = mf ′2 − m + 1

2
ff ′′ < −m + 1

2
ff ′′ ≤ 0on (t1,∞). This implies that f ′ is onave on (t1,∞), a ontradition with the fats that

f ′ > 0 on (t1,∞) and f ′(∞) = 0. For m ≤ −1, the same argument shows that f isnegative at in�nity.



44 B. BRIGHI AND J.-D. HOERNELRemark 1. In [24℄ (Theorem 2.1), it is proved that if −1 < m < 0, then any solution
f of (1)�(3) suh that f ′′(0) < 0 exists only on [0, T ) with 0 < T < ∞ and that
limt→T f(t) = −∞.Proposition 2. Let m > 0. If a ≤ 0, there are no solutions of the problem (1)�(4). If
a > 0, and if f is a solution of (1)�(4) then f is positive, dereasing and moreover

• if f ′′(0) ≥ 0, then f is onvex,
• if f ′′(0) < 0, then there exists t0 > 0 suh that f is onave on [0, t0] and onvexon (t0,∞).Proof. Let f be a solution of (1)�(4). First, let us suppose that f ′′(0) ≥ 0. By Lemma 1we have that f ′′ > 0 everywhere. Hene f is onvex and f ′ is inreasing. Sine f ′(0) = −1and f ′(∞) = 0, we get −1 ≤ f ′ ≤ 0 and f is dereasing on [0,∞).Now, let us suppose that f ′′(0) < 0. If f ′′ < 0 on [0,∞), then f ′ is dereasing andas f ′(0) = −1 we annot have f ′(∞) = 0. Thus there exists t0 > 0 suh that f ′′ < 0 on

[0, t0) and f ′′(t0) = 0. Then, f ′ is dereasing on [0, t0] and we have f ′(t0) ≤ f ′ ≤ −1 on
[0, t0]. Moreover, by Lemma 1 we get f ′′ > 0 on (t0,∞), and f ′ is inreasing on (t0,∞).As f ′(t0) ≤ −1 we get f ′(t0) ≤ f ′ < 0 on [t0,∞), therefore f is dereasing on [0,∞).As m > 0, if f < 0 at in�nity, then

f ′′′ = −m + 1

2
ff ′′ + mf ′2 ≥ mf ′2 ≥ 0and f ′ is onvex at in�nity. But as f ′ < 0 and f ′(∞) = 0 this annot be the ase. Hene,

f > 0 at in�nity, and sine f is dereasing, we get f > 0 on [0,∞). This, in partiular,implies that a > 0, and the proof is omplete.
3. Useful tools. In this part, we �rst give some identities and properties of solutions of
(1), and next introdue blowing up oordinates assoiated to (1) and related to the fatthat if f is a solution of (1), then it is also the ase for the funtion t 7→ κf(κt).Let f be a solution of (1) on some interval [α, β]. Integrating the equation (1) between
α and β leads to

f ′′(β) − f ′′(α) +
m + 1

2
f(β)f ′(β) − m + 1

2
f(α)f ′(α) =

3m + 1

2

∫ β

α

f ′2(t)dt. (6)Multiplying the equation (1) by f and integrating between α and β, we obtain
f(β)f ′′(β) − f(α)f ′′(α) − 1

2
f ′2(β) +

1

2
f ′2(α) +

m + 1

2
f2(β)f ′(β)

− m + 1

2
f2(α)f ′(α) = (2m + 1)

∫ β

α

f(t)f ′2(t)dt. (7)Multiplying the equation (1) by f ′′ and integrating between α and β, we get
1

2
f ′′2(β) − 1

2
f ′′2(α) − m

3
f ′3(β) +

m

3
f ′3(α) = −m + 1

2

∫ β

α

f(t)f ′′2(t)dt. (8)Proposition 3. Let m ∈ R. If f is a solution of the problem (1)�(4) then we have
lim

t→∞
f ′′(t) = 0 (9)



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 45and, if m 6= −1, there exists a sequene tn → ∞ suh that
lim

n→∞
f ′′′(tn) = lim

n→∞
f(tn)f ′′(tn) = 0. (10)Proof. Sine f ′(∞) = 0, there exists an inreasing sequene sn suh that sn → ∞ and

f ′′(sn) → 0 as n → ∞. But, using (7), we see that f ′′2 has a limit at in�nity and hene
(9) holds. In addition, hoosing tn suh that f ′′′(tn) = f ′′(n + 1) − f ′′(n), and using (1)we get (10).To study solutions of the problem (1)�(4) with onstant sign, we will now introduean auxiliary dynamial system, as it was previously done in [11℄ and [16℄.Consider now a right maximal interval I = [0, T ) on whih f does not vanish. For all
t in I, set

s =

∫ t

0

f(ξ)dξ, u(s) =
f ′(t)

f2(t)
, v(s) =

f ′′(t)

f3(t)
(11)to obtain the system

{

u̇ = P (u, v) := v − 2u2,

v̇ = Qm(u, v) := −m+1
2 v + mu2 − 3uv

(12)in whih the dot denotes the di�erentiation with respet to s. Let us notie that if f isnegative on I then s dereases as t grows.The singular points of (12) are O = (0, 0) and A = (− 1
6 , 1

18 ). The isolini urves
P (u, v) = 0 and Qm(u, v) = 0 are given by v = 2u2 and v = Ψm(u) where

Ψm(u) =
mu2

3u + m+1
2

.The point A is an unstable node for m ≤ 4−2
√

6
3 , an unstable fous if 4−2

√
6

3 < m < 4
3 ,a stable fous if 4

3 < m < 4+2
√

6
3 and a stable node if m ≥ 4+2

√
6

3 .For m 6= −1, the singular point O is a saddle-node of multipliity 2. It admits a entermanifoldW0 that is tangent to the subspae L0 = Sp{(1, 0)} and a stable (resp. unstable)manifoldW if m > −1 (resp m < −1) that is tangent to the subspae L = Sp{(1,−m+1
2 )}.In the neighborhood of O, the manifold W takes plae below L when m < −1 or m > − 1

3and above L when −1 < m < − 1
3 . In the neighborhood of O, the enter manifold W0takes plae above L0 when m < −1 or m > 0, and below L0 when −1 < m < 0.We will not speify the behavior of the manifolds W and W0 for m = −1, beause wewill not use the oordinates u and v in this ase.In order to desribe the phase portrait of the vetor �eld in the neighborhood of thesaddle-node O we will assume that the paraboli setor is delimited by the separatries

S0 and S1 whih are tangent to L, and the hyperboli setors are delimited, one by theseparatrix S0 and the separatrix S2, whih is tangent to L0, and the other one by theseparatries S1 and S2. With these notations, we have that
W = S1 ∪ {O} ∪ S0 and W0 = S2 ∪ {O} ∪ C3where C3 is some phase urve.We will use the supersript + for ω-separatries and − for α-separatries to obtainthe behaviors desribed in �gure 1.
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m < −1 −1 < m < −1/3

−1/3 < m < 0 m > 0Fig. 1To study the global behavior of the separatries, onsider any onneted piee ofa phase urve C of the plane dynamial system (12) lying in the region P (u, v) < 0(resp. P (u, v) > 0); then C an be haraterized by v = Vm(u) (resp. v = Wm(u)) with
u belonging to some interval, and where Vm (resp. Wm) is a solution of the di�erentialequation

dv

du
= Fm(u, v) :=

Qm(u, v)

P (u, v)
=

−m+1
2 v + mu2 − 3uv

v − 2u2
. (13)To dedue results about the original problem (1)�(4), most of the time, we will onsiderthe initial value problem

(Pm,a,b)















f ′′′ + m+1
2 ff ′′ − mf ′2 = 0,

f(0) = a,

f ′(0) = −1,

f ′′(0) = bwith a 6= 0, and look at the trajetory Ca,b of the plane dynamial system (12) de�nedby (11) for
u(0) = − 1

a2
and v(0) =

b

a3
,and the study of this trajetory allows us to obtain properties of f .



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 474. Main results4.1. The ase m < −1Theorem 1. Let m < −1. For every a ∈ R, the problem (1)�(4) has a unique onvexsolution. Moreover, this solution is bounded, and if limt→∞ f(t) = ℓ, then
−
√

a2 − 4

m + 1
< ℓ < a.Proof. For f : [0,∞) → R de�ne f̃ : [0,∞) → R by

f̃(s) = −
√

−m + 1

2
f

(

√

− 2

m + 1
s

)

.Easily, one sees that f is a onvex solution of (1)�(4) if and only if f̃ is a onave solutionof the problem






f̃ ′′′ + f̃ f̃ ′′ − 2m
m+1 f̃ ′2 = 0,

f̃(0) = −a
√

−m+1
2 , f̃ ′(0) = 1, f̃ ′(∞) = 0

(14)and, from [15℄ (Theorem 1 and Proposition 1), we know that the problem (14) admitsexatly one onave solution, that this solution is bounded, and that if ℓ̃ is the limit of f̃at in�nity, then −a
√

−m+1
2 < ℓ̃ <

√

−m+1
2 a2 + 2. The proof is omplete.Remark 2. For m < −1, the uniqueness of the onvex solution an be easily obtainedby a diret way. In fat, if (1)�(4) has a pair of distint onvex solutions f1, f2 andif f ′′

1 (0) > f ′′
2 (0), the funtion g = f1 − f2 satis�es g(0) = 0, g′(0) = g′(∞) = 0 and

g′′(0) > 0. It follows that g′ has a positive maximum at some point s > 0 suh that
g′(t) > 0 for 0 < t < s, but then g(s) > 0 and we get

g′′′(s) = f ′′′
1 (s) − f ′′′

2 (s) = −m + 1

2
f ′′
1 (s)g(s) + m(f ′

1(s) + f ′
2(s))g

′(s) > 0,whih is a ontradition.Remark 3. For m < −1 and a ≤ 0, if f is a onvex-onave solution of the problem
(1)�(4), then

f ′′(0) > max

{

m + 1

2
a,

√

−2m

3

}

.Indeed, if t1 is the point suh that f ′(t1) = 0, we have f ′′(t1) > 0 and writing equality
(6) with α = 0 and β = t1, we get f ′′(0) > m+1

2 a. Now, writing equality (8) with α = 0and β = ∞ and taking into aount the fat that f < 0 on (0,∞) (see Proposition 1),we obtain that f ′′(0) >
√

−2m
3 .Lemma 2. Let m < −1. As s grows, the separatrix S−

0 leaves the singular point O to theright tangentially to L and intersets suessively the isolines Qm(u, v) = 0, P (u, v) = 0,the u-axis and the v-axis and remains dereasing and under L.As s grows, the separatrix S−
1 leaves the singular point O to the left tangentially to Land remains dereasing and under L. (See �gure 2.)
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Fig. 2. m < −1Proof. The behavior of S−
0 is established in [16℄ for u ≥ 0. To onlude, it is su�ient toremark that we have
dv

du
−
(

−m + 1

2

)

= −u(3v + u)

v − 2u2
> 0for u, v < 0. Hene the straight line L is a barrier for the vetor �eld in the region

{u < 0} ∩ {v < 0}.Theorem 2. Let m < −1. For every a < 0, the problem (1)�(4) admits a unique onvex-onave solution suh that limt→∞ f(t) = ℓ < 0 and in�nitely many onvex-onave solu-tions suh that limt→∞ f(t) = 0. Moreover, all these solutions are negative and bounded.Proof. For a < 0, let us denote by f the solution of the initial value problem (Pm,a,b) andlook at the orresponding trajetories Ca,b of the plane system (12) de�ned by (11). Fromthe phase portrait of (12) desribed in Lemma 2 (Fig 2) we have that eah funtion forresponding to a trajetory that did not start from a point that is between the separatix
S−

1 and the separatrix S−
0 for u negative annot be a solution of the problem (1)�(4),beause it vanishes (the trajetory goes to in�nity) or beomes onave and dereasing(the trajetory goes through the domain {u < 0} ∩ {v > 0}). We also have that thestraight line de�ned by u = − 1

a2 with a < 0 intersets the separatrix S−
0 at the point

(− 1
a2 , v−) and the separatrix S−

1 at the point (− 1
a2 , v+).Consequently, for b = v−a3, f is a solution of the problem (1)�(4) suh that f(t) →

ℓ < 0 as t → ∞, and for b ∈ (v+a3, v−a3), f is a solution of the problem (1)�(4) suhthat f(t) → 0 as t → ∞. The details about the limits an be found in [16℄.Remark 4. Let us notie that the separatrix S−
1 (orresponding to b = v+a3) gives, for

a < 0, the onvex solution obtained in Theorem 1.4.2. The ase m = −1. Here the equation (1) redues to f ′′′ = −f ′2. Now, if f is asolution of the problem (1)�(4) then using the equality (8) with α = 0 and β = ∞, andPropositions 1 and 3, we obtain that f ′′(0) =
√

2
3 . Hene the problem (1)�(4) has atmost one solution.



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 49On the other hand, if f is the solution of the problem (P
−1,a,

√
2
3

) on its right maximalinterval of existene [0, T ) we get, using (8) with α = 0 and β = t < T ,
1

2
f ′′2(t) +

1

3
f ′3(t) = 0implying that f ′ < 0 on [0, T ). Therefore, we obtain

∀t ∈ [0, T ),
−f ′′(t)

(−f ′(t))
3
2

= −
√

2

3
.Integrating and using the fat that f ′(0) = −1, we arrive at

∀t ∈ [0, T ),
1

(−f ′(t))
1
2

=
t√
6

+ 1and f ′(t) = − 6
(t+

√
6)2

. Integrating again, we �nally dedue that, for m = −1, the problem
(1)�(4) has exatly one solution given by

f(t) = a −
√

6 +
6

t +
√

6
.4.3. The ase −1 < m < 0Theorem 3. For −1 < m < 0 and for every a ∈ R, the problem (1)�(4) admits a onvexsolution.Proof. Let b ≥ 0 and fb be the solution of the initial value problem (Pm,a,b). Denote by

[0, Tb) its right maximal interval of existene. Let us remark �rst that fb exists as long aswe have f ′′
b > 0 and f ′

b < 0. Sine f ′′
b and f ′

b annot vanish at the same point, it followsthat there are only three possibilities:(a) f ′′
b beomes negative from a point suh that f ′

b < 0,(b) f ′
b beomes positive from a point suh that f ′′

b > 0,() we always have f ′
b < 0 and f ′′

b > 0.As f ′
0(0) = −1 < 0, f ′′

0 (0) = 0 and f ′′′
0 (0) = m < 0, we have that f0 is of type (a), andby ontinuity it must be so for fb with b > 0 small enough.On the other hand, as long as f ′′
b (t) ≥ 0 and f ′

b(t) ≤ 0, we have f ′
b(t) ≥ −1 and

fb(t) ≥ −t + a. Therefore (6) leads to
f ′′

b (t) = b − m + 1

2
(fb(t)f

′
b(t) + a) +

3m + 1

2

∫ t

0

f ′2
b (s)ds

≥ b − m + 1

2
(t + |a| + a) +

3m + 1

2

∫ t

0

f ′2
b (s)ds

≥ b − m + 1

2
(|a| + a) + Cmtwhere Cm = m if −1 < m ≤ −1

3 , and Cm = −m+1
2 if −1

3 ≤ m < 0. Integrating, weobtain
0 ≥ f ′

b(t) ≥ −1 +

(

b − m + 1

2
(|a| + a)

)

t + Cm

t2

2
:= Pb(t).For b large enough, the equation Pb(t) = 0 has two positive roots t0 < t1, and therefore,for suh a and b, we have that f ′

b(t0) = 0 and f ′′
b (t) > 0 for t ≤ t0, and fb is of type (b).



50 B. BRIGHI AND J.-D. HOERNELDe�ning A = {b > 0 ; fb is of type (a)} and B = {b > 0 ; fb is of type (b)} we havethat A 6= ∅, B 6= ∅ and A ∩ B = ∅. Both A and B are open sets, so there exists a b∗ > 0suh that the orresponding solution f∗ of (Pm,a,b∗) is of type () and is de�ned on thewhole interval [0,∞). For this solution we have that f ′
∗ < 0 and f ′′

∗ > 0 whih impliesthat f ′
∗ → l ≤ 0 as t → ∞. If l < 0 then f∗(t) ∼ lt as t → ∞ and using (6) we easilyobtain f ′′

∗ (t) ∼ ml2t as t → ∞, whih ontradits the fat that f ′′
∗ > 0. Then l = 0 and

f∗ is a onvex solution of (1)�(4). This ompletes the proof.We get the uniqueness of a onvex solution for −1 < m < − 1
3 , only. To this end, wewill need the following Lemma.Lemma 3. Let −1 < m < − 1

3 . If f is solution of the problem (1)�(4), then we have
f(t)f ′(t) → 0 as t → ∞ and

f ′′(0) =
m + 1

2
a − 3m + 1

2

∫ ∞

0

f ′2(s)ds. (15)Proof. If f is bounded, then learly f(t)f ′(t) → 0 as t → ∞, and (15) follows immediatelyfrom (9) and the equality (6) written with α = 0 and β = ∞.If f is unbounded, then, as t → ∞, either f inreases to ∞ or dereases to −∞, andin both ases we have f(t)f ′(t) > 0 for t large enough. Now, using the equality (6) with
α = 0 and β = t > 0, for large t, we get

0 < −3m + 1

2

∫ t

0

f ′2(s)ds ≤ f ′′(0) − f ′′(t) − m + 1

2
a. (16)Thus (9) implies that the integral in the relation (16) has a limit as t → ∞. Coming bakto (6), we get that f(t)f ′(t) → l ≥ 0 as t → ∞. If l > 0, then f2(t) ∼ 2lt as t → ∞, andhene

f ′2(t) ∼ l2

f2(t)
∼ l

2t
as t → ∞whih ontradits the fat that the integral of f ′2 over [0,∞) is �nite. Therefore l = 0,and using again (6) we obtain (15).Proposition 4. For −1 < m < − 1

3 and a ∈ R, the problem (1)�(4) admits at most oneonvex solution.Proof. Let us suppose that f is a onvex solution of (1)�(4). By Proposition 1, suha solution is dereasing, and we an de�ne the funtion w = w(y) by
∀t ≥ 0, w(f(t)) = f ′(t).If ℓ ∈ [−∞, a) is the limit of f(t) as t → ∞, then w is de�ned on (ℓ, a], is negative andwe have

f ′′(t) = w(f(t))w′(f(t)),

f ′′′(t) = w(f(t))w′2(f(t)) + w2(f(t))w′′(f(t)).Then, (1) leads to
∀y ∈ (ℓ, a], w′′ = − 1

w

(

w′ +
m + 1

2
y

)

w′ + m (17)
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w(ℓ) := lim

y→ℓ
w(y) = lim

t→∞
f ′(t) = 0, w(a) = w(f(0)) = f ′(0) = −1.Let us now suppose that there are two onvex solutions f1 and f2 of the problem (1)�(4)and let ℓi ∈ [−∞, a) be the limit of fi at in�nity for i = 1, 2. We obtain two solutions ofequation (17), w1 and w2 de�ned respetively on (ℓ1, a] and (ℓ2, a] suh that

w1(ℓ1) = w2(ℓ2) = 0 and w1(a) = w2(a) = −1.We will suppose now that ℓ2 ≤ ℓ1 and prove that w2 ≤ w1 on (ℓ1, a]. If there exists a point
y in (ℓ1, a] suh that w1(y) < w2(y), then as w1(ℓ1)−w2(ℓ1) ≥ 0 and w1(a)−w2(a) = 0,the funtion w1 − w2 admits a negative minimum at some point x in (ℓ1, a). For thispoint x we have that w1(x) < w2(x), w′

1(x) = w′
2(x) and w′′

1 (x) ≥ w′′
2 (x). We also have

w′′
1 (x) − w′′

2 (x) =

(

1

w2(x)
− 1

w1(x)

)(

w′
1(x) +

m + 1

2
x

)

w′
1(x) (18)and

(

w′
1(x) +

m + 1

2
x

)

w′
1(x) =

(

f ′′
1 (s) +

m + 1

2
f1(s)f

′
1(s)

)

f ′′
1 (s)

f ′2
1 (s)

(19)with s suh that x = f1(s). Thanks to Lemma 3, we an write (6) with α = s and β = ∞to get
f ′′
1 (s) +

m + 1

2
f1(s)f

′
1(s) = −3m + 1

2

∫ ∞

s

f ′2
1 (t)dt > 0.Using this inequality and the fat that f ′′

1 (s) > 0, we dedue from (18) and (19) that
w′′

1 (x) < w′′
2 (x) and obtain a ontradition. Therefore we have w2 ≤ w1 on (ℓ1, a] and

∫ ∞

0

f ′2
2 (t)dt =

∫ a

ℓ2

(−w2(y))dy ≥
∫ a

ℓ1

(−w2(y))dy ≥
∫ a

ℓ1

(−w1(y))dy =

∫ ∞

0

f ′2
1 (t)dt.From Lemma 3 we have

f ′′
i (0) =

m + 1

2
a − 3m + 1

2

∫ ∞

0

f ′2
i (t)dtand thus f ′′

1 (0) ≤ f ′′
2 (0). If f ′′

1 (0) < f ′′
2 (0) then w1(a)w′

1(a) < w2(a)w′
2(a) and, as w1(a) =

w2(a) = −1, this leads to w′
1(a) > w′

2(a) that is a ontradition with the fat that w1 ≥ w2on (ℓ1, a]. Hene f ′′
1 (0) = f ′′

2 (0) and f1 = f2.Proposition 5. Let −1 < m ≤ −1
2 . If a ≤ 0, then the problem (1)�(4) has no onvex-onave solution.Proof. Let us suppose that f is a onvex-onave solution of (1)�(4). By Proposition 1we have that f > 0 at in�nity, and thus there exists τ > 0 suh that f(τ ) = 0 and

f ′(τ ) > 0. Using (7) written with α = τ and β = tn where (tn) is the sequene de�ned inProposition 3, we get
0 ≥ lim

n→∞
(2m + 1)

∫ tn

τ

f ′2(t)f(t)dt

= lim
n→∞

(

1

2
f ′2(τ ) +

m + 1

2
f ′(tn)f2(tn)

)

≥ 1

2
f ′2(τ ) > 0and a ontradition.



52 B. BRIGHI AND J.-D. HOERNELRemark 5. For m = − 1
3 , let f be the solution of (Pm,a,b) on its right maximal intervalof existene [0, T ). Integrating twie leads to the Riati equation

f ′ +
1

6
f ′2 =

(

b − a

3

)

t − 1 +
a2

6
. (20)Choosing b = a

3 , equation (20) has expliit partiular solutions, and an be solved. Wethen obtain that
f(t) =

√

a2 − 6 · (a +
√

a2 − 6)e
t

6

√
a2−6 + (a −

√
a2 − 6)e−

t

6

√
a2−6

(a +
√

a2 − 6)e
t

6

√
a2−6 − (a −

√
a2 − 6)e−

t

6

√
a2−6

(21)when a2 > 6,
f(t) =

√

6 − a2 · cotan

(

t

6

√

6 − a2 + arccotan
a√

6 − a2

)

when a2 < 6 and
f(t) =

6

t + a
(22)when a2 = 6. It is then easy to see that T is �nite if a <

√
6, that T = ∞ if a ≥

√
6, andthat, in this latter ase, the funtion f given by (21) for a >

√
6 and by (22) for a =

√
6is a solution of (1)�(4).In the remainder of this setion we will onentrate our e�orts on the ase m > 0. Inthis ase, we know from Proposition 2 that we must have a > 0 and that the solutions ofthe problem (1)�(4) annot vanish, this allows us to onsider the dynamial system (12).We will onsider suessively the ases 0 < m < 1, m = 1 and m > 1, but before let usremark that we an improve slightly the result of Proposition 2. Atually, if m > 0 then,for a ≤ 2√

m+1
, the problem (1)�(4) has no solutions. Indeed, if f is a solution of (1)�(4),then f is bounded and if we write (6) with α = t and β = ∞, we get

−f ′′(t) − m + 1

2
f(t)f ′(t) =

3m + 1

2

∫ ∞

t

f ′2(s)ds > 0.Integrating we obtain
−f ′(t) − 1 − m + 1

4
(f2(t) − a2) > 0and by taking the limit as t → ∞, we get −1− m+1

4 (ℓ2 − a2) > 0, where ℓ is the limit of
f at in�nity. This gives a > 2√

m+1
, and also 0 ≤ ℓ <

√

a2 − 4
m+1 .4.4. The ase 0 < m < 1Theorem 4. Let 0 < m < 1, then there exists 0 < a∗

1 < a∗
2 suh that the problem (1)�(4)admits no solutions for 0 < a < a∗

1, a unique solution for a = a∗
1, multiple solutions for

a∗
1 < a < a∗

2, two solutions for a = a∗
2 and a unique solution for a∗

2 < a. Moreover, allthese solutions are onvex, dereasing and positive.Proof. In this ase, the point A is an unstable fous. The separatrix S+
1 leaves the point

A or a limit yle surrounding A that stays in the domain {u < 0} ∩ {v > 0}, turninglokwise and meets the isolini urve P (u, v) = 0 for its last time, then the isoliniurve Qm(u, v) = 0 and goes to the point O (Fig 3). For the proof, refer to [16℄.



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 53

Fig. 3. 0 < m < 1For a > 0, we denote by f the solution of the initial value problem (Pm,a,b) and lookat the orresponding trajetories Ca,b of the plane system (12) de�ned by (11).Let us now onsider the straight line u = − 1
a2 for a > 0 and let u∗

1 (i.e. a∗
1 =

√

− 1
u∗

1

) bethe absissa of the point at whih the separatrix S+
1 rosses the isolini urve P (u, v) = 0for its last time and u∗

2 (i.e. a∗
2 =

√

− 1
u∗

2

) be the absissa of the point at whih theseparatrix S+
1 rosses the isolini urve P (u, v) = 0 for its penultimate time.Looking at the phase portrait of (12) we see immediatly that if u < u∗

1, then f is not asolution of the problem (1)�(4) beause the orresponding trajetories rosses the v-axis(meaning that f beomes inreasing) or going to in�nity (meaning that f vanishes).Moreover, for the same purpose, the funtion f orresponding to parts of the separa-trix S+
1 , to parts of the limit yles surrounding A or to parts of the trajetories insidethe limit yles, is a onvex solution of (1)�(4), beause u and v remain positive.Consequently, for u = u∗

1 there is only one solution, for u∗
1 < u < u∗

2 there aremultiple solutions, for u = u∗
2 there are two solutions, and for u∗

2 < u < 0 there is onlyone solution.4.5. The ase m = 1. The equation (1) is
f ′′′ + ff ′′ − f ′2 = 0.If we set f = g + k with k ∈ R, then f is a solution of (1)�(4) if and only if g satis�es
g′′′ + kg′′ = g′2 − gg′′ (23)and g(0) = a − k, g′(0) = −1, g′(∞) = 0. Looking for funtions g suh that both handsides of (23) vanish, we get that, for a ≥ 2, the funtions f1, f2 : [0,∞) → R given by

fi(t) = ki +
1

ki

e−kit for i = 1, 2with k1 = 1
2 (a −

√
a2 − 4) and k2 = 1

2 (a +
√

a2 − 4) are onvex solutions of (1)�(4).



54 B. BRIGHI AND J.-D. HOERNEL4.6. The ase m > 1Theorem 5. Let m > 1. Then there exists 0 < a∗
1 < a∗

2 suh that the problem (1)�(4)admits no solutions for 0 < a < a∗
1, a unique solution for a = a∗

1 that is onvex andsuh that limt→∞ f(t) = ℓ > 0, two onvex solutions that veri�es limt→∞ f(t) = ℓ > 0and in�nitely many onvex solutions suh that limt→∞ f(t) = 0 for a∗
1 < a ≤ a∗

2, oneonave-onvex solutions and one onvex solution suh that limt→∞ f(t) = ℓ > 0 andin�nitely many onave-onvex or onvex solutions with limt→∞ f(t) = 0 for a∗
2 < a. Allthese solutions are dereasing and positive.Proof. Let us reall that the point A is an unstable fous for 1 < m < 4

3 , a stable fousfor 4
3 < m ≤ 4+2

√
6

3 and a stable node for m ≥ 4+2
√

6
3 . Moreover, for 1 < m < 4

3 , as A isunstable there exists at least one yle surrounding it. The behavior of the separatries
S+

1 and S−
2 is established in [16℄ and desribed in �gure 4.

Fig. 4. m > 1For a > 0, let us denote again by f the solution of the initial value problem (Pm,a,b)and look at the orresponding trajetories Ca,b of the plane system (12) de�ned by (11).Consider now the straight line u = − 1
a2 for a > 0 and let u∗

1 (i.e. a∗
1 =

√

− 1
u∗

1

) be theabsissa of the point at whih the separatrix S+
1 rosses the isolini urve P (u, v) = 0and u∗

2 (i.e. a∗
2 =

√

− 1
u∗

2

) be the absissa of the point at whih the separatrix S+
1 rossesthe u-axis.Let D be the bounded domain delimited by the v-axis and the part of the separatrix

S+
1 inluded in {u < 0}.The phase portrait of (12) gives us immediately that every trajetory that starts froma point with negative absissa and outside ofD rosses the v-axis (meaning that f beomesinreasing) or is going to in�nity (meaning that f vanishes). Then, the orrespondingfuntion f is not a solution of the problem (1)�(4).As shown in [16℄, using the Poinaré-Bendixson Theorem, every trajetory that entersin D must have the point O, the point A or a limit yle surrounding A that is not rossingthe u-axis for ω-limit set. This means that every funtion f that orresponds to a phase



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 55urve that starts from a point in D̄ is a onvex solution of (1)�(4), beause u and v remainpositive. This leads to the following behavior.For u < u∗
1, there is no solution of (1)�(4).For u = u∗
1, there is a unique solution of (1)�(4) that is given by a part of the separatrix

S+
1 . This solution is onvex, dereasing and suh that f(t) → ℓ > 0 as t → ∞.For u∗

1 < u ≤ u∗
2, there are two solutions given by parts of the separatrix S+

1 that areonvex and suh that f(t) → ℓ > 0 as t → ∞, and in�nitely many onvex solutions givenby the trajetories starting from a point in D with an absissa equal to − 1
a2 and suhthat f(t) → 0 as t → ∞.For u∗

2 < u < 0, there is one onave-onvex solution and one onvex solution givenby parts of the separatrix S+
1 that both verify f(t) → ℓ > 0 as t → ∞, and in�nitelymany onave-onvex or onvex solutions suh that f(t) → 0 as t → ∞ orresponding tothe trajetories starting from a point in D with an absissa equal to − 1

a2 .For the proofs of the limits as t goes to in�nity, refer to [16℄.5. Conlusion. In this paper we have studied a boundary value problem involving athird order ordinary di�erential equation. The solutions of this problem are similaritysolutions of problems related to the phenomenon of high frequeny exitation of liquidmetal systems in an antisymmetri magneti �eld, within the framework of boundarylayer approximation.This study an be ompared to the one made in [16℄ whih onsider the same equationbut where the solutions are supposed to start inreasing from 0 instead of dereasing.We have established several results in both ases m < 0 and m > 0. Nevertheless,some interesting open questions still remain:
• for m < −1 and a ≥ 0, are there onvex-onave solutions?
• for −1

3 < m < 0 and a ∈ R, is the onvex solution unique?
• for −1 < m ≤ −1

2 and a > 0, are there onvex-onave solutions?
• for −1

2 < m < 0 and a ∈ R, are there onvex-onave solutions?Aknowledgements. The �rst author wishes to thank A. Fruhard and T. Sari forstimulating disussions.The seond author would like to thank M. Guedda and Z. Hammouh for enjoyabledisussions and for bringing the subjet of this paper to his attention as well as G. Karhand all the organizers for the wonderful time he spent in B�dlewo during the onferene.
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