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Abstrat. This note is devoted to the study of the long time behaviour of solutions to the heatand the porous medium equations in the presene of an external soure term, using entropymethods and self-similar variables. Intermediate asymptotis and onvergene results are shownusing interpolation inequalities, Gagliardo-Nirenberg-Sobolev inequalities and Csiszár-Kullbaktype estimates.1. Introdution. In this note, we study the large time behavior in L1(RN ) of solutionsto the Cauhy problem for the porous media equation (m > 1) and the heat equation
(m = 1) in the presene of an external soure term:

vt = ∆vm + G(x, t) x ∈ R
N , t > 0,(1)

v(x, 0) = v0(x).(2) 2000 Mathematis Subjet Classi�ation: Primary 35K05, 35K65; Seondary 35B40, 35E05,94A17, 76S05, 76R50.Key words and phrases: large time behaviour, nonhomogeneous equations, heat equation,porous media equation, nonlinear di�usions, L
1 estimates, self-similar solutions, Barenblatt so-lutions, intermediate asymptotis, self-similar variables, stationary solutions, Fokker-Plank typeequations, relative entropy methods, Gagliardo-Nirenberg inequalities, logarithmi Sobolev in-equality, Gagliardo-Nirenberg-Sobolev inequality, Csiszár-Kullbak inequality.The paper is in �nal form and no version of it will be published elsewhere.
[133]



134 J. DOLBEAULT AND G. KARCHHere, we always assume that v0 ∈ L1(RN ) and G ∈ L1(RN × [0, T ]) for every T > 0.For m = 1, the solution of problem (1)�(2) is given by the well-known Duhamel formula.On the other hand, in the nonlinear ase m > 1 the unique solution to (1)�(2) an beobtained e.g. via the theory of nonlinear semigroups, f. [20℄.Conerning the large time behavior of solutions, it is known that under the additionalassumption G ∈ L1(RN × [0,∞)), we have
lim

t→∞
‖v(·, t) − EM∞

(·, t)‖1 = 0(3)where the L1-norm is denoted by ‖ · ‖1 and EM∞
is the soure-type (or fundamental)solution to the homogeneous problem

Et = ∆Em, E(0) = M∞ δ0with mass
M∞ := lim

t→∞

∫

RN

u(x, t) dx =

∫

RN

u0(x) dx +

∫ ∞

0

∫

RN

G(x, t) dx dt.If m > 1, EM∞
is a self-similar solution given by the Barenblatt formula

EM∞
(x, t) = t−NkF (x t−k) F (x) =

(

C − k
m − 1

2m
|x|2

)1/(m−1)

+with k = (N(m − 1) + 2)−1. The parameter C > 0 is linked with mass M∞ in suha way that ∫

RN EM∞
(x, t) dx = M∞ for all t > 0 (f. (8), below). For m = 1, this speialsolution is simply given by the heat kernel

EM∞
(x, t) = M∞

e−|x|2/(4t)

(4πt)N/2
.The proof of (3) for m > 1 as well as several other results and relevant referenesonerning the porous media equation (inluding smoothing properties of solutions) anbe found in the review paper by Vázquez [20℄ and his book [21℄. An analogous resultfor the heat equation (m = 1) an be obtained diretly from the expliit formula for thesolutions, see for instane [8, Thm. 6.1℄.The so-alled entropy methods allow us to study the onvergene of the solutions ofFokker-Plank type equations towards the equilibrium (f. [3, 18, 1, 14, 12, 11℄) in aseswhere mass is preserved. It is the purpose of this note to show that suh methods analso be applied to equations where mass M =

∫

RN v(x, t) dx is not onserved in time andeventually diverges as t → ∞. More preisely, we improve estimate (3) by deriving rates ofonvergene in L1(RN ) for the solutions to (1)�(2). Furthermore, these rates are optimalas an be heked on Fokker-Plank type equations without external soure terms.This note is organized as follows. After realling the known results onerning entropymethods for the homogeneous ase in Setion 2, we set the problem in the nonhomoge-neous ase in Setion 3 and ompute the variation of the relative entropy with respet tosome appropriate instantaneous steady state. The last two setions are then devoted toappliations of the alulations of Setion 3 to the heat and porous medium equations.Our goal is not to over the most general ase but rather to illustrate the use ofrelative entropy methods. For simpliity, we shall therefore assume that m is in the range
[1, 3/2].



NONHOMOGENEOUS DIFFUSION EQUATIONS 1352. Homogeneous equations. First, let us reall some known results in the ase whenthe external soure term G(x, t) is absent in equation (1). The standard strategy ofentropy methods says that, instead of working with (1) diretly, the following hange ofvariables (whih is a spae-time, or time dependent, resaling) de�ned by
u(y, s) = eNs v(y es, k (es/k − 1)) with k = 1

N(m−1)+2 ,(4)transforms the Cauhy problem (1)�(2) with G ≡ 0 into the Fokker-Plank equation
us = ∇ · (∇um + y u)(5)while the initial datum is unhanged

u(y, 0) = u0(y) = v0(y) = v(y, 0).Equation (5) has the one-parameter family of stationary solutions given by the Baren-blatt-Pattle formula
u∞(y) =

(

C − m − 1

2 m
|y|2

)1/(m−1)

+

if m 6= 1(6)and by the Gaussian
u∞(x) = M

e−|y|2/2

(2π)N/2
if m = 1.(7)The standard theory that we expose below applies for any m > (N − 1)/N if N = 1, 2,and for m ≥ (N − 1)/N if N ≥ 3. From now on, we assume that these onditions arealways ful�lled. If m > 1, the onstant C in (6) is hosen in suh a way that

∫

RN

u∞(y) dy = M =

∫

RN

u(y, s) dyfor all s ≥ 0, whih means
M = C

2+N(m−1)
m−1

(

2 π m

m − 1

)
N
2 Γ

(

m
m−1

)

Γ
(

N
2 + m

m−1

)(8)(see [14℄ for more details). Now, to shorten notations, we de�ne
σ(u) :=







um−u
m−1 if m 6= 1,

u log u if m = 1.

(9)
Aording to [16, 17℄, it is well-known that the entropy,

Σ[u(·, s)] :=

∫

RN

[

σ(u(y, s)) +
1

2
|y|2 u(y, s)

]

dy,(10)plays the role of a Lyapunov funtional in the study of the large time behavior of thesolutions to (5). First of all, it is dereasing along trajetories:
d

ds
Σ[u(·, s)] = −

∫

RN

u |y + ∇σ′(u)|2 dy =: −I[u(·, s)].(11)Moreover, the right hand side of (11) ontrols the relative entropy
Σ[u|u∞] := Σ[u] − Σ[u∞],



136 J. DOLBEAULT AND G. KARCHi.e. the di�erene of the entropy of u and the entropy of the stationary solution u∞, bymeans of the onvex Sobolev inequality:
Σ[u|u∞] ≤ 1

2
I[u](12)for any nonnegative u ∈ L1(RN ), provided m ≥ (N − 1)/N , N 6= 1, 2. This inequalityis the ritial Sobolev inequality if m = (N − 1)/N , N ≥ 3, one of Gagliardo-Nirenberg-Sobolev inequalities if m > (N − 1)/N , m 6= 1 and the logarithmi Sobolev inequality if

m = 1. This an be rewritten as
∫

RN

(

σ(u) +
1

2
|y|2 u

)

dy −K ≤ 1

2

∫

RN

u |y + ∇σ′(u)|2 dy,where K is given in terms of M = ‖u‖1 by K =
∫

RN (σ(u∞)+ 1
2 |y|2 u∞) dy, and (6) or (7).Note here the important identities

σ′(u∞(y)) =







(m C − 1)/(m − 1) − |y|2/2 if m 6= 1,

log M − N
2 log(2π) − |y|2/2 if m = 1.Thus we may rewrite Σ[u|u∞] as

Σ[u|u∞] =

∫

RN

[σ(u) − σ(u∞) − σ′(u∞) (u − u∞)] dy.For m = 1 (so, σ(u) = u log u), inequality (12) is the logarithmi Sobolev inequality withoptimal onstants, see [10, 18, 19℄. We refer the reader to [1, 14, 12℄ for detailed onditionsunder whih (12) an be proved by diret variational methods or by entropy methods for
m > 1, as well as for more general σ (also see [11, 7℄).Hene, the Gagliardo-Nirenberg-Sobolev inequality (12) applied to (11) gives an ex-pliit exponential deay of the relative entropy of solutions to (5):

Σ[u(·, s)|u∞] ≤ Σ[u0|u∞] · e−2s.(13)The next step is to measure the exponential onvergene of u(·, t) towards u∞ in termsof a norm. This an be done using the Csiszár-Kullbak inequality , for m = 1, as follows.Lemma 1 ([13, 15℄). Let φ, φ0 ∈ L1
+(RN, dµ). Assume that σ is a onvex funtion on R

+suh that 0 = σ(1) = minR+ σ and
K = min

{

inf
t∈[0,1]

σ′′(t), inf
t≥0

θ∈[0,1]

σ′′(1 + θ t)(1 + t)
}

> 0is positive. Then
‖φ − φ0‖2

L1(RN ,dµ) ≤
4M
K

∫

RN

σ

(

φ

φ0

)

φ0 dµ(14)with M = max{‖φ‖L1(RN ,dµ), ‖φ0‖L1(RN ,dµ)}.Inequality (14) was introdued in [13, 15℄. We refer the reader to [2, 14, 9℄ for a proofof Lemma 1 and some extensions.If m = 1, one ombines inequalities (14) with (13) to obtain
‖u(·, s) − u∞‖2

1 ≤ 4M Σ[u0|u∞] · e−2s



NONHOMOGENEOUS DIFFUSION EQUATIONS 137for all t ≥ 0. When m > 1, several approahes are possible. One an, for instane, ontrola weighted L1-norm, see, e.g., [14, 7℄. With some additional work, one an also obtaina ontrol of the usual L1-norm like in the ase m = 1 as it was done in [12℄. Below, seeProposition (2) in Setion 5, we reall some of these results and give a self-ontained andslightly simpli�ed proof.Finally, going bak to the original problem (1)�(2) with G ≡ 0, via the time-dependentresaling (4), one shows that for eah m ∈ [1, 2]

‖v(·, t) − EM (·, t)‖2
1 ≤ C

(

1 +
t

k

)−2 k with k =
1

N(m − 1) + 2for all t > 0 and a onstant C depending only on M , Σ[u0|u∞], and m.3. Nonhomogeneous equations. In the ase of the Cauhy problem (1)�(2) withnonzero external soure terms, alulations are similar. We use the spae-time hangeof variables analogous to that in Setion 2:
u(y, s) = eNs v(y es, k (es/k − 1)), k =

1

N(m − 1) + 2
,

F (y, s) = e(N+2)s G(y es, k (es/k − 1)),

(15)
whih transforms the Cauhy problem (1)�(2) into

us = ∇ · (∇um + y u) + F (y, s),(16)
u(y, 0) = u0(y) = v0(y).(17)The main assumption of this note reads as follows.Assumption 1. Let m ∈ [1, 2]. The nonnegative funtions u0 and F satisfy

u0 ∈ L1 ∩ Lm(RN ), |y|2 u0 ∈ L1(RN ),

F ∈ L1(RN × [0, T ]) ∩ L1([0, T ], L1/(2−m)(RN ))for all T > 0 (in the ase m = 2, L1/(2−m)(RN ) means L∞(RN ) ). If m = 1, we assumemoreover that
u0 log u0 ∈ L1(RN ) and F log F ∈ L1(RN × [0, T ])for all T > 0.This assumption implies, in partiular, that the mass of the solution to (16)�(17)

M(s) =

∫

RN

u(y, s) dy =

∫

RN

u0(y) dy +

∫ s

0

∫

RN

F (y, s) dy ds(18)is positive for all s ≥ 0.Under the hange of variables (15), with t = k (es/k − 1), x = y es, mass is preserved:
M(s) =

∫

RN

u(y, s) dy =

∫

RN

v(x, t) dx =: M(t).



138 J. DOLBEAULT AND G. KARCHDe�ne the family of the instantaneous steady states or loal Gibbs states for m 6= 1by:
u∞(y, s) =

(

C(s) − m − 1

2 m
|y|2

)1/(m−1)

+

,(19)so that the hoie of the funtion C(s) guarantees
∫

RN

u∞(y, s) dy = M(s) for all s ≥ 0.(20)Hene, C(s) is given in terms of M(s) by the formula (8). If m = 1, we simply put
u∞(y, s) = M(s)

e−|y|2/2

(2π)N/2
.(21)Now, in the ase of solutions to the nonhomogeneous equation (16), we do not expetthe entropy Σ[u(·, s)] de�ned in (10) to derease beause of the presene of the externalsoure term F (y, s). Let σ be given by (9). Our goal is to show, however, that the relativeentropy

Σ(s) = Σ[u(·, s)|u∞(·, s)] := Σ[u(·, s)] − Σ[u∞(·, s)](22)

=

∫

RN

[σ(u(y, s)) − σ(u∞(y, s)) − σ′(u∞(y, s))(u(y, s)− u∞(y, s))]dystill an be used to show the onvergene of solutions towards the family of instantaneoussteady states de�ned in (19) and (21). The ruial estimate is ontained in the followingproposition. We state it here at a formal level and will explain in Setions 4 and 5 how toextend it to more general solutions orresponding to initial data satisfying Assumption 1.Proposition 1. Let u be a su�iently smooth solution to problem (16)�(17). Then
d

ds
Σ[u|u∞] = −

∫

RN

u |∇σ′(u) −∇σ′(u∞)|2 dy +

∫

RN

[σ′(u) − σ′(u∞)] F dy.(23)Proof. The derivation with respet to s of Σ(s) = Σ[u(·, s)|u∞(·, s)] gives
d Σ

ds
=

d

ds

∫

RN

[σ(u) − σ(u∞) − σ′(u∞) (u − u∞)] dy(24)
=

∫

RN

[σ′(u) − σ′(u∞)] us dy −
∫

RN

(σ′(u∞))s (u − u∞) dy.Beause of (19), the seond term an be written as
∫

RN

(σ′(u∞))s (u − u∞) dy =
dC
ds

∫

RN

(u − u∞) dy = 0,where C = C(s) is the funtion of M(s) whih appears in (19) if m 6= 1 and dC/ds =

−M ′(s)/M(s) if m = 1. Using (16) and integrating by parts, the �rst term on the righthand side of (24) is
∫

RN

[σ′(u) − σ′(u∞)] us dy = −
∫

RN

∇[σ′(u) − σ′(u∞)] (∇um + y u) dy

+

∫

RN

[σ′(u) − σ′(u∞)] F dy,whih proves the result using ∇um + y u = u
[

∇σ′(u) −∇σ′(u∞)
].



NONHOMOGENEOUS DIFFUSION EQUATIONS 139Remark 1. If we integrate equation (23) with respet to s, all quantities will be wellde�ned and, as a onsequene, u and |y|2 u will be bounded respetively in L∞(R+, L1 ∩
Lm(RN )) and L∞(R+, L1(RN )). Sine u 7→ Σ[u|u∞] and, for 1 ≤ m ≤ 3/2, u 7→
∫

RN u|∇σ′(u)|2 dy are onvex, we an then easily extend (23) to less regular funtionsby a density argument. Note that the onvexity of Σ[u|u∞] holds under the onstraintthat for any s ≥ 0,
∫

RN

u(y, s) dy = M(s) =

∫

RN

u∞(y, s) dy.(25)Here, the restrition m ≤ 3/2 in this reasoning omes from the fat that we use theonvexity property of u 7→
∫

RN |∇uγ |2 dy, whih holds true if and only if m − 1/2 = γ ∈
[1/2, 1] (see [5, 6℄). For m > 3/2, a further analysis of the regularity of the solutionswould be required to proeed as in the homogeneous ase, f. [12, 14℄.Remark 2. It is remarkable that even when mass varies, Σ[u|u∞] is still a good Lyapunovfuntion. Atually this holds beause the onstraint (25) is taken into aount in thede�nition of u∞. For several reasons, it makes sense to write that Σ[u|u∞] is the relativeentropy of u with respet to u∞. See [4℄ for more omments on this type of issues.The next step is to ombine equality (23) with the generalized Sobolev inequality (12)and to �nd an estimate of the seond term on the right-hand side of (23) by a quantityindependent of u. This proedure is realized in the next two setions for the heat equation
(m = 1) and for the porous medium equation with 1 < m ≤ 3/2, separately.4. Appliation to the heat equation. Consider �rst the nonhomogeneous heat equa-tion

vt = ∆v + G(x, t), x ∈ R
N , t > 0.(26)By the time dependent resaling (15) with m = 1, we have

u(y, s) = eNs v

(

y es,
1

2
(e2s − 1)

)

,(27)
F (y, s) = e(N+2)s G

(

y es,
1

2
(e2s − 1)

)

.(28)Hene, equation (26) is transformed into a Fokker-Plank equation with the additionalexternal soure term F

us = ∇ · (∇u + y u) + F (y, s).(29)This equation is supplemented with the initial ondition
u(y, 0) = u0(y).(30)Let us reall that the stationary steady state u∞ of the homogeneous problem ∇·(∇u∞+

y u∞) = 0 with mass M(s) is given by the formula (21), where mass M(s) of the solutionis de�ned by (18):
u∞(y, s) = M(s) ū(y), ū(y) =

e−|y|2/2

(2π)N/2
.Our main result on the large time behavior of solutions to (29)�(30) reads as follows.



140 J. DOLBEAULT AND G. KARCHTheorem 1. Suppose that u0, F (·, s) ∈ L1(RN , (1 + |y|2) dy) for every s ≥ 0 satisfy As-sumption 1. Then for all s ≥ 0, the solution of problem (29)�(30) satis�es the inequality
(31) ‖u(s, ·) − u∞(s, ·)‖2

1

≤ 4 M(s) e−2s

[

Σ[u0|u∞(0, ·)] +

∫ s

0

e2τ

∫

RN

F log

(

F

(
∫

RN F dy) ū

)

dy dτ

]

.Proof. For m = 1, the relative entropy of the solution u with respet to u∞ given by (22)takes the form
Σ(s) := Σ[u(·, s)|u∞(·, s)] =

∫

RN

u(y, s) log

(

u(y, s)

u∞(y, s)

)

dy.Hene, it follows from Proposition 1 that
dΣ

ds
= −

∫

RN

u

∣

∣

∣

∣

∇u

u
+ y

∣

∣

∣

∣

2

dy +

∫

RN

F log

(

u

M(s) ū

)

dy.Next, we use the logarithmi Sobolev inequality (12), whih in this ase redues to
Σ[u|u∞] ≤ 1

2

∫

RN

u

∣

∣

∣

∣

∇u

u
+ y

∣

∣

∣

∣

2

dy,and obtain
dΣ

ds
≤ −2 Σ[u(·, s)|u∞(·, s)] +

∫

RN

F log

(

u

u∞

)

dy.Finally, after multiplying this inequality by e2s and integrating with respet to s, wearrive at
Σ(s) ≤ e−2s

[

Σ(0) +

∫ s

0

e2τ

(
∫

RN

F (y, τ ) log

(

u(y, τ )

u∞(y, τ )

)

dy

)

dτ

]

.We are going to estimate the seond term of the right hand side of this inequality usingthe lemma formulated below.Lemma 2. Assume that f and w are two nonnegative integrable funtions on R
N . Then

∫

RN

f log

(

w

‖w‖1

)

dy ≤
∫

RN

f log

(

f

‖f‖1

)

dy(32)Proof. Apply the Jensen inequality to the onvex funtion ϕ 7→ ϕ log ϕ and the proba-bility measure dµ = ‖w‖−1
1 w dy with ϕ = f/w:

∫

RN

f log

(

f

w

)

dy = ‖w‖1

∫

RN

ϕ log ϕ dµ

≥ ‖w‖1

(
∫

RN

ϕ dµ

)

log

(
∫

RN

ϕ dµ

)

= ‖f‖1 log

( ‖f‖1

‖w‖1

)

.Note that the two sides of (32) may be in�nite.We ome bak to the proof of Theorem 1. If we write
∫

RN

F log

(

u

M ū

)

dy =

∫

RN

F log

(

u

M

)

dy −
∫

RN

F log ū dyand apply Lemma 2 with f = F and w = u to the �rst term of the right hand side, thenthe result easily follows using the Csiszár-Kullbak inequality stated in Lemma 1.



NONHOMOGENEOUS DIFFUSION EQUATIONS 141Remark 3. The result of Lemma 2 is a limit ase of Hölder's inequality. Let q0 > 1and assume that both f and w belong to L1 ∩ Lq0(RN ). Then it follows from Hölder'sinequality that
∫

RN

wq−1f dy ≤
(

∫

RN

wq dy

)

q−1
q

(
∫

RN

fq dy

)1/q

for every 1 ≤ q ≤ q0. Note that if q = 1 this inequality redues to ∫

RN f =
∫

RN f , whihimmediately implies that
∫

RN

wq−1f dy −
∫

RN

f dy ≤
(

∫

RN

wq dy

)

q−1
q

(
∫

RN

fq dy

)1/q

−
∫

RN

f dy.Dividing both sides by q−1 and taking the limit as q → 1, we obtain inequality (32). Theassumption that f , w ∈ L1 ∩ Lq0(RN ) is easily removed by a density argument, whihprovides an alternative proof of Lemma 2.Aording to (27)�(28), the results of Theorem 1 written in terms of the originaloordinates give intermediate asymptotis results as follows.Corollary 1. Under the same assumptions as in Theorem 1, if u and v are relatedby (27), and F and G by (28), then for any t ≥ 0,
‖v(·, t)−v∞(·, t)‖2

1 ≤ 4 M(t)

1 + 2t

[

Σ[v0|v∞(·, 0)]+

∫ t

0

(1 + 2τ )

∫

RN

G log

(

M(τ ) G

(
∫

RN G dx) v∞

)

dx dτ

]

.where M(t) =
∫

RN v(x, t) dx and
v∞(x, t) =

M(t)

(1 + 2t)N/2
ū

(

x√
1 + 2t

)

, ū(x) =
e−|x|2/2

(2π)N/2
.Rather than writing abstrat onditions on G in order to guarantee that ‖(v − v∞)(·, t)‖1onverges to 0, let us simply formulate two examples whih illustrate both Theorem 1 andCorollary 1.Example 1. Let us look at inequality (31) in the ase of external soure terms of theform F (y, s) = g(x) f(s) with suitably hosen g and f . For suh a hoie of F , we have

∫

RN

F (y, τ ) log

[

F (y, τ )

(
∫

RN F dy)ū(y)

]

dy = f(τ )

∫

RN

g(y) log

[

g(y)

(
∫

RN g dy)ū(y)

]

dy.If the seond fator on the right-hand side is �nite, the problem is therefore redued tounderstand the behavior as s → ∞ of the quantity
e−2s

∫ s

0

e2τf(τ ) dτ.Choosing, e.g., f(s) = e−κs for some κ > 0, we immediately obtain
e−2s

∫ s

0

e2τe−κτ dτ =
e−κs − e−2s

2 − κ
.In this ase, mass M(s) is bounded uniformly in s aording to (18) and Theorem 1applies:

‖u(·, s) − u∞(·, s)‖2
1 ≤ C (e−2s + e−κs) ∀s ≥ 0,(33)



142 J. DOLBEAULT AND G. KARCHfor some positive onstant C. Now, we may ome bak to the solutions of the nonhomo-geneous heat equation (26) via the resaling (27)�(28) and reformulate (33) as
‖v(·, t) − v∞(·, t)‖2

1 ≤ C[(1 + t)−1 + (1 + t)−2κ].Example 2. As a seond example, let us onsider F (y, s) = g(y)(1+s)−α for some α > 0.A diret alulation shows that
e−2s

∫ s

0

e2τ (1 + τ )−α dτ ≤ C(1 + s)−α,for a onstant C > 0 and all s > 0, and onsequently, by Theorem 1,
‖u(·, s) − u∞(·, s)‖2

1 ≤ C M(s) (1 + s)−α.(34)for some onstant C > 0. Here, α ∈ (0, 1] is to the most interesting ase beause
M(s) =

∫

RN

u0(y) dy +

∫

RN

g(y) dy

∫ s

0

(1 + τ )−α dτ

= ‖u0‖1 + ‖g‖1
(1 + s)1−α − 1

1 − α
→ ∞as s → ∞. However, u − u∞ still tends towards 0 in the L1-norm provided α > 1/2.We an again reformulate inequality (34) for solutions of the nonhomogeneous heatequation (26)

‖v(·, t) − v∞(·, t)‖2
1 ≤ C M(t) (log t)−α ≤ C (log t)1−2α → 0 as t → ∞for α > 1/2, sine mass M(t) is of order O((log t)1−α) as t → ∞. Hene, by our method,we an extend in some ases the result formulated in (3) to soure terms G = G(x, t) forwhih M∞ = limt→∞

∫

RN v(x, t) dx = ∞.5. Appliation to the porous medium equation. In this setion, we deal with thenonlinear Cauhy problem (16)�(17) with m > 1 for whih the relative entropy of thesolution u with respet to u∞ given by (22) takes the form
Σ(s) := Σ[u(·, s)|u∞(·, s)] = Σ[u(·, s)] − Σ[u∞(·, s)](35)

=
1

m − 1

∫

RN

[

um − um
∞ − m − 1

2
|x|2(u − u∞)

]

dy,where u∞(y, s) is given by (19).The main result on the onvergene of u(s) toward the family of instantaneous steadystates is ontained in the next theorem. As in the ase of the linear heat equation, one anreformulate this result for the original problem (1)�(2) going bak via the resaling (15).Theorem 2. Let m ∈ (1, 3
2 ]. Assume that u0 and F satisfy Assumption 1. Let u be thesolution to (16)�(17) with M(s) de�ned in (18) and u∞(s, y) given by (19)�(20). Supposemoreover that M∞ ≡ sups>0 M(s) is �nite.Then there exists a onstant C > 0 depending on M∞ but independent of s suh that

‖u(s, ·) − u∞(s, ·)‖2
1 ≤ C e−2s

[

Σ[u0|u∞(0, ·)] 1
m +

1

m

∫ s

0

e
2
m

τ‖F (·, τ )‖m dτ

]m

for all s ≥ 0.



NONHOMOGENEOUS DIFFUSION EQUATIONS 143Here, we assume that m ∈ (1, 3/2] beause of the onvexity argument mentioned inRemark 1. This assumption plays also the ruial role in the proof of Lemma 3, below.Before proving Theorem 2, we need some preliminary estimates.Lemma 3. Assume that p ≥ 3 and let µ be a positive bounded measure. Then for anynonnegative w ∈ Lp(dµ),
∫

|w − 1|p dµ ≤ (p − 1)

∫
[

wp − 1 − p

p − 1
(wp−1 − 1)

]

dµ.(36)Proof. Let f(w) := wp−1− p
p−1 (wp−1−1)− 1

p−1 |w−1|p. A straightforward omputationgives
f ′(w) = p wp−2(w − 1) − p

p−1 |w − 1|p−2(w − 1),

f ′′(w) = p wp−3[(p − 1)(w − 1) + 1] − p |w − 1|p−2.First of all, f(1) = f ′(1) = 0 and
1

p
f ′′(w) ≥ (w − 1)p−3[(p − 1)(w − 1) + 1] − (w − 1)p−2 ≥ (p − 2) (w − 1)p−2for any w ≥ 1. Thus f is onvex and therefore nonnegative on (1, +∞).On (0, 1), f ′′ is inreasing. Sine limw→0+ f ′′(w) < 0, there exists w∗ suh that f isonave on (0, w∗) and onvex on (w∗, 1). Thus the minimum of f on (0, 1) is ahievedeither at w = 0 or at w = 1. Sine f(0) = f(1) = 0, this proves that f is also nonnegativeon (0, 1).Corollary 2. Let F and u be two nonnegative funtions respetively in Lm(RN) and

L1 ∩ Lm(RN ) and onsider u∞ given by (6) suh that ‖u‖1 = ‖u∞‖1. If m ∈ (1, 3/2],then
∫

RN

|um−1 − um−1
∞ |F dy ≤ Σ[u|u∞]

m−1
m ‖F‖m.Proof. Let w := vm−1, p := m/(m − 1) and dµ := um

∞ dy in Lemma 3. Hene, inequal-ity (36) an be rewritten as
∫

RN

|vm−1 − 1| m
m−1 um

∞ dy ≤ 1

m − 1

∫

RN

[vm − 1 − m(v − 1)] um
∞ dy.If we let v = u/u∞, this means

∫

supp(u∞)

|um−1 − um−1
∞ | m

m−1 dy

≤ 1

m − 1

∫

supp(u∞)

[um − um
∞ − m um−1

∞ (u − u∞)] dy

=
1

m − 1

∫

supp(u∞)

[

um − um
∞ − m

(

C − m − 1

2m
|y|2

)

(u − u∞)

]

dy.On the other hand, sine (m − 1)−1 > 1 and, on the set supp(u∞)c, we have
C − m − 1

2m
|y|2 ≤ 0



144 J. DOLBEAULT AND G. KARCHas well as u∞ = 0, we may proeed in the most diret way as follows:
∫

supp(u∞)c

|um−1 − um−1
∞ | m

m−1 dy

≤ 1

m − 1

∫

supp(u∞)c

um dy

≤ 1

m − 1

∫

supp(u∞)c

[

um − um
∞ − m

(

C − m − 1

2m
|y|2

)

(u − u∞)

]

dy.Summing up both estimates we obtain
∫

RN

|um−1 − um−1
∞ | m

m−1 dy ≤ Σ[u|u∞].Hene the proof is ompleted by using Hölder's inequality as follows:
∫

RN

|um−1 − um−1
∞ |F dy ≤

[
∫

RN

|um−1 − um−1
∞ | m

m−1 dy

]

m−1
m

‖F‖m.Remark 4. In Corollary 2, the exponent p = m/(m − 1) is the Hölder onjugate of m.Thus the assumption m ≤ 3/2 is equivalent to p ≥ 3, whih is used in the proof ofLemma 3.In the next lemma, we state and prove an inequality of Csiszár-Kullbak type whihdi�ers from the one realled in Lemma 1. The results formulated below are ontained in[12℄. Here, however, we give diret and elementary proofs. Reall that, in this setion, therelative entropy Σ[u|u∞] is given by formula (35).Proposition 2. Assume that 1 < m ≤ 2. Let u be a nonnegative funtion in L1(RN )suh that Σ[u|u∞] ≤ Σ0 is �nite. Then there exists a positive onstant C, whih onlydepends on Σ0 and M =
∫

RN u dy, suh that
‖u − u∞‖2

L1(RN ) ≤ C Σ[u|u∞].Proof. Let B = B(0, R) be the support of u∞. On B, let v := u/u∞, so that
(m − 1) Σ[u|u∞] =

∫

B

[vm − 1 − m (v − 1)]um
∞ dy +

∫

Bc

[

um +
m − 1

2
|y|2 u

]

dy.1) On Bc, using the last term of the right hand side of the above equation, for C1 :=
2

m−1
1

R2 we get
∫

Bc

[

um +
m − 1

2
|y|2 u

]

dy ≥ C1

∫

|y|>R

u dy = C1 ‖u − u∞‖L1(Bc).2) Using a Taylor expansion at order 2, we get
vm − 1 − m (v − 1) =

1

2
m (m − 1) (τ + (1 − τ ) v)m−2for some funtion τ with values in (0, 1). If v > 1, then

(τ + (1 − τ ) v)m−2 ≥ vm−2.



NONHOMOGENEOUS DIFFUSION EQUATIONS 145By Hölder's inequality, on ω := {y ∈ B : v(y) > 1},
∫

ω

|u − u∞| dy=

∫

ω

|v − 1|u∞ dy

=

∫

ω

(|v − 1|2 vm−2 um
∞)

1
m ·

( |v − 1|
v

)1− 2
m

dy

≤
(

∫

ω

|v − 1|2 vm−2 um
∞ dy

)1/m
1

N
|SN−1|RN .This proves that

∫

ω

[vm − 1 − m (v − 1)] um
∞ dy ≥ m

2
(m − 1)

∫

ω

|v − 1|2 vm−2 um
∞ dy

≥ C2 ‖u − u∞‖m
L1(ω)for some positive onstant C2.3) Similarly on B \ ω, that is for 0 < v < 1,

(τ + (1 − τ ) v)m−2 ≥ 1.By the Cauhy-Shwarz inequality,
‖u − u∞‖2

L1(B\ω) =

(
∫

B\ω

|v − 1|u∞ dy

)2

≤
∫

B\ω

|v − 1|2 um
∞ dy ·

∫

B\ω

u2−m
∞ dy,so that

∫

B\ω

[vm − 1 − m (v − 1)] um
∞ dy ≥ m

2
(m − 1)

∫

B\ω

|v − 1|2 um
∞ dy

≥ C3 ‖u − u∞‖2
L1(B\ω)for some positive onstant C3.Let t1 :=

∫

|y|>R
u dy, t2 := ‖u − u∞‖L1(ω) and t3 := ‖u − u∞‖L1(B\ω). Sine

max
i=1, 2, 3

ti ≤ ‖u − u∞‖L1(RN )is bounded from above by 2 M , the quantity C1 t1 + C2 tm2 + C3 t2 is bounded frombelow by 2 (m − 1) C (t21 + t22 + t23) ≥ (m − 1) C (t1 + t2 + t3)
2 on (0, 2 M) with C :=

min{C1/(2M), C2/(2M)2−m, C3}/(2(m − 1)).
Proof of Theorem 2. It follows from Proposition 1 that

d

ds
Σ[u|u∞] = −

∫

RN

u |∇σ′(u) −∇σ′(u∞)|2 dy +
m

m − 1

∫

RN

[um−1 − um−1
∞ ] F dy.Aording to [12, 14℄,

Σ[u|u∞] ≤ 1

2

∫

RN

u |∇σ′(u) −∇σ′(u∞)|2 dyby the generalized Sobolev inequality, thus giving
dΣ

ds
≤ −2 Σ[u(·, s)|u∞(·, s)] + m

m − 1

∫

RN

[um−1 − um−1
∞ ] F dy.



146 J. DOLBEAULT AND G. KARCHTo ontrol the seond term of the right hand side of the above inequality, we use Corol-lary 2, and we obtain
dΣ

ds
≤ −2 Σ + Σ

m−1
m ‖F (·, s)‖m.This an be rewritten as

d

ds
[g

1
m (s)] ≤ 1

m
e

2
m

s ‖F (·, s)‖m,for g(s) := e2s Σ(s), whih by integration gives
Σ(s) ≤ e−2s

[

Σ
1
m (0) +

1

m

∫ s

0

e
2
m

τ‖F (·, τ )‖m dτ

]m
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