ASYMPTOTICALLY SELF-SIMILAR SOLUTIONS FOR THE PARABOLIC SYSTEM MODELLING CHEMOTAXIS

YUKI NAITO

Department of Applied Mathematics, Faculty of Engineering
Kobe University, Kobe 657-8501, Japan
E-mail: naito@cs.kobe-u.ac.jp

Abstract. We consider a nonlinear parabolic system modelling chemotaxis
\[\frac{\partial u}{\partial t} = \nabla \cdot (\nabla u - u\nabla v), \quad \frac{\partial v}{\partial t} = \Delta v + u \]
in \(\mathbb{R}^2, \ t > 0 \). We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

1. Introduction. We are concerned with the large time behavior of solutions to the Cauchy problem for the following system of partial differential equations:

\[
\begin{cases}
\frac{\partial u}{\partial t} = \nabla \cdot (\nabla u - u\nabla v), & x \in \mathbb{R}^2, \ t > 0, \\
\frac{\partial v}{\partial t} = \Delta v + u, & x \in \mathbb{R}^2, \ t > 0.
\end{cases}
\]

On the system we impose initial conditions

\[u(x, 0) = u_0, \quad v(x, 0) = v_0, \quad x \in \mathbb{R}^2, \]

where \(u_0 \geq 0 \) and \(v_0 \geq 0 \).

The system (1.1) is a mathematical model describing chemotaxis, that is, the directed movement of an organism in response to gradients of a chemical attractant (see [6, 12, 4]). The function \(u(x, t) \geq 0 \) corresponds to the population of the organism at the place \(x \in \mathbb{R}^2 \) and time \(t > 0 \), and \(v(x, t) \geq 0 \) to the concentration of the chemical.

2000 Mathematics Subject Classification: Primary 35B40; Secondary 35K55.

Key words and phrases: nonlinear parabolic systems, chemotaxis, self-similar solutions, asymptotically self-similar behavior.

The paper is in final form and no version of it will be published elsewhere.
The existence of local and global in time solutions, including self-similar solutions, of the problem (1.1)–(1.2) has been studied by Biler [3]. In this paper we show the asymptotically self-similar behavior for a class of general solutions of (1.1)–(1.2).

We write (1.1)–(1.2) in the form of the integral equation

$$\begin{cases}
 u(t) = e^{t \Delta} u_0 - \int_0^t (\nabla e^{(t-s) \Delta}) \cdot (u(s) \nabla v(s)) \, ds, \\
 v(t) = e^{t \Delta} v_0 + \int_0^t e^{(t-s) \Delta} u(s) \, ds,
\end{cases}$$

(1.3)

where

$$(e^{t \Delta} f)(x) = \int_{\mathbb{R}^2} G(x - y, t) f(y) \, dy$$

and $G(x, t)$ is the heat kernel

$$G(x, t) = \frac{1}{4\pi t} \exp \left(-\frac{|x|^2}{4t} \right).$$

In what follows, $\| \cdot \|_p$ represents the norm of $L^p(\mathbb{R}^2)$ for $1 \leq p \leq \infty$. For $u : \mathbb{R}^2 \to \mathbb{R}$, we use the notations $\nabla u = (\partial_1 u, \partial_2 u)$ and $\|\nabla u\|_p = \|\partial_1 u\|_p + \|\partial_2 u\|_p$, where $\partial_j = \partial / \partial x_j$.

We look for mild solutions (u, v) of (1.3) in the class $u \in X_p$ with $p \in (4/3, 2)$, where X_p is the set of Bochner measurable functions $u : (0, \infty) \to L^p(\mathbb{R}^2)$ such that $\sup_{t>0} t^{1-\frac{1}{p}} \|u(t)\|_p < \infty$. We will obtain v according to the second formula in (1.3) for $u \in X_p$. Define $\| \cdot \|_{X_p}$ by

$$\|u\|_{X_p} = \sup_{t>0} t^{1-\frac{1}{p}} \|u(t)\|_p.$$

Throughout this paper, $p \in (4/3, 2)$ is fixed. First we show the existence of time global solution of (1.3) with $u_0 \in L^1(\mathbb{R}^2)$ and $\nabla v_0 \in L^2(\mathbb{R}^2)$.

Theorem 1. Assume that constants $M > 0$, $\alpha_0 > 0$, and $\beta_0 \geq 0$ satisfy the inequalities

$$\frac{\alpha_0}{(4\pi)^{1-\frac{1}{p}} M} + \tilde{C}_0 C_1 (\beta_0 + M) \leq 1 \quad \text{and} \quad \tilde{C}_0 C_1 (\beta_0 + 2M) < 1,$$

where positive constants \tilde{C}_0 and C_1 are given below in Lemma 2.2. Suppose that $u_0 \in L^1(\mathbb{R}^2)$ and $\nabla v_0 \in L^2(\mathbb{R}^2)$ satisfy $\|u_0\|_1 \leq \alpha_0$ and $\|\nabla v_0\|_2 \leq \beta_0$. Then there exists a unique global solution (u, v) of (1.3) such that $\|u\|_{X_p} \leq M$.

The system (1.1) is invariant under the similarity transformation

$$u_\lambda(x, t) = \lambda^2 u(\lambda x, \lambda^2 t) \quad \text{and} \quad v_\lambda(x, t) = v(\lambda x, \lambda^2 t)$$

for $\lambda > 0$, that is, if (u, v) is a solution of (1.1) then so is (u_λ, v_λ). A solution (u, v) is said to be self-similar, when the solution is invariant under this transformation, that is, $u(x, t) = u_\lambda(x, t)$ and $v(x, t) = v_\lambda(x, t)$ for all $\lambda > 0$. Letting $\lambda = 1/\sqrt{t}$, and putting $\phi(x) = u(x, 1)$ and $\psi(x) = v(x, 1)$, we find that the self-similar solution (u, v) has the form

$$u(x, t) = \frac{1}{t} \phi \left(\frac{x}{\sqrt{t}} \right) \quad \text{and} \quad v(x, t) = \psi \left(\frac{x}{\sqrt{t}} \right)$$

for $x \in \mathbb{R}^2$ and $t > 0$.
Let us consider the problem

\[
\begin{aligned}
&\frac{\partial u}{\partial t} = \alpha G(\cdot, t) - \int_0^t (\nabla e^{(t-s)\Delta}) \cdot (u(s) \nabla v(s)) \, ds, \\
&v(t) = \int_0^t e^{(t-s)\Delta} u(s) \, ds,
\end{aligned}
\tag{1.6}
\]

where \(\alpha\) is a positive constant and \(G\) is the heat kernel. We show the existence of the self-similar solutions of (1.6).

Theorem 2. Assume that constants \(M > 0\) and \(\alpha_0 > 0\) satisfy the inequalities

\[
\frac{\alpha_0}{(4\pi)^{1-\frac{1}{p}}} + \tilde{C}_0 C_1 M \leq 1 \quad \text{and} \quad 2\tilde{C}_0 C_1 M < 1,
\tag{1.7}
\]

where positive constants \(\tilde{C}_0\) and \(C_1\) are the same as in Theorem 1. Then, for \(\alpha \in (0, \alpha_0]\), there exists a unique self-similar solution \((u_\alpha, v_\alpha)\) of (1.6) such that \(\|u_\alpha\|_{X_p} \leq M\).

Remark 1. (i) We do not know the uniqueness of self-similar solution of (1.6) without the assumption \(\|u_\alpha\|_{X_p} \leq M\). Concerning the non-uniqueness of self-similar solutions for semilinear heat equations, we refer to [11].

(ii) For the properties of self-similar solutions to (1.1), we refer to [3, 9]. We also refer to [1, 2, 10], where the self-similar solutions to the parabolic-elliptic problem have been studied.

(iii) It is clear that, if \(M, \alpha_0,\) and \(\beta_0\) satisfy (1.4), then (1.7) holds. Thus, for a solution \((u, v)\), constructed by Theorem 1, there exists a self-similar solution \((u_\alpha, v_\alpha)\) of (1.6) with \(\alpha = \|u_0\|_1\).

Let \((u_\alpha, v_\alpha)\) be a self-similar solution of (1.6), constructed by Theorem 2. By the argument above, \((u_\alpha, v_\alpha)\) has the form

\[
u_\alpha(x, t) = \frac{1}{t} \phi_\alpha \left(\frac{x}{\sqrt{t}} \right) \quad \text{and} \quad v_\alpha(x, t) = \psi_\alpha \left(\frac{x}{\sqrt{t}} \right)
\]

for \(x \in \mathbb{R}^2\) and \(t > 0\). We note here that

\[
t^{1-\frac{1}{p}} \|u_\alpha(\cdot, t)\|_p = \|\phi_\alpha\|_p \quad \text{for} \ t > 0.
\]

From \(\|u_\alpha\|_{X_p} \leq M\), it follows that \(\phi_\alpha \in L^p(\mathbb{R}^2)\).

We consider the asymptotic behavior of solutions of (1.3) constructed by Theorem 1.

Theorem 3. Let \((u, v)\) be a solution of (1.3) constructed by Theorem 1. Assume, in addition, that \(u_0\) and \(v_0\) satisfy \((1 + |x|^2)u_0 \in L^1(\mathbb{R}^2)\) and \(\nabla v_0 \in L^1(\mathbb{R}^2)\). Let \((u_\alpha, v_\alpha)\) be a self-similar solution of (1.6) with \(\alpha = \|u_0\|_1\), constructed by Theorem 2. Then there exists \(\sigma \in (0, 1/2)\) such that

\[
t^{1-\frac{1}{p}} \|u(\cdot, t) - u_\alpha(\cdot, t)\|_p = O(t^{-\sigma}) \quad \text{as} \ t \to \infty.
\tag{1.8}
\]

In particular, \(\|tu(\cdot, \sqrt{t}, t) - \phi_\alpha(\cdot)\|_p = O(t^{-\sigma}) \quad \text{as} \ t \to \infty\).
It is interesting to compare the results for the problem (1.1) and the problem
\[
\begin{align*}
\frac{\partial u}{\partial t} &= \nabla \cdot (\nabla u - u \nabla v), \quad x \in \mathbb{R}^2, \ t > 0, \\
\frac{\partial v}{\partial t} &= \Delta v - v + u, \quad x \in \mathbb{R}^2, \ t > 0.
\end{align*}
\]

(1.9)

It has been shown by Nagai [7, 8] that every bounded solution of the problem (1.9) on \(\mathbb{R}^2 \times [0, \infty) \) decays to zero and behaves like a constant multiple of the heat kernel as \(t \to \infty \). The large time behavior for higher dimensional case is also studied in [8].

Theorems 1 and 2 are proven by employing the contraction mapping argument in suitable function spaces. We prove Theorem 3 by estimating the terms in the integral equations. We will give the proofs of Theorems 1 and 2 in Section 2, and we prove Theorem 3 in Section 3.

2. Proofs of Theorems 1 and 2. First we recall \(L^p - L^q \) estimates for the heat semigroup, which are proved by Young’s inequality for convolution.

Lemma 2.1 Let \(1 \leq q \leq p \leq \infty \) and \(f \in L^q(\mathbb{R}^2) \). Then
\[
\| e^{t\Delta} f \|_p \leq (4\pi t)^{-\left(\frac{1}{2} - \frac{1}{q}\right)} \| f \|_q,
\]
\[
\| \partial_j e^{t\Delta} f \|_p \leq C(p, q) t^{-\left(\frac{1}{2} - \frac{1}{q}\right) - \frac{1}{2}} \| f \|_q, \quad j = 1, 2,
\]
where \(C(p, q) \) is a positive constant depending only on \(p \) and \(q \).

Let
\[
X_p = \{ u : (0, \infty) \to L^p(\mathbb{R}^2) : \sup_{t > 0} t^{1 - \frac{1}{p}} \| u(t) \|_p < \infty \}
\]
with \(p \in (4/3, 2) \). Define \(\| \cdot \|_{X_p} \) by
\[
\| u \|_{X_p} = \sup_{t > 0} t^{1 - \frac{1}{p}} \| u(t) \|_p.
\]

For \(u \in X_p \) and \(\nabla v_0 \in L^2(\mathbb{R}^2) \), we define \(v \) by
\[
v(t) = e^{t\Delta} v_0 + \int_0^t e^{(t-s)\Delta} u(s) \, ds,
\]
and then \(\Phi(u) \) by
\[
\Phi(u)(t) = \int_0^t (\nabla e^{(t-s)\Delta} \cdot (u(s) \nabla v(s))) \, ds.
\]

In what follows, we put \(q = p/(p - 1) \) for fixed \(p \in (4/3, 2) \). We denote by \(B(p, q) \) the beta function.

Lemma 2.2. (i) We have
\[
\sup_{t > 0} t^{\frac{1}{2} - \frac{1}{q}} \| \nabla v(t) \|_q \leq \tilde{C}_0 (\| \nabla v_0 \|_2 + \| u \|_{X_p}),
\]
where
\[
\tilde{C}_0 = \max\{ (4\pi)^{-\left(\frac{1}{2} - \frac{1}{q}\right)}, \ C_0 \}, \quad C_0 = 2C(q, p)B\left(\frac{3}{2} - \frac{2}{p}, \frac{1}{p}\right).
\]
\(\| \Phi(u) \|_{L^p} \leq \tilde{C}_0 C_1 (\| \nabla v_0 \|_2 + \| u \|_{X_p}) \| u \|_{X_p}, \)

where

\(C_1 = C(p, 1)B(\frac{1}{p} - \frac{1}{2}, \frac{1}{2}). \)

Proof. (i) From (2.3) we have

\[\partial_j v(t) = e^{t \Delta} \partial_j v_0 + \int_0^t \partial_j e^{(t-s)\Delta} u(s) \, ds \]

for \(j = 1, 2. \) From (2.1) and (2.2) we obtain

\[
\| \partial_j v(t) \|_q \leq \| e^{t \Delta} \partial_j v_0 \|_q + \int_0^t \| \partial_j e^{(t-s)\Delta} u(s) \|_q \, ds \\
\leq (4\pi t)^{\frac{1}{2} - \frac{1}{p}} \| \partial_j v_0 \|_2 + C(q, p) \int_0^t (t-s)^{\frac{1}{2} - \frac{1}{p} - \frac{1}{2}} \| u(s) \|_p \, ds.
\]

Note that

\[
\int_0^t (t-s)^{\frac{1}{2} - \frac{1}{p} - \frac{1}{2}} \| u(s) \|_p \, ds \leq \int_0^t (t-s)^{\frac{1}{2} - \frac{1}{p} - \frac{1}{2}} s^{\frac{1}{p} - 1} \, ds \| u \|_{X_p} \\
= t^{\frac{1}{2} - \frac{1}{p}} B\left(\frac{3}{2} - \frac{2}{p}, \frac{1}{p}\right) \| u \|_{X_p}.
\]

By the definition \(\| \nabla u \|_q = \| \partial_1 u \|_q + \| \partial_2 u \|_q, \) we obtain

\[
t^{\frac{1}{2} - \frac{1}{q}} \| \nabla v(t) \|_q \leq (4\pi)^{-\left(\frac{1}{2} - \frac{1}{p}\right)} \| \nabla v_0 \|_2 + 2C(q, p)B\left(\frac{3}{2} - \frac{2}{p}, \frac{1}{p}\right) \| u \|_{X_p}.
\]

This implies that (2.5) holds.

(ii) By using of (2.2) and the Hölder inequality, we have

\[
\| \Phi(u)(t) \|_p \leq \int_0^t \| (\nabla e^{(t-s)\Delta}) \cdot (u(s) \nabla v(s)) \|_p \, ds \\
\leq C(p, 1) \int_0^t (t-s)^{\frac{1}{2} - \frac{1}{p}} \| u(s) \nabla v(s) \|_1 \, ds \\
\leq C(p, 1) \int_0^t (t-s)^{\frac{1}{2} - \frac{1}{p}} \| u(s) \|_p \| \nabla v(s) \|_q \, ds \equiv C(p, 1) I.
\]

Note that

\[
I \leq \int_0^t (t-s)^{\frac{1}{2} - \frac{1}{p}} s^{\frac{1}{2}} \| u \|_{X_p} \left(\sup_{t>0} t^{\frac{1}{2} - \frac{1}{p}} \| \nabla v \|_q\right) \\
= t^{\frac{1}{2} - \frac{1}{p}} B\left(\frac{1}{p} - \frac{1}{2}, \frac{1}{2}\right) \| u \|_{X_p} \left(\sup_{t>0} t^{\frac{1}{2} - \frac{1}{q}} \| \nabla v \|_q\right).
\]

Thus we obtain

\[
t^{1 - \frac{1}{p}} \| \Phi(u)(t) \|_p \leq C(p, 1) B\left(\frac{1}{p} - \frac{1}{2}, \frac{1}{2}\right) \| u \|_{X_p} \left(\sup_{t>0} t^{\frac{1}{2} - \frac{1}{q}} \| \nabla v \|_q\right).
\]

From (2.5) we obtain (2.7).
For \(u \in X_p \) and \(\nabla \nu_0 \in L^2(\mathbb{R}^2) \), define \(v \) and \(\Phi(\nu) \) by (2.3) and (2.4), respectively. For \(\tilde{u} \in X_p \), define

\[
\tilde{v}(t) = e^{t\Delta} \nu_0 + \int_0^t e^{(t-s)\Delta} \tilde{u}(s) \, ds
\]

and then \(\Phi(\tilde{u}) \) by

\[
\Phi(\tilde{u})(t) = \int_0^t (\nabla e^{(t-s)\Delta}) \cdot (\tilde{u}(s)\nabla \tilde{v}(s)) \, ds.
\]

We obtain the following estimates.

Lemma 2.3. (i) We have

\[
\sup_{t>0} t^{\frac{1}{2} - \frac{1}{q}} \| \nabla v(t) - \nabla \tilde{v}(t) \|_q \leq \tilde{C}_0 \| u - \tilde{u} \|_{X_p},
\]

where \(\tilde{C}_0 \) is the constant given by (2.6).

(ii) We have

\[
\| \Phi(u) - \Phi(\tilde{u}) \|_{X_p} \leq \tilde{C}_0 C_1 (\| \nabla \nu_0 \|_2 + \| u \|_{X_p} + \| \tilde{u} \|_{X_p}) \| u - \tilde{u} \|_{X_p},
\]

where \(C_1 \) is the constant given by (2.8).

Proof. (i) By the definition of \(v \) and \(\tilde{v} \), we see that

\[
\partial_j v(t) - \partial_j \tilde{v}(t) = \int_0^t \partial_j e^{(t-s)\Delta} (u(s) - \tilde{u}(s)) \, ds
\]

for \(j = 1, 2 \). By (2.2) we have

\[
\| \partial_j v(t) - \partial_j \tilde{v}(t) \|_q \leq C(q, p) \int_0^t (t-s)^{\frac{1}{2} - \frac{1}{p}} \| u(s) - \tilde{u}(s) \|_p \, ds.
\]

By a similar argument as in the proof of (i) of Lemma 2.2, we obtain

\[
\| \partial_j v(t) - \partial_j \tilde{v}(t) \|_q \leq t^{\frac{1}{2} - \frac{1}{p} - \frac{1}{2}} C(q, p) B(\frac{\frac{3}{2} - 2}{p}, \frac{1}{p}) \| u - \tilde{u} \|_{X_p}.
\]

Thus we obtain

\[
t^{\frac{1}{2} - \frac{1}{p}} \| \nabla v(t) - \nabla \tilde{v}(t) \|_q \leq 2C(q, p) B(\frac{\frac{3}{2} - 2}{p}, \frac{1}{p}) \| u - \tilde{u} \|_{X_p} = C_0 \| u - \tilde{u} \|_{X_p}.
\]

In particular, (2.9) holds.

(ii) We see that

\[
\Phi(u)(t) - \Phi(\tilde{u})(t) = \int_0^t (\nabla e^{(t-s)\Delta}) \cdot (u(s)\nabla v(s) - \tilde{u}(s)\nabla \tilde{v}(s)) \, ds
\]

\[
= \int_0^t (\nabla e^{(t-s)\Delta}) \cdot ((u(s) - \tilde{u}(s))\nabla v(s) - \tilde{u}(s)(\nabla v(s) - \nabla \tilde{v}(s)) \, ds.
\]

Then

\[
\| \Phi(u)(t) - \Phi(\tilde{u})(t) \|_p = \int_0^t \| (\nabla e^{(t-s)\Delta}) \cdot ((u(s) - \tilde{u}(s))\nabla v(s)) \|_p \, ds
\]

\[
+ \int_0^t \| (\nabla e^{(t-s)\Delta}) \cdot \tilde{u}(s)(\nabla v(s) - \nabla \tilde{v}(s)) \|_p \, ds \equiv I_1 + I_2.
\]
By a similar argument as in the proof of (ii) of Lemma 2.2 we obtain
\[I_1 \leq t^{\frac{1}{\beta} - 1} C(p, 1) B(\frac{1}{p} - \frac{1}{2}, \frac{1}{2}) \|u - \tilde{u}\|_{X_p} (\sup_{t > 0} t^{\frac{3}{2} - \frac{1}{\beta}} \|\nabla v\|_q) \]
and
\[I_2 \leq t^{\frac{1}{\beta} - 1} C(p, 1) B(\frac{1}{p} - \frac{1}{2}, \frac{1}{2}) \|\tilde{u}\|_{X_p} (\sup_{t > 0} t^{\frac{3}{2} - \frac{1}{\beta}} \|\nabla v(s) - \nabla \tilde{v}(s)\|_q). \]

From (i) of Lemma 2.2 and (i) of this lemma, it follows that
\[I_1 \leq t^{\frac{1}{\beta} - 1} \tilde{C}_0 C_1 \|u - \tilde{u}\|_{X_p} (\|\nabla v_0\|_2 + \|u\|_{X_p}) \quad \text{and} \quad I_2 \leq t^{\frac{1}{\beta} - 1} \tilde{C}_0 C_1 \|\tilde{u}\|_{X_p} \|u - \tilde{u}\|_{X_p}, \]
where \(C_1 \) is the constant given by (2.8). Thus (2.10) holds. \(\blacksquare \)

Proof of Theorem 1. We will show the existence of global solutions of the problem (1.3) by applying the contraction mapping principle. We remark that \(X_p \) is a Banach space endowed with the metric \(\| \cdot \|_{X_p} \). Define
\[(2.11) \quad X_{p,M} = \{ u \in X_p : \|u\|_{X_p} \leq M \}. \]

For \(u \in X_{p,M} \), we define \(v \) and \(\Phi(u) \) by (2.3) and (2.4), respectively, and define the operator \(\Psi(u) \) by
\[\Psi(u)(t) = e^{t \Delta} u_0 - \Phi(u)(t). \]

For \(u \in X_{p,M} \), we have \(\|\Psi(u)\|_{X_p} \leq \|e^{t \Delta} u_0\|_{X_p} + \|\Phi(u)\|_{X_p} \). By (2.1) we have
\[\|e^{t \Delta} u_0\|_{X_p} = \sup_{t > 0} t^{1 - \frac{1}{\beta}} \|e^{t \Delta} u_0\|_p \leq (4\pi)^{-(1 - \frac{1}{p})} \|u_0\|_1 \leq (4\pi)^{-(1 - \frac{1}{p})} \alpha_0. \]
From (ii) of Lemma 2.2 we obtain \(\|\Phi(u)\|_{X_p} \leq \tilde{C}_0 C_1 (\beta_0 + M) M \). Then it follows from the first part of (1.4) that
\[\|\Psi(u)\|_{X_p} \leq (4\pi)^{-(1 - \frac{1}{p})} \alpha_0 + \tilde{C}_0 C_1 (\beta_0 + M) M \leq M. \]
This implies that \(\Psi(u) \in X_{p,M} \) for all \(u \in X_{p,M} \).

Let \(u, \tilde{u} \in X_{p,M} \). From (ii) of Lemma 2.3, we have
\[\|\Psi(u) - \Psi(\tilde{u})\|_{X_p} = \|\Phi(u) - \Phi(\tilde{u})\|_{X_p} \leq \tilde{C}_0 C_1 (\beta_0 + 2M) \|u - \tilde{u}\|_{X_p}. \]

From the second part of (1.4), \(\Psi \) is contractive on \(X_{p,M} \). Then, by the contractive fixed point theorem, there exists an element \(u \in X_{p,M} \) such that \(u = \Psi(u) \). Define \(v \) by (2.3). Then it follows that \((u, v) \) is a unique solution of (1.3) such that \(\|u\|_{X_p} \leq M \). \(\blacksquare \)

Proof of Theorem 2. Define the set \(X_{p,M} \) by (2.11). For \(u \in X_{p,M} \), we define \(v \) by
\[(2.12) \quad v(t) = \int_0^t e^{(t - s)\Delta} u(s) \, ds. \]

Define the operators \(\Phi(u) \) and \(\Psi_\alpha(u) \) with \(\alpha > 0 \), respectively, by (2.4) and
\[\Psi_\alpha(u)(t) = \alpha G(\cdot, t) - \Phi(u)(t). \]
From the fact that \(\|G(\cdot, t)\|_p \leq (4\pi t)^{-(1 - \frac{1}{p})} \), we have
\[\|\alpha G(\cdot, t)\|_{X_p} = \alpha \sup_{t > 0} t^{1 - \frac{1}{p}} \|G(\cdot, t)\|_p \leq (4\pi)^{-(1 - \frac{1}{p})} \alpha_0. \]
Then, from (ii) of Lemma 2.2 and the first part of (1.7), we obtain
\[\|\Psi_\alpha(u)\|_{X_p} \leq (4\pi)^{-(1 - \frac{1}{p})} \alpha_0 + \tilde{C}_0 C_1 M^2 \leq M. \]
This implies that $\Psi X_{p,M} \subset X_{p,M}$. By a similar argument as in the proof of Theorem 1, we see that Ψ_λ is contractive on $X_{p,M}$. Then, by the contractive fixed point theorem, there exists an element $u \in X_{p,M}$ such that $u = \Psi(u)$. Define v by (2.12). Then it follows that (u, v) is a solution of (1.6) and is unique in the class $\|u\|_{X_p} \leq M$.

For $\lambda > 0$, define (u_λ, v_λ) by (1.5). Then we easily see that (u_λ, v_λ) satisfies the problem (1.6). Furthermore, from the fact $\|u_\lambda(t)\|_p = \lambda^{1 - \frac{1}{p}} \|u(\lambda^2 t)\|_p$, we have $\|u_\lambda\|_{X_p} = \|u\|_{X_p} \leq M$ for all $\lambda > 0$. By the uniqueness, we obtain $u \equiv u_\lambda$ and $v \equiv v_\lambda$ for all $\lambda > 0$. This implies that (u, v) is a self-similar solution of (1.6). ■

3. Proof of Theorem 3. First we show the following lemma.

Lemma 3.1. Let $\sigma \in (0, 1/2)$. Then

$$\sup_{t>0} t^{\frac{1}{2} - \frac{1}{q}} (1 + t)^\sigma \|\nabla e^{t \Delta} v_0\|_q < \infty. \tag{3.1}$$

Proof. From (2.1) we have

$$\|\partial_j e^{t \Delta} v_0\|_q = \|e^{t \Delta} \partial_j v_0\|_q \leq C t^{-(\frac{1}{2} - \frac{1}{q})} \|\partial_j v_0\|_2$$

for $j = 1, 2$. Then

$$\lim_{t \to 0} t^{\frac{1}{2} - \frac{1}{q}} (1 + t)^\sigma \|\partial_j e^{t \Delta} v_0\|_q < \infty.$$

From $\nabla v_0 \in L^1(\mathbb{R}^2)$ and (2.1), we have

$$\|\partial_j e^{t \Delta} v_0\|_q = \|e^{t \Delta} \partial_j v_0\|_q \leq C t^{-(\frac{1}{2} - \frac{1}{q})} \|\partial_j v_0\|_1.$$

Then

$$\lim_{t \to \infty} t^{\frac{1}{2} - \frac{1}{q}} (1 + t)^\sigma \|\partial_j e^{t \Delta} v_0\|_q < \infty.$$

Thus we obtain (3.1). ■

Throughout this section, we put

$$A_{0,\sigma} = \sup_{t>0} t^{\frac{1}{2} - \frac{1}{q}} (1 + t)^\sigma \|\nabla e^{t \Delta} v_0\|_q.$$

Let $\sigma \in (0, 1/2)$. For $u \in X_p$ and $t > 0$, we define

$$\|u\|_{X_p^\sigma(t)} = \sup_{0 < s \leq t} s^{\frac{1}{2} - \frac{1}{q}} (1 + s)^\sigma \|u(s)\|_p.$$

Let (u, v) and (u_α, v_α) be solutions of (1.3) and (1.6), respectively.

Lemma 3.2. Let $\sigma \in (0, 1/2)$. For $t > 0$, we have

$$\sup_{0 < s \leq t} s^{\frac{1}{2} - \frac{1}{q}} (1 + s)^\sigma \|\nabla v(s) - \nabla v_\alpha(s)\|_q \leq A_{0,\sigma} + C_{0,\sigma} \|u - u_\alpha\|_{X_p^\sigma(t)}, \tag{3.2}$$

where

$$C_{0,\sigma} = 2C(q, p) B(\frac{3}{2} - \frac{2}{p}, \frac{1}{p} - \sigma). \tag{3.3}$$

Proof. We see that

$$\partial_j v(t) - \partial_j v_\alpha(t) = \partial_j e^{t \Delta} v_0 + \int_0^t \partial_j e^{(t-s) \Delta} (u(s) - u_\alpha(s)) \, ds.$$
for $j = 1, 2$. Then it follows from (2.2) that
\[
\|\partial_j v(t) - \partial_j v_\alpha(t)\|_q \leq \|\partial_j e^{t\Delta} v_0\|_q + \int_0^t \|\partial_j e^{(t-s)\Delta} (u(s) - u_\alpha(s))\|_q ds \\
\leq \|\partial_j e^{t\Delta} v_0\|_q + C(q, p) \int_0^t (t-s)^{-\frac{1}{p} + \frac{1}{q} - \frac{1}{2}} \|u(s) - u_\alpha(s)\|_p ds.
\]

We observe that
\[
\int_0^t (t-s)^{-\frac{1}{p} + \frac{1}{q} - \frac{1}{2}} \|u(s) - u_\alpha(s)\|_p ds \leq \int_0^t (t-s)^{\frac{1}{2} - \frac{2}{p} s^{\frac{1}{p}-1}(1+s)^{-\sigma}} ds \|u - u_\alpha\|_{X_p^p(t)}.
\]

From the fact that
\[
(3.4) \quad \frac{1 + t}{1 + s} \leq \frac{t}{s} \quad \text{for } t \geq s,
\]
we obtain
\[
\int_0^t (t-s)^{\frac{1}{2} - \frac{2}{p} s^{\frac{1}{p}-1}(1+s)^{-\sigma}} ds \leq t^{\sigma} (1+t)^{-\sigma} \int_0^t (t-s)^{\frac{1}{2} - \frac{2}{p} s^{\frac{1}{p}-1-\sigma}} ds \\
= t^{-\frac{1}{2} + \frac{1}{q}} (1 + t)^{-\sigma} B\left(\frac{3}{2}, \frac{1}{p}, \frac{1}{p} - \sigma\right).
\]

Then
\[
\|\partial_j v(t) - \partial_j v_\alpha(t)\|_q \leq \|\partial_j e^{t\Delta} v_0\|_q + t^{-\frac{1}{2} + \frac{1}{q}} (1+t)^{-\sigma} C(q, p) B\left(\frac{3}{2}, \frac{1}{p}, \frac{1}{p} - \sigma\right) \|u - u_\alpha\|_{X_p^p(t)}.
\]

Thus we obtain (3.2). \(\blacksquare\)

Lemma 3.3. Let $\sigma \in (0, 1/2)$. For $t > 0$, we have
\[
(3.5) \quad \|\Phi(u) - \Phi(u_\alpha)\|_{X_p^p(t)} \leq A_{0, \sigma} C_{1, \sigma} \|u_\alpha\|_{X_p} + A_{1, \sigma} C_{1, \sigma} \|u - u_\alpha\|_{X_p^p(t)},
\]

where
\[
C_{1, \sigma} = C(p, 1) B\left(\frac{1}{p}, \frac{1}{2}, \frac{1}{2} - \sigma\right),
\]

and
\[
(3.6) \quad A_{1, \sigma} = \tilde{C}_0 (\|\nabla v_0\|_2 + \|u\|_{X_p}) + C_{0, \sigma} \|u_\alpha\|_{X_p}.
\]

In (3.6), \tilde{C}_0 and $C_{0, \sigma}$ are constants defined by (2.6) and (3.3), respectively.

Proof. We see that
\[
\|\Phi(u)(t) - \Phi(u_\alpha)(t)\|_p \\
\leq \int_0^t \|\nabla e^{(t-s)\Delta} \cdot (u(s)\nabla v(s) - u_\alpha(s)\nabla v_\alpha(s))\|_p ds \\
\leq \int_0^t \|\nabla e^{(t-s)\Delta} \cdot (u(s) - u_\alpha(s))\nabla v(s)\|_p ds \\
+ \int_0^t \|\nabla e^{(t-s)\Delta} \cdot (u_\alpha(s)(\nabla v(s) - \nabla v_\alpha(s))\|_p ds \equiv I_1 + I_2.
\]
By (2.2) and the Hölder inequality, we have
\[
I_1 \leq C(p, 1) \int_0^t (t-s)^{-\frac{3}{2} + \frac{1}{p}} \|(u(s) - u_\alpha(s))\nabla v(s)\|_1 \, ds
\]
\[
\leq C(p, 1) \int_0^t (t-s)^{-\frac{3}{2} + \frac{1}{p}} \|u(s) - u_\alpha(s)\|_p \|\nabla v(s)\|_q \, ds
\]
\[
\leq C(p, 1) \int_0^t (t-s)^{-\frac{3}{2} + \frac{1}{p}} s^{-\frac{1}{2}} (1 + s)^{-\sigma} \, ds \|u - u_\alpha\|_{X_p^s(t)} (\sup_{t>0} t^{\frac{1}{p} - \frac{1}{q}} \|\nabla v(t)\|).
\]
From (3.4) it follows that
\[
\int_0^t (t-s)^{-\frac{3}{2} + \frac{1}{p}} s^{-\frac{1}{2}} (1 + s)^{-\sigma} \, ds \leq t^\sigma (1 + t)^{-\sigma} \int_0^t (t-s)^{-\frac{3}{2} + \frac{1}{p}} s^{-\frac{1}{2}} ds
\]
\[
= t^{-\frac{1}{2} + \frac{1}{q}} (1 + t)^{-\sigma} B\left(\frac{1}{p} - \frac{1}{2}, \frac{1}{2} - \sigma\right).
\]
From (i) of Lemma 2.2, we have
\[
(3.7) \quad I_1 \leq t^{-\frac{1}{2} + \frac{1}{q}} (1 + t)^{-\sigma} C(p, 1) B\left(\frac{1}{p} - \frac{1}{2}, \frac{1}{2} - \sigma\right) \|u - u_\alpha\|_{X_p^s(t)} (\sup_{t>0} t^{\frac{1}{p} - \frac{1}{q}} \|\nabla v(t)\|)
\]
\[
\leq t^{-\frac{1}{2} + \frac{1}{q}} (1 + t)^{-\sigma} C_{1, \sigma} C_0 (\|\nabla v\|_2 + \|u\|_{X_p}) \|u - u_\alpha\|_{X_p^s(t)}.
\]
By (2.2) and the Hölder inequality, we have
\[
I_2 \leq C(p, 1) \int_0^t (t-s)^{-\frac{3}{2} + \frac{1}{p}} \|u_\alpha(s)(\nabla v(s) - \nabla \alpha v(s))\|_1 \, ds
\]
\[
\leq C(p, 1) \int_0^t (t-s)^{-\frac{3}{2} + \frac{1}{p}} \|u_\alpha(s)\|_p \|\nabla v(s) - \nabla \alpha v(s)\|_q \, ds
\]
\[
\leq C(p, 1) \int_0^t (t-s)^{-\frac{3}{2} + \frac{1}{p}} s^{-\frac{1}{2}} (1 + s)^{-\sigma} \, ds \|u_\alpha\|_{X_p A_{2, \sigma}},
\]
where
\[
A_{2, \sigma} = (\sup_{t>0} t^{\frac{1}{p} - \frac{1}{q}} (1 + t)^\sigma) \|\nabla v(t) - \nabla v_\alpha(t)\|.
\]
It follows from (3.4) that
\[
I_2 \leq t^{-\frac{1}{2} + \frac{1}{q}} (1 + t)^{-\sigma} C(p, 1) B\left(\frac{1}{p} - \frac{1}{2}, \frac{1}{2} - \sigma\right) \|u_\alpha\|_{X_p A_{2, \sigma}}.
\]
From Lemma 3.2 we obtain
\[
(3.8) \quad I_2 \leq t^{-\frac{1}{2} + \frac{1}{q}} (1 + t)^{-\sigma} C_{1, \sigma} \|u_\alpha\|_{X_p} (A_{0, \sigma} + C_{0, \sigma} \|u - u_\alpha\|_{X_p^s(t)}).
\]
Combining (3.7) and (3.8), we obtain (3.5). ■

Proof of Theorem 3. We see that
\[
\|u(s) - u_\alpha(s)\|_p = \|e^{t\Delta} u_0 - \alpha G(\cdot, t)\|_p + \|\Phi(u) - \Phi(u_\alpha)\|_p.
\]
By the arguments in the proofs of Theorems 1 and 2, we obtain
\[
\sup_{t>0} t^{\frac{1}{p} + 1} \|e^{t\Delta} u_0 - \alpha G(\cdot, t)\|_p \leq \sup_{t>0} t^{\frac{1}{p} + 1} \|e^{t\Delta} u_0\|_p + \sup_{t>0} t^{\frac{1}{p} + 1} \|\alpha G(\cdot, t)\|_p < \infty.
\]
By [5, Lemma 2.1] we have
\[
\|e^{t\Delta} u_0 - \alpha G(\cdot, t)\|_p \leq Ct^{\frac{1}{p} - \frac{2}{3}} \|(\nu)^2 + 1\| u_0 \|_1.
\]
Then we have
\[\sup_{t>0} t^{1+\frac{1}{p}} (1 + t) \sigma \| e^t \Delta u_0 - \alpha G(\cdot, t) \|_p \equiv A_{2, \sigma} < \infty. \]

From Lemma 3.3 we obtain
\[\| u - u_\alpha \|_{X^\sigma_p(t)} \leq A_{2, \sigma} + \| \Phi(u) - \Phi(u_\alpha) \|_{X^\sigma_p(t)} \]
(3.9)
\[\leq A_{2, \sigma} + A_{0, \sigma} C_{1, \sigma} \| u_\alpha \|_{X^\sigma_p} + A_{1, \sigma} C_{1, \sigma} \| u - u_\alpha \|_{X^\sigma_p(t)}. \]

We note here that \(C_{0, \sigma} \to C_0 \) and \(C_{1, \sigma} \to C_1 \) as \(\sigma \to 0 \), where \(C_0 \) and \(C_1 \) are constants defined by (2.6) and (2.8), respectively. Then, from (3.6) and \(C_0 \leq \bar{C}_0 \), we obtain
\[\lim_{\sigma \to 0} A_{1, \sigma} = \bar{C}_0 (\| \nabla v_0 \|_2 + \| u \|_{X^\sigma_p}) + C_0 \| u_\alpha \|_{X^\sigma_p} \leq \bar{C}_0 (\beta_0 + 2M). \]

From the second part of (1.4), we find that \(C_{1, \sigma} A_{1, \sigma} < 1 \) for sufficient small \(\sigma > 0 \). Then it follows from (3.9) that
\[\| u - u_\alpha \|_{X^\sigma_p(t)} \leq \frac{A_{2, \sigma} + A_{0, \sigma} C_{1, \sigma} \| u_\alpha \|_{X^\sigma_p}}{1 - A_{1, \sigma} C_{1, \sigma}} < \infty \quad \text{for } t > 0. \]

This implies that \(\| u - u_\alpha \|_{X^\sigma_p(t)} \) is bounded for all \(t > 0 \). Thus we obtain
\[\| u - u_\alpha \|_{X^\sigma_p} \leq C (1 + t)^\sigma \quad \text{for all } t > 0 \]
with some constant \(C > 0 \). In particular, we conclude that (1.8) holds. \(\blacksquare \)

Acknowledgements. The author thanks Professor Yoshiyuki Kagei of Kyusyu University for helpful comments and suggestions. The preparation of this paper was partially supported by the Grant-in-Aid for Scientific Research (C) (No. 17540194), Ministry of Education, Culture, Sports, Science and Technology.

References

