
SELF-SIMILAR SOLUTIONS OF NONLINEAR PDE

BANACH CENTER PUBLICATIONS, VOLUME 74

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2006

A BLOWUP ANALYSIS OF THE MEAN FIELD EQUATION

FOR ARBITRARILY SIGNED VORTICES

HIROSHI OHTSUKA

Department of Applied Physics, Faculty of Engineering

University of Miyazaki, Japan

E-mail: ohtsuka@cc.miyazaki-u.ac.jp

TAKASHI SUZUKI

Division of Mathematical Science, Department of System Innovation

Graduate School of Engineering Science, Osaka University, Japan

E-mail: suzuki@sigmath.es.osaka-u.ac.jp

Abstract. We study the noncompact solution sequences to the mean field equation for arbitrarily

signed vortices and observe the quantization of the mass of concentration, using the rescaling

argument.

1. Introduction. We continue the study [34] on the noncompact solution sequences

to the mean field equation for arbitrarily signed vortices on a two-dimensional compact

orientable Riemannian manifold (M, g) without boundary:

−∆gv = λ1

(

ev

∫

M
ev dvg

−
1

|M |

)

− λ2

(

e−v

∫

M
e−v dvg

−
1

|M |

)

,

∫

M

v dvg = 0, (1)

where ∆g, dvg , and |M | are the Laplace-Beltrami operator, the volume form, and the

volume of M , respectively, and λ1, λ2 are nonnegative constants.

This equation is derived by Joyce and Montgomery [20] and Pointin and Lundgren

[35] from different statistical arguments for describing the mean field of the equilibrium

turbulence with arbitrarily signed vortices, see also [28, 12, 25, 30]. Here, these vortices

are composed of positive and negative intensities with the same absolute value, and v and
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λ1/λ2 are associated with the stream function of the fluid and the ratio of the numbers

of the signed vortices, respectively.

The equation (1) is the Euler-Lagrange equation of the functional

Jλ1,λ2
(v) =

1

2

∫

M

|∇gv|
2 dvg − λ1 log

∫

M

ev dvg − λ2 log

∫

M

e−v dvg

defined on

E =

{

w ∈ H1(M) |

∫

M

w dvg = 0

}

,

which forms a Hilbert space with the inner product 〈u, v〉 =
∫

M
∇gu · ∇gv dvg. When

(λ1, λ2) = (λ, 0) or (λ1, λ2) = (0, λ), this Jλ1,λ2
is reduced to

Iλ(v) =
1

2

∫

M

|∇gv|
2 dvg − λ log

∫

M

ev dvg ,

and it is associated with the Trudinger-Moser inequality [16] given by

infv∈E Iλ(v) > −∞ if λ ∈ [0, 8π],

infv∈E Iλ(v) = −∞ if λ > 8π.

We have

Jλ1,λ2
(v) =

1

2

(

1 −
λ1

8π
−

λ2

8π

)

‖v‖2
E +

λ1

8π
I8π(v) +

λ2

8π
I8π(−v),

and therefore,

inf
v∈E

Jλ1,λ2
(v) > −∞ if 1 −

λ1

8π
−

λ2

8π
≥ 0.

In our previous work [34] we improve this trivial inequality to the following optimal

one:

Theorem 1.1.

inf
v∈E

Jλ1,λ2
(v) > −∞ if (λ1, λ2) ∈ [0, 8π] × [0, 8π], (2)

and in particular Jλ1,λ2
has a global minimizer on E if 0 ≤ λ1, λ2 < 8π and

inf
v∈E

Jλ1,λ2
(v) = −∞ if λ1 > 8π, or λ2 > 8π.

We note that similar results for H1
0 (Ω) on a bounded domain Ω ⊂ R

2 follow from the

above theorem by a simple extension argument, see [34].

Although Shafrir and Wolansky [37] obtained a related result that leads to (2), we

proved the above result by a completely different method. We developed blow-up analysis

for the solution sequence to (1), and apply the argument of Jost and Wang [18] concerning

SU(3) Toda system. The purpose of this paper is to develop further the blow-up analysis

and clarify the possible singular limits of the solution sequence to (1) to some extent.

First, we recall the following result on the blow-up analysis from [34]:

Theorem 1.2. Let {λ1,n} and {λ2,n} be sequences of nonnegative constants satisfying

λi,n → λi(≥ 0) as n → ∞ for i = 1, 2, (3)

and {vn} ⊂ E be a sequence of solutions to (1) corresponding to (λ1,n, λ2,n). Then, up to

a subsequence, the following alternatives hold:
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(1) (compactness) There exist v ∈ E and a subsequence of {vn} (denoted by the same

symbol, also hereafter) such that

vn → v in E,

where this v is a solution to (1) for those λ1 and λ2.

(2) (one-sided concentration) Let S1 and S2 be the blow-up set of (this subsequence

of) {vn} and {−vn}, respectively, that is,

S1 = {x ∈ M |∃xn → x s.t. vn(xn) → +∞},

S2 = {x ∈ M |∃xn → x s.t. vn(xn) → −∞}.

Then there exists i ∈ {1, 2} such that Si 6= ∅ and Sj = ∅ for j ∈ {1, 2}\{i}.

Moreover, put

µ1,n ≡ λ1,n
evn

∫

M
evn dvg

, µ2,n ≡ λ2,n
e−vn

∫

M
e−vn dvg

,

and identify them with µk,n dvg (k = 1, 2) in the space of measures M(M) =

C(M)∗. Then

µi,n → µi =
∑

x0∈Si

8πδx0
weakly ∗ in M(M),

and

µi,n → 0 in L∞(ω)

for every ω ⋐ M\Si. On the other hand, there exists uj ∈ E and a subsequence

of {uj,n} such that

uj,n → uj in E,

where this uj is a solution to

−∆gv = λ

(

K(x)ev

∫

M
K(x)ev dvg

−
1

|M |

)

,

∫

M

v dvg = 0, (4)

with K(x) = e−
∑

x0∈Si
8πG(x,x0). Here G = G(x, y) indicates the Green function

of −∆g, that is,

−∆gG(·, y) = δx −
1

|M |
in M,

∫

M

G(·, y) dvg = 0.

(3) (concentration) For each i = 1, 2, we have Si 6= ∅ and there exists a positive

constant

mi(x0) ≥ 4π for each x0 ∈ Si. (5)

We have, furthermore, a nonnegative function

ri(x) ∈ L1(M) ∩ L∞
loc(M\Si)

such that

µi,n → rn +
∑

x0∈Si

mi(x0)δx0
weakly ∗ in M(M),

and

µi,n → ri in Lp(ω)

for every p ∈ [1,∞) and every ω ⋐ M\Si. Finally, the following facts hold:
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3-i) If there exists x0 ∈ Si\Sj for i 6= j, then we have mi(x0) = 8π and ri ≡ 0.

3-ii) For every x0 ∈ S1 ∩ S2, we have

(m1(x0) − m2(x0))
2 = 8π(m1(x0) + m2(x0)). (6)

Moreover, if Si ⊂ Sj and there exists x0 ∈ Si satisfying

mi(x0) − mj(x0) > 4π,

then ri ≡ 0, see Figure 1.

In this paper, we improve the minimum mass (5) as follows:

Theorem 1.3 (Main Result). In the conclusion of Theorem 1.2, (5) is improved as fol-

lows, see Figure 1:

mi(x0) ≥ 8π for each x0 ∈ Si.

O

m2(x0)

m1(x0)8π

8π

4π

4(2 +
√

5)π

4(2 +
√

5)π

4π

r1 ≡ 0

r2 ≡ 0

24π

24π

Improved

Known

Fig. 1. The mass of concentration at x0 ∈ S1 ∩ S2

The conclusion follows from Theorem 1.2 3-i) when x0 ∈ Si\Sj for some i 6= j. Thus we

only consider the case x0 ∈ S1 ∩ S2 to prove Theorem 1.3.

The above result guarantees the following compactness result for solution sequences

to (1):

Corollary 1.4. Let {λ1,n} and {λ2,n} be sequences of nonnegative constants satisfying

(3) for some

(λ1, λ2) ∈ {[0, 24π)\8πN} × {[0, 24π)\8πN},

and {vn} ⊂ E be a sequence of solutions to (1) corresponding to (λ1,n, λ2,n). Then {vn}

is relatively compact in E.
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The possible values of (m1(x0), m2(x0)) for x0 ∈ S1 ∩ S2 will be more restrictive and

we expect that

(m1(x0), m2(x0)) = 8π

(

(ℓ − 1)ℓ

2
,
ℓ(ℓ + 1)

2

)

, 8π

(

ℓ(ℓ + 1)

2
,
(ℓ − 1)ℓ

2

)

for ℓ = 1, 2, 3, · · · , see [34]. To describe the background of this conjecture, let us define

(u1, u2) ∈ E × E by

ui(x) ≡

∫

M

G(x, y)µi(y) dvg for i = 1, 2. (7)

Then, the function v = u1 − u2 satisfies (1). A basic idea is obtained by regarding these

u1 and u2 as the positive and the negative parts of v, respectively, and in this case (1)

becomes the Liouville system

−∆gu1 = λ1

(

ea11u1+a12u2

∫

M
ea11u1+a12u2 dvg

−
1

|M |

)

,

−∆gu2 = λ2

(

ea21u1+a22u2

∫

M
ea21u1+a22u2 dvg

−
1

|M |

)

,

∫

M

u1 dvg = 0,

∫

M

u2 dvg = 0, (8)

with aij (i, j = 1, 2) constituting

A = (aij) =

(

1 −1

−1 1

)

.

When this matrix is given by

A =

(

2 −1

−1 2

)

in (8), it comprises the SU(3) Toda system (in the simplest form without the vortex

term) arising in nonabelian relativistic self-dual gauge theory [22, 15, 41] studied by

several authors mathematically [18, 19, 26, 7, 32, 17].

Each equation of the general Liouville system (8) is regarded as (4) by putting

v = aiiui, λ = aiiλi, K = eaijuj (j 6= i),

for i = 1, 2 and, especially, to

−∆gv = λ

(

ev

∫

M
ev dvg

−
1

|M |

)

,

∫

M

v dvg = 0, (9)

if λ1 or λ2 = 0. Here, the equation (9) and its generalization (4) with the inhomogeneous

coefficient K(x) > 0 appear also in the self-dual gauge field theory [41], stationary system

of chemotaxis or self-interacting particles [40], and the prescribing Gaussian curvature

problem [1]. It has been studied in recent years [29, 39, 4, 24, 23, 5, 6, 21, 38, 14, 36, 31,

33, 2, 13, 8, 9], and especially, we have the quantization phenomenon [23] of

λ ∈ 8πN

for the noncompact sequence of solutions (vn, λn) with λn → λ (based on [4, 24], see also

[29, 39, 36] for another method) and the classification of the singular limit using the Green
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function [29, 27, 33]. We note that these results are provided with fundamental tools or

motivations for the variational method [38, 14], the singular perturbation of the solution

(see [2] for bounded domain), and the calculation of the topological degree [23, 9].

Similar problems are also considered for SU(3) Toda systems. Putting

µ1,n ≡ λ1,n
e2u1,n−u2,n

∫

M
e2u1,n−u2,n dvg

, µ2,n ≡ λ2,n
e−u1,n+2u2,n

∫

M
e−u1,n+2u2,n dvg

,

we obtain a result like the above Theorem 1.2 ([18, 26, 7]). In this case, (since aii = 2)

the estimate corresponding to (5) is

mi(x0) ≥ 2π for each x0 ∈ Si. (10)

Furthermore, if x0 ∈ S1 ∩ S2, then m1(x0) and m2(x0) satisfy the relation describing an

ellipse

m1(x0)
2 − m1(x0)m2(x0) + m2(x0)

2 = 4π(m1(x0) + m2(x0)),

instead of (6). In fact, in the general form of (8), it holds that

a11a21m1(x0)
2 + 2a12a21m1(x0)m2(x0) + a22a12m2(x0)

2

= 8π(a21m1(x0) + a12m2(x0)).

For the SU(3) Toda case, the improvement of the estimate (10) to

mi(x0) ≥ 4π for each x0 ∈ Si

was obtained in [26], see also [32, 17]. In this case it is expected that

(m1(x0), m2(x0)) ∈ {(4π, 8π), (8π, 4π), (8π, 8π)}

for any x0 ∈ S1 ∩ S2.

2. Preliminaries. In this section, we describe several results obtained in [34] to be used

in the proof of the main theorem of this paper.

First, given x0 ∈ S1 ∩ S2, we take an isothermal chart (Ψ, U) satisfying

Ψ(x0) = 0, Ψ(x) = X ∈ R
2, g = eξ(X)(dX2

1 + dX2
2 ),

and U ∩ (S1 ∪ S2) = {x0}. Then, vn(X) = vn ◦ Ψ−1(X) is a solution of

−∆vn = λ1,n

(

evn

∫

M
evn

−
1

|M |

)

eξ − λ2,n

(

e−vn

∫

M
e−vn

−
1

|M |

)

eξ in Ω.

Let us define the functions hξ by

∆hξ = eξ in Ω, hξ = 0 on ∂Ω,

where Ω = Ψ(U) ⊂ R
2. Without loss of generality, we may assume that ∂Ω is smooth.

Putting

w1,n(X) = vn(Φ−1(X)) − log

∫

M

evn −
λ1,n − λ2,n

|M |
hξ,

w2,n(X) = −vn(Φ−1(X)) − log

∫

M

e−vn −
−λ1,n + λ2,n

|M |
hξ,
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we obtain

−∆w1,n = V1,n(x)ew1,n − V2,new2,n ,

−∆w2,n = −V1,n(x)ew1,n + V2,n(x)ew2,n , (11)

in Ω for

V1,n = λ1,neξ+
λ1,n−λ2,n

|M| hξ ,

V2,n = λ2,neξ+
−λ1,n+λ2,n

|M|
hξ ,

satisfying

0 ≤ V1,n(X) ≤ b, 0 ≤ V2,n(X) ≤ b (∀X ∈ Ω)
∫

Ω

ew1,n ≤ c,

∫

Ω

ew2,n ≤ c, (12)

with some constants b, c > 0 independent of n, and

V1,n → V1 = λ1e
ξ+(λ1−λ2)hξ ,

V2,n → V2 = λ2e
ξ+(−λ1+λ2)hξ , (13)

uniformly on Ω. By (5) we have only to consider the case min(λ1, λ2) > 0, that is,

V1, V2 > 0. We have xi,n → x0 such that vn(x1,n),−vn(x2,n) → +∞. This implies

Xi,n = Ψ(xi,n) → 0 and also

vn(xn) − log

∫

M

evn , −vn(xn) − log

∫

M

e−vn → +∞

from the proof of [34, Lemma 2.2], or equivalently, wi,n → +∞ for each i = 1, 2. This

means 0 ∈ S0
i , where

S0
i = {X0 ∈ Ω | there exists Xn → X0 such that wi,n(Xn) → +∞} .

We also obtain S0
i = Ψ(U ∩ Si) = {0} similarly to the proof of [34, Lemma 2.2].

Next, by Theorem 1.2 we have

V1,new1,n → m1δ0 + r1,

V2,new2,n → m2δ0 + r2,

in M(Ω) with min(m1, m2) ≥ 4π, r1, r2 ∈ L1(Ω) ∩ L∞
loc(Ω \ {0}), and

Vi,newi,n → ri in Lp
loc(Ω \ {0})

for any 1 ≤ p < ∞. These mi coincide with mi(x0) (i = 1, 2). By Theorem 1.2 we have

r1 = 0 and r2 = 0 in the cases of m1 − m2 > 4π and −m1 + m2 > 4π, respectively, and

(m1 − m2)
2 = 8π(m1 + m2).

Thus, we obtain (11), (12), and (13) in a bounded domain Ω ⊂ R
2, taking x = (x1, x2)

to indicate the standard coordinates in R
2. We have to show mi ≥ 8π (i = 1, 2) to prove

the main theorem. Here, we recall that Brezis-Merle [4] type theorem for (11) holds by

a similar argument discussed for the SU(3) Toda system [26, Theorem 4.2].

Lemma 2.1. If {(w1,n, w2,n)}n is a solution sequence to (11) and (12), then there is

a subsequence (denoted by the same symbol) satisfying the following alternatives.
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(1) Both {w1,n}n and {w2,n}n are locally uniformly bounded in Ω.

(2) There is i ∈ {1, 2} such that {wi,n}n is uniformly bounded in Ω and wj,n → −∞

locally uniformly in Ω for j 6= i.

(3) Both w1,n → −∞ and w2,n → −∞ locally uniformly in Ω.

(4) For the blow-up sets S0
1 , S0

2 defined for this subsequence, we have S0
1 ∪ S0

2 6= ∅

and ♯(S0
1 ∪ S0

2 ) < +∞. Furthermore, for each i ∈ {1, 2}, either {wi,n}n is locally

uniformly bounded in Ω\(S0
1∪S

0
2 ) or wi,n → −∞ locally uniformly in Ω\(S0

1∪S
0
2 ).

Here, if S0
i \ (S0

1 ∩ S0
2 ) 6= ∅, then wi,n → −∞ locally uniformly in Ω \ (S0

1 ∪ S0
2 ),

and each x0 ∈ S0
i takes mi(x0) ≥ 4π such that

Vi,n(x)ewi,n ⇀
∑

x0∈S0
i

mi(x0)δx0
∗-weakly in M(Ω).

Finally, performing the rescaling argument using the above lemma, we arrive at one

of the following:

(1) (Liouville equation in R
2)

−∆w = ew in R
2,

∫

R2

ew < +∞, (14)

(2) (singular Liouville equation in R
2)

−∆w = ew −
∑

x0∈S

m(x0)δx0
,

∫

R2

ew < +∞, (15)

where S ⊂ R
2 is a finite set and m(x0) ≥ 4π for any x0 ∈ S.

Lemma 2.2 ([10, 11]). We have the following:

(1) For the solution w to (14) we have
∫

R2 ew = 8π.

(2) For the solution w to (15) we have
∫

R2 ew > 4π +
∑

x0∈S m(x0).

Remark 2.3. Lemma 2.2 (2) follows from [11, Theorem 2.3], but the statement there

assumes 0 > m(x0) > −4π for each x0 ∈ S, which seems not to cover our cases m(x0) ≥

4π. Nevertheless Lemma 2.2 (2) holds because the proof of [11, Theorem 2.3] is applicable

to our cases. Indeed, it is necessary to show

v(x) := w(x) +
m(x0)

2π
log |x − x0|

−1 ≦ C + C1 log(|x| + 1) (16)

for some constants C and C1 in each sufficiently small neighbourhood of x0 ∈ S, say

Bε(x0), in the course of the proof. Here we note that v(x) satisfies

−∆v = V (x)ev in Bε(x0)

with

V (x) = e−
m(x0)

2π
log |x−x0|

−1

= |x − x0|
m(x0)

2π ,

which belongs to L∞(Bε(x0)) if m(x0) ≥ 0 (and to Lp(Bε(x0)) for some p ∈ (1,∞) if

0 > m(x0) > −4π). Now taking smaller ε > 0 if necessary, we get (16) with C1 = 0 from

[4, Corollary 4].
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3. Proof of Theorem 1.3. We have S0
1 = S0

2 = {0}, and there are x1,n → 0 and

x2,n → 0 such that

w1,n(x1,n) = sup
Ω

w1,n → +∞ and w2,n(x2,n) = sup
Ω

w2,n → +∞.

We take the rescaling of wi,n around xk,n by

wk
i,n(x) = wi,n(xk,n + εk,nx) − wk,n(xk,n),

where i, k = 1, 2 and εk,n = e−wk,n(xk,n)/2. Then

−∆wk
1,n = V1,n(xk,n + εk,nx)ewk

1,n − V2,n(xk,n + εk,nx)ewk
2,n ,

−∆wk
2,n = −V1,n(xk,n + εk,nx)ewk

1,n + V2,n(xk,n + εk,nx)ewk
2,n

in Ωk
n = {x ∈ R

2 |
x−xk,n

εk,n
∈ Ω} with

∫

Ωk
i,n

ewk
i,n =

∫

Ω
ewi,n ≤ b. Without loss of generality,

we may suppose

ε1,n ≤ ε2,n

for n = 1, 2, · · · , i.e., w1,n(x1,n) ≥ w2,n(x2,n). Then, we take the rescaled solution around

x1,n, i.e., (w1
1,n, w1

2,n). Since

w1
1,n(x) ≤ w1

1,n(0) = 0,

w1
2,n(x) ≤ w1

2,n

(

x2,n − x1,n

ε1,n

)

≤ w2,n(x2,n) − w1,n(x1,n) ≤ 0

on Ω1
n, Lemma 2.1 assures the following alternatives:

(1) Both
{

w1
1,n

}

and
{

w1
2,n

}

are locally uniformly bounded in R
2.

(2)
{

w1
1,n

}

is locally uniformly bounded in R
2, while w1

2,n → −∞ locally uniformly

in R
2.

The first alternative, however, never occurs. Indeed, we have

w1
2,n(x) = w2,n(x1,n + ε1,nx) − w1,n(x1,n)

= w1,n(x1,n + ε1,nx) + w2,n(x1,n + ε1,nx)

− (w1,n(x1,n + ε1,nx) − w1,n(x1,n)) − 2w1,n(x1,n)

= w1,n(x1,n + ε1,nx) + w2,n(x1,n + ε1,nx) − w1
1,n(x) − 2w1,n(x1,n)

and, from the definition of wi,n, we have also

w1,n(x) + w2,n(x) = − log

∫

M

evn − log

∫

M

e−vn .

Here it follows from the Jensen inequality that

log

∫

M

evn ≥ log |M |, log

∫

M

e−vn ≥ log |M |

and consequently we have

w1,n(x) + w2,n(x) ≤ −2 log |M |.

From these we obtain

w1
2,n(x) ≤ −2 log |M | − w1

1,n(x) − 2w1,n(x1,n) → −∞

for every x ∈ R
2 if {w1

1,n(x)} is locally uniformly bounded in R
2.
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Henceforth, we consider the second alternative concerning this rescaling around x1,n.

Then we have a subsequence (denoted by the same symbol) such that w1
1,n → w1

1 in

C1,α
loc (R2) and this w1

1 satisfies

−∆w1
1 = V1(0)ew1

1 ,

∫

R2

ew1
1 < +∞.

Therefore, from the first case of Lemma 2.2 we have

m1 ≥

∫

R2

V1(0)ew1
1 = 8π.

Henceforth, we put w1
2 = −∞ for simplicity, and therefore, this alternative is referred

to as w1
1 ∈ C1,α

loc (R2) and w1
2 = −∞. Furthermore, we have (m1, m2) ≥ (8π, 4π), namely,

m1 ≥ 8π and m2 ≥ 4π.

Now, we use the rescaled solution (w2
1,n, w2

2,n) around x2,n. In this case, we have

w2
2,n(x) ≤ w2

2,n(0) = 0,

w2
1,n(x) ≤ w2

1,n

(

x1,n − x2,n

ε2,n

)

= w1,n(x1,n) − w2,n(x2,n),

in Ω2
n. In spite of w1,n(x1,n)−w2,n(x2,n) ≥ 0, again by Lemma 2.1 we have the following

alternatives.

(1) Both
{

w2
1,n

}

and
{

w2
2,n

}

are locally uniformly bounded in R
2.

(2)
{

w2
2,n

}

is locally uniformly bounded, while w2
1,n → −∞ locally uniformly in R

2.

(3) There is a finite blow-up set S2
1 of

{

w2
1,n

}

such that V1,n(x2,n + ε2,nx)ew2
1,n →

∑

x0∈S2
1
m2

1(x0)δx0
in M(R2) with m2

1(x0) ≥ 4π for any x0 ∈ S2
1 and w2

1,n → −∞

locally uniformly in R
2 \ S2

1 . Moreover, either

3-i)
{

w2
2,n

}

is locally uniformly bounded in R
2 \ S2

1 , or

3-ii) w2
2,n → −∞ locally uniformly in R

2 \ S2
1 .

Here the first alternative is impossible by the preceding argument of the rescaling

around x1,n and we proceed to the other cases.

The second alternative is indicated by w2
2 ∈ C1,α

loc (R2) and w2
1 = −∞. The former

function satisfies the Liouville equation on R
2, and this implies m2 ≥ 8π. On the other

hand, we have already m1 ≥ 8π from the former rescaling. Therefore, (m1, m2) ≥ (8π, 8π).

In the first case of the third alternative, passing to a subsequence, we have w2
2,n → w2

2

in C1,α
loc (R2 \ S2

1 ) with w2
2 satisfying

−∆w2
2 = V2(0)ew2

2 in R
2\S2

1 .

Here we note that w2
2 ≤ 0 since w2

2,n(x) ≤ 0, which guarantees
∫

R2 ew2
2 < ∞. Moreover, it

follows that there exist ϕ ∈ L1
loc(R

2) and constants α(x0) > 0 for each x0 ∈ S2
1 such that

−∆w2
2 = −

∑

x0∈S2
1

α(x0)δx0
+ ϕ in R

2,
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see [3, Theorem 1]. It is easy to see that ϕ = V2(0)ew2
2 and α(x0) = m2

1(x0). Consequently

w2
2 satisfies the following

−∆w2
2 = −

∑

x0∈S2
1

m2
1(x0)δx0

+ V2(0)ew2
2 in R

2,

∫

R2

ew2
2 < +∞,

where m2
1(x0) ≥ 4π for each x0 ∈ S2

1 . In particular,
∫

R2

V2(0)ew2
2 > 4π +

∑

x0∈S2
1

m2
1(x0)

by the second case of Lemma 2.2, and therefore,

m2 > 4π +
∑

x0∈S2
1

m2
1(x0) > 8π.

Finally, the second case of the third alternative does not occur. In fact, we have

w2
2,n(0) = 0, and therefore, 0 ∈ S2

1 . We can choose R > 0 satisfying BR(0) ∩ S2
1 = {0},

and define hi,n (i = 1, 2) by

−∆hi,n = Vi,n(x2,n + ε2,nx)ew2
i,n in BR(0),

hi,n = 0 on ∂BR(0).

Then,

h0,n = w2
2,n − (h2,n − h1,n)

is a harmonic function satisfying

sup
BR(0)

h0,n ≤ sup
∂BR(0)

h0,n → −∞.

On the other hand, we have 0 ≤ ew2
2,n(x) ≤ e0 = 1 and ew2

2,n(x) → 0 locally uniformly in

R
2 \ S2

1 , and therefore, ew2
2,n(x) → 0 in Lp(BR(0)) for every p ∈ [1,∞). This implies

h2,n → 0 in C1,α(BR(0)),

while h1,n is a nonnegative function. Thus, we obtain

0 = w2
2,n(0) = h0,n(0) + h2,n(0) − h1,n(0) ≤ h0,n(0) + h2,n(0)

≤ sup
BR(0)

h0,n + ‖h2,n‖L∞(BR(0)) → −∞,

a contradiction, and the proof is complete.
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