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Abstract. Global existence results and long time behavior are provided for a mathematical
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impact of the virus on young cats requires an age-structured model.
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1. Introduction. We shall be concerned by models describing the spread of infectious

disease through distributed populations. In recent times there has been much activity

concerning the development and analysis of mathematical models describing the trans-

mission of infectious disease, cf Busenberg and Cooke [5], Brauer and Castillo-Chavez [4],

Diekmann and Heesterbeek [7] and the references contained therein. However, the vast

majority of this work concerns the direct transmission of disease (horizontal, vertical, or

both) among populations. In the work at hand we account both for the direct horizon-

tal spread of the disease from infected individuals to susceptible individuals within the

population and the indirect spread of the disease to the host population via a contact

with a contaminated environment. A prime example of such a disease is Feline Panleu-

copenia Virus FPLV. FPLV, a member of the parvoviridae family, infects all Felidae and

some other carnivore species as well. One of the distinguishing features of the disease

is its ability to survive outside the host for a long period of time. Indeed studies show

that it remains infectious outside of the host for over a year. Clinically the virus is de-

scribed as highly contagious with severe gastroenteritis with fever, anorexia, vomiting,

diarrhoea and marked leucopenia leading to the death of the animal, cf Berthier et al.

[1]. The incubation is short (one to four days) and the infection lasts approximately two

weeks. Infected cats are viremic for a few days and can excrete the virus in there feces,

vomit, urine, saliva, and nasal and ocular discharges. The mortality is quite high for kit-

tens (80%) and lower but significant for adults (20%). There is no sexual differentiation

in receptivity. Recovered cats do not become excreting carriers and develop immunity

lasting at least six years (effectively lifelong). Transmission of the disease to susceptible

cats from infected cats occurs via normal social contact or by mechanical transmission

with an infected environment (primarily feces). Vertical transmission between parents

and offspring does not appear to be a factor.

FLPV was recently involved in a recent experiment in animal control. The virus

was introduced on Marion Island with the aim of eradicating or drastically reducing a

population of feral cats that was having a devastating impact on the indigenous avian

population. Marion is an island of 290 m2 located in the sub-Antartic area of the Southern

Indian Ocean. In the absence of natural predators, five cats introduced gave rise to

population estimated to be 3400 in 1977. In 1997, 96 cats were trapped and inoculated

with FLPV and released into the population [2]. Six years later (in 1982) the population

had dropped to an estimated 615 with a corresponding annual rate of decline of 29%.

Subsequent to 1982, the rate of decline slowed to 8%. In 1991, the remaining cats were

eliminated with an intensive culling effort [3].

2. A simple model. Once the virus has been introduced our total population P can

be subdivided into three classes S, I, and R, with P = S + I + R, representing the

sub-populations of susceptible, infective, and removed individuals. Susceptibles are indi-

viduals who have not contracted but are capable of contracting the disease. Infectives

are individuals fully infected and capable of transmitting the disease. The removed class

consists of individuals who have recovered from the disease thereby gaining immunity.

As such they affect the population dynamics but are not involved in the transmission of

the disease.



DOMESTIC CAT - PANLEUCOPENIA VIRUS SYSTEM 199

We model the horizontal transmission of the disease from infectives to susceptible

individuals by an incidence term. Two forms of incidence terms are standard, although

their choice is somewhat problematic, [5], [6], [11]. The first type is a so called mass action

term of the form

σ(S, I, R) = σSI,(1)

with σ > 0 a constant. The second choice is a proportionate mixing term

σ(S, I, R) = σpmSI/P = σpmSI/(S + I +R)(2)

with σ > 0. The analysis in [1] shows that an appropriate choice for FPLV direct trans-

mission in the Marion Island environment is a mass action term; we choose the form of

the incidence term given by (1).

The final state variable, C, represents the proportion of the habitat that is infected.

In the case of FPLV the following equation is derived in [1]:

dC/dt = φ (1− C) I − δC.(3)

Here φ > 0 is a scaling constant and δ > 0 is the decontamination rate of the environment.

Because C is a proportion we can assume that 0 ≤ C(0) ≤ 1. Given this assumption,

one can readily employ the comparison principle to observe that 0 ≤ C (t) ≤ 1 for all

t > 0. Finally we let ρ > 0 denote the rate of indirect transmission of the disease from the

environment to susceptible individuals. This produces a loss term for the susceptible class

of the form ρCS. Along the lines of [1], we employ Malthusian dynamics, corresponding to

the actual demography of the feral cat population before introduction of FPLV on Marion

Island. In the absence of disease we assume that the population satisfies the equation

dP/dt = bP −mP(4)

This incorporates a natural birth rate, b, and a natural mortality rate, m. For present

purposes, we assume no vertical disease transmission with a natural birth of susceptible

individuals from all three classes, reduced by a fraction θ, 0 ≤ θ ≤ 1, in the infective

class. This assumption is consistent with FPLV, cf. [1] where θ = 1; here, a 0 ≤ θ < 1

takes into account early death of infective mothers caused by FPLV. We let α > 0 be

the inverse of the length of the infectious period and ε, 0 < ε < 1, be the proportion

of individuals surviving the infection. This yields a disease induced mortality rate of

α (1− ε). The foregoing considerations produce the following four-component system of

ordinary differential equations:

dS/dt = b(S + θI +R)−mS − σSI − ρCS,
dI/dt = −(m+ α)I + σSI + ρCS,

dR/dt = −mR+ εαI,

dC/dt = φ (1− C) I − δC,

(5)

with initial conditions

S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, P (0) > 0; 0 ≤ C(0) ≤ 1.(6)

We readily obtain the following result:
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Proposition 1. System (5)-(6) admits a globally defined solution on [0,∞). Each of the

solution components remains nonnegative, 0 ≤ C(t) ≤ 1, for all t > 0.

Proof. Local existence of solutions having nonnegative components is guaranteed by Pi-

card Theorem and the fact the vector field defined by the righthand side of the system of

differential equations (5) points outwards from the positive cone of <4. Then, from the

nonnegativity of I it follows that the interval [0, 1] is forward invariant by (3). If we add

the first three components and set P = S + I +R we obtain

dP/dt = bP −mP − [(1− ε)α+ (1− θ)b]I ≤ (b−m)P ;(7)

we obtain a uniform exponential growth for P (t) and we conclude our proof.

Questions concerning the longtime behavior are considerably more difficult. Based on

numerical simulations, some partial results are outlined in [1]. More precisely, when b > m

only two dynamics are numerically observed: either a regulation of the host population by

FPLV, or no impact of the virus on the malthusian growth. The goal of the remaining part

of this section is to supply analytical evidences supporting these numerical observations.

From (7) one gets that b−m < 0 implies P (t)→ 0 as t→∞; hence one may now assume

b−m > 0.(8)

Proposition 2. Assume (6) and (8) hold. Then,

(i) when m(α+m) < b(εα+ θm) one has P (t)→ +∞ as t→∞, exponentially;

(ii) when m(α+m) > b(εα + θm) there exists a unique stationary state (S], I], R], C])

with positive components and 0 < C] < 1.

Proof. We first look at case (i). Let η and $ be small positive numbers. A linear combi-

nation of the first three equations in (5) yields

((m− η)S +mI + (b−$)R)′ ≥
(m− η)(b−m)S + [b(εα+ θm)−m(α+m)− (εα$ + bθη)] I + (m$ − bη)R;

choosing η = m$/2b, and next

$ < $0 = max

(
b(εα+ θm)−m(α+m)

θm+ 2εα
, b

)
,

one gets m− η > 0, b−$ > 0 and finds a λ = λ($) > 0 such that

[(m− η)S +mI + (b−$)R]′ ≥ λ [(m− η)S +mI + (b−$)R] .

As a consequence, P (t) experiences an exponential growth as t→∞.

Next, we look at case (ii). Let (S], I], R], C]) be a stationary state for (5) with

nonnegative components. From the equation for C one gets C] = φI]

δ+φI]
, and from the

equation for R it follows that R] = εα
m I

]. Looking at (7) one also has

P ] =
(1− ε)α+ (1− θ)b

b−m I],

where P ] = S] + I] +R]. One may now compute S] as a function of I], and find

S] = P ] − I] −R] =
m(α+m)− b(εα+ θm)

m(b−m)
I].
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Substituting these relations into the equation for S] in (5), after some algebra one gets

that I] is a solution to a nonlinear equation, namely f(I]) = T ] with

f(I]) = m+ σI] + ρ
φI]

δ + φI]
, T ] =

(1− ε)α+ (1− θ)m
m(α+ θm)− b(εα+m)

bm.

Now, f is increasing over [0,∞), f(0) < T ] and f(I])→ +∞ as I] → +∞. This completes

the proof of (ii).

Remark 1. We point out that one could obtain analogous results in the case of propor-

tionate mixing. Recall in this case we have an incidence of the form (2).

3. Age dependent models. The system of ordinary differential equations model of

the previous section omits many pertinent features. For example in the introduction we

indicated that disease induced mortality rate for kittens was much greater than that

of adults, approximately four times as much. We should also expect that the natural

mortality rate and the birth rate would be highly dependent upon the age of a given

cat. These comments argue for the inclusion of another independent variable, a. In this

case we represent the time dependent age density individuals by the dependent variable

p(a, t) ≥ 0. The total population at time t is given by

P (t) =

∫ ∞

0

p(a, t)da, t ≥ 0.

From a practical standpoint one can assume the existence of an A† so that p(a, t) ≡ 0

for a > A†. However, theoretically we find it convenient to let A† = +∞ and assume an

infinite age interval of the form [0,+∞).

The birth rate is given by b(a) ≥ 0 for a ≥ 0 and natural mortality is given by an

expression m(a) ≥ 0 for a ≥ 0. The time evolution of p(a, t) is governed by the celebrated

Sharpe, Lotka and McKendrick equation, [13], [14], [15], [18],

∂p/∂t+ ∂p/∂a = −m(a)p, a ≥ 0, t ≥ 0,(9)

subject to the age boundary condition

p(0, t) =

∫ ∞

0

b(a)p(a, t)da, t ≥ 0,(10)

and the initial condition

p(a, 0) = p0(a), t ≥ 0.(11)

To put things in perspective, we can assume our birth rate and natural mortality

term do not depend upon a, make the assumption P (∞) = 0, and obtain equation (4)

by integrating (9)-(10)-(11) with respect to the variable a on [0,+∞).

The longtime dynamics of solutions to (9), (10) and (11) is well-known since the work

of [8], see [15], [18]. Set

π(a) = exp

(
−
∫ a

0

m(a′) da′
)
, a > 0;

a† = max( supp(b)).
(12)
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Then,

if either supp(p0) ⊂ [a†,+∞) or

∫ ∞

0

b(a)π(a) da < 1,

then p(·, t)→ 0 as t→ +∞, uniformly on [0, A] for each A > 0;

if both supp(p0) ⊂ [0, a†] and

∫ ∞

0

b(a)π(a) da > 1,

then p(·, t)→ +∞ as t→ +∞, uniformly on [0, A] for each A > 0.

(13)

An age dependent model describing the circulation of FPLV will define time depen-

dent age densities s(a, t), i(a, t), r(a, t) as state variables. As before, C(t) denotes the

proportion of infected habitat. We can compute the time dependent susceptible, infective

and removed classes by integrating on [0,+∞) with respect to a, i.e. we have

S(t) =

∫ ∞

0

s(a, t)da, I(t) =

∫ ∞

0

i(a, t)da, R(t) =

∫ ∞

0

r(a, t)da.

The total population is given by P (t) = S(t) + I(t) +R(t).

We introduce an age dependent incidence term (σ(a)I(t)) s and an age dependent

environmental incidence term (ρ(a)C(t)) s. In order to differentiate between the recovery

rates of adults and juveniles we introduce an age dependent recovery rate ε(a), 0 ≤
ε(a) ≤ 1; α > 0 is still the inverse of the length of the infectious period. We should

expect a lowered birth rate from the class of infectives. The function θ(a) will represent

the fractional lowering of the birth rate from infective class. We will have 0 ≤ θ(a) ≤ 1,

for a ≥ 0.

We make the following assumptions on coefficient functions and initial data:

(A1) the functions b, θ,m, σ, ρ, ε are nonnegative, and belong to L∞(<+)∩C(<+); also

0 ≤ θ(a) ≤ 1, 0 ≤ ε(a) ≤ 1.

(A2) the initial functions s0, i0, r0 are nonnegative, and belong to L∞(<+) ∩ C1(<+);

0 ≤ C0 ≤ 1.

The foregoing conditions yield the following coupled semilinear system of differential

equations: 



∂s/∂t+ ∂s/∂a = −m(a)s− σ(a)I(t) s− ρ(a)Cs,

∂i/∂t+ ∂i/∂a = − [m(a) + α] i+ σ(a)I(t) s+ ρ(a)Cs,

∂r/∂t+ ∂r/∂a = −m(a)r + αε(a)i,

∂C/∂t = φ(1− C)I(t)− δC,

(14)

subject to boundary conditions




s(0, t) =

∫ A†

0

(b(a)s(a, t) + θ(a)b(a)i(a, t) + b(a)r(a, t))da,

i(0, t) = r(0, t) = 0,

(15)

and initial conditions{
s(a, 0) = s0(a) ≥ 0, i(a, 0) = i0(a) ≥ 0, r(a, 0) = r0(a) ≥ 0,

0 ≤ C(0) = C0 ≤ 1.
(16)

We point out that the assumption of no hereditary transmission of the disease is in-

corporated in the age boundary condition (15). Moreover if we assume the functions
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b, θ,m, σ, ρ, α, ε are positive constants then (14)-(15)-(16) may be formally integrated for

age a ∈ [0,∞) to produce a system of ordinary differential equations of the form (5).

We specify the birth function

B(t) =

∫ A†

0

[b(a)s(a, t) + θ(a)b(a)i(a, t) + b(a)r(a, t)]da,

and introduce functional notations

H(a, t) = m(a) + σ(a)I(t) + ρ(a)C(t),

K1(a, t) = m(a) + α,

K2(a, t) = m(a),

F (a, t) = σ(a)I(t)s(a, t) + ρ(a)C(t)s(a, t),

J(a, t) = αε(a)i(a, t),

L(a, t) = φI(t) + δ.

If we adapt the characteristic methods outlined in [18], [15], [9] we may observe that

solutions to (14)-(15)-(16) have integrated forms

s(a, t) =





s0(a− t) exp

(
−
∫ t

0

H(a− t+ s, s) ds

)
, for a > t,

B(t− a) exp

(
−
∫ a

0

H(s, t− a+ s) ds

)
, for t > a,

(17)

i(a, t) =





i0(a− t) exp

(
−
∫ t

0

K1(a− t+ s, s) ds

)
+

∫ t

0

exp

(
−
∫ t

s

K1(a− t+ u, u) du

)
F (a− t+ s) ds, for a > t,

0, for t > a,

(18)

r(a, t) =





r0(a− t) exp

(
−
∫ t

0

K2(a− t+ s, s) ds

)
+

∫ t

0

exp

(
−
∫ t

s

K2(a− t+ u, u) du

)
J(a− t+ s) ds, for a > t,

0, for t > a,

(19)

and

C(t) = C0 exp

(
−
∫ t

0

L(s) ds

)
+ φ

∫ t

0

exp

(
−
∫ t

s

L(u) du

)
I(s) ds, for t > 0.(20)

A quadruple of functions (s(a, t), i(a, t), r(a, t), C(t)) is said to be a mild solution to

(14)-(15)-(16) if it satisfies the system of integral equations (17)-(18)-(19)-(20). We have

the following result:

Theorem 3. If conditions (A1) and (A2) are satisfied, then there exists a unique non-

negative quadruple of functions providing a mild solution to (14)-(15)-(16). These func-

tions are continuous except possibly along the line t = a, continuously differentiable for

a > t and a < t, and satisfy the differential equations and the boundary conditions.

Proof. The arguments establishing this result are quite lengthy, involving a concatenation

of semigroup theory and fixed point arguments. Indeed over a chapter of [18] is devoted to

the case of a scalar Gurtin and McCamy equation. For this reason we shall not include a
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proof of this result but we shall briefly overview arguments establishing solution positivity

and a priori bounds; see [19] for details on a related problem.

Arguments appearing in [16] develop comparison principles for age dependent op-

erators of the form ∂ψ/∂t + ∂ψ/∂a and the comparison principle in turn allows us to

establish a theory of invariant rectangles for age transport systems which parallels the

theory of invariant rectangles in [17] for reaction diffusion systems. With this in mind

we can imagine the vector field defined by the right hand side of (14)-(15)-(16) in <4
+,

(s, i, r, C) state space. We may readily observe that this vector field does not point out

of the positive cone <4
+ and conclude that if the initial data is nonnegative the functions

remain nonnegative.

From the nonnegativity of i(a, t) and I(t) one may conclude that 0 ≤ C(t) ≤ 1

provided 0 ≤ C0 ≤ 1.

If we add the differential equations for s, i and r, and set p = s+ i+r we may observe

that p(a, t) satisfies a differential inequality of the form

∂p/∂t+ ∂p/∂a ≤ −m(a)p, t > 0, a > 0,

p(a, 0) = p0(a) = s0(a) + i0(a) + r0(a), a > 0,

p(0, t) ≤
∫∞

0
b(a)p(a, t) da, t > 0.

(21)

If we integrate (21) on [0,+∞) with respect to a we have for P (t) = ‖p(·, t)‖1,[0,∞)

P ′(t) ≤ (bmax −mmin)P (t), t > 0; P (0) =

∫ ∞

0

p0(a) da,

wherein bmax = max(b(a), a > 0) and mmin = min(m(a), a > 0). We have an exponential

growth estimate for P (t). Going back to (21) one gets an exponential growth estimate for

‖p(·, t)‖∞,[0,∞); this together with nonnegativity produces uniform exponential growth

estimates for ‖s(·, t)‖∞,[0,∞), ‖i(·, t)‖∞,[0,∞), ‖r(·, t)‖∞,[0,∞) and I(t).

We have obtained some preliminary results concerning the longtime behavior of solu-

tions to (14)-(15)-(16). From the set of inequalities in (21) and a comparison principle,

it follows that when

either

∫ ∞

0

b(a)π(a) da < 1, or supp(p0) ⊂ [a†,+∞)

then, p(·, t) → 0 as t → +∞, uniformly on [0, A] for A > 0; see (13), [18], [15]. Hence,

one may now assume ∫ ∞

0

b(a)π(a) da > 1.(22)

Set

T0(ε, θ) =

∫ ∞

0

b(a)π(a)

[
e−αaθ(a) + α

∫ a

0

ε(a′)e−αa
′
da′
]
da.(23)

Theorem 4. Assume (22) hold. Then,

(iii) when T0(ε, θ) < 1, then there exists an age dependent stationary state with positive

components, (s](a), i](a), r](a), C]), and 0 < C] < 1.

Proof. Along the lines of the proof of Proposition 2, the idea is to compute stationary

states. First, one still has
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C] =
φI]

δ + φI]
, I] =

∫ ∞

0

i](a) da.

Second, at equilibrium, one gets

das
] +m(a)s] = −ϕ1(a, I])s], ϕ1(a, I]) = σ(a)I] + ρ(a)

φI]

δ + φI]
,

so that for some positive initial condition s](0)

s](a) = s](0)π(a)Φ1(a, I]), Φ1(a, I]) = exp

(
−
∫ a

0

ϕ1(a′, I])da′
)
.(24)

The equation for i] reads dai
] +m(a)i] = −αi] + ϕ1(a, I])s]; therefore,

i](a) = s](0)π(a)e−αaΦ2(a, I]), Φ2(a, I]) =

∫ a

0

eαa
′
ϕ1(a′, I])Φ1(a′, I]) da′,(25)

because i](0) = 0. The equation for r] reads dar
] +m(a)r] = αε(a)i]; therefore,

r](a) = αs](0)π(a)Φ3(a, I]), Φ3(a, I]) =

∫ a

0

e−αa
′
ε(a)Φ2(a′, I]) da′,(26)

because r](0) = 0. At age a = 0 one must have

s](0) =

∫ ∞

0

b(a)
(
s](a) + θ(a)i](a) + r](a)

)
da.

Using (24), (25) and (26), and simplifying by s](0) yields a nonlinear equation for I]

F (I]) ≡
∫ ∞

0

b(a)π(a)
[
Φ1(a, I]) + e−αaθ(a)Φ2(a, I]) + αΦ3(a, I])

]
= 1.(27)

Now, one may check that F (0) > 1 by (22), and F (I ]) → T0(ε, θ) as I] → +∞. Hence

there is at least a positive I], a solution of F (I]) = 1 if T0(ε, θ) < 1; then s](0) is evaluated

from (25) upon integrating with respect to age to get

I] = s](0)

∫ ∞

0

π(a)e−αaΦ2(a, I]) da.

Remark 2. For constant b, m, ε and θ(a) ≡ 1, a direct computation of T0(ε, θ) shows

that (ii) and (iii) are equivalent.

4. Conclusion. The unstructured model, (5), with a mass action type incidence was

shown to be a more appropriate choice than the analogous model with a proportionate

mixing incidence to understand a recent experiment in animal control on Marion Island;

see [1]. This was established through numerical simulations using field data. Our results

in the present work are the continuation of [1].

From a dynamical point of view numerical simulations of (5) were also showing that

as soon as a stationary state with positive entries was existing then it was numerically

stable, else the host population was recovering an exponential growth. Although we do

not prove any local stability result for the stationary state, Proposition 2 supports these

observations upon supplying a threshold parameter yielding the existence of a unique

stationary state with positive entries, indicating whether the virus can control (case (ii))

or not control (case (i)) the exponential growth.
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Numerical simulations also showed more complex dynamics for the proportionate

mixing incidence model (see (2)): extinction of the host population for large σpm, an

exponential growth for small σpm and ρ, and a unique stationary state with positive

entries at intermediate values for σpm and ρ; see [1]. Obviously the first part of Proposition

2 (case (i)) still holds for a proportionate mixing incidence; but this is not the case

anymore for the second part (case (ii)). Reworking the proof of Proposition 2, (ii), when

m(m+ α) > b(θm+ εα) a secondary bifurcation parameter must be introduced, namely

Spm =
m(m+ α)

m(m+ α)− b(θm+ εα)
;

there exists a unique stationary state if and only if
σpm

(1−ε)α < Spm <
σpm

(1−ε)α + ρ
b−m . To be

consistent with numerical simulations this threshold parameter also indicates whether the

virus can drive the host population to extinction, case Spm ≤ σpm
(1−ε)α , or not control its

exponential growth, case
σpm

(1−ε)α + ρ
b−m ≤ Spm. As a consequence indirect transmission,

ρ > 0, is required to get regulation of the host population in the proportionate mixing

incidence model.

The age dependent model was introduced to take into account a more severe impact

of FPLV on young individuals than on adults ones, a fact supporting the choice of FPLV

to eradicate a cat population having about 40% of juveniles. Again we show the existence

of at least one positive age dependent stationary state when T0(ε, θ) < 1. We conjecture

it is unique and stable when T0(ε, θ) < 1, and that no such stationary state exists when

T0(ε, θ) ≥ 1 in which case the host population resumes an exponential growth; this is

related to the likely monotonicity of I] → F (I]) in (27).

This is consistent with our results for the unstructured model. This is also consis-

tent with the field observation that FPLV was not able to drive the host population to

extinction, but instead a positive stable age dependent stationary state emerged.

In the age dependent case the proportionate mixing incidence poses much more com-

plex mathematical problems.

An intermediate situation is a model with only two age classes, made of juvenile and

adult individuals. It would supply a good qualitative and reliable picture of the dynamics

of this host-parasite system when the parasite has a more severe impact on young hosts

than on adult ones.

Remark 3. Spatial effects for FPLV models can be considered as well, cf. [10] [12]. In

this case Fickian diffusion is introduced into the models to describe the dispersion of the

Feline population. Finally we point out that environmentally supported pathogens arise

in other contexts as well, two very important are the anthrax and staphylococcus bacteria.
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