TOPOLOGICAL ALGEBRAS, THEIR APPLICATIONS, AND RELATED TOPICS BANACH CENTER PUBLICATIONS, VOLUME 67 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2005

UNITARY DILATION FOR POLAR DECOMPOSITIONS OF p-HYPONORMAL OPERATORS

MUNEO $CH\bar{O}$

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan E-mail: chiyom01@kanagawa-u.ac.jp

TADASI HURUYA

Faculty of Education and Human Sciences, Niigata University, Niigata 950-2181, Japan E-mail: huruya@ed.niigata-u.ac.jp

KÔTARÔ TANAHASHI

Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan E-mail: tanahasi@tohoku-pharm.ac.jp

Abstract. In this paper, we introduce the angular cutting and the generalized polar symbols of a *p*-hyponormal operator T in the case where U of the polar decomposition T = U|T| is not unitary and study spectral properties of it.

1. Introduction. As one of generalizations of normal operators, semi-hyponormal operators were introduced. In the study of semi-hyponormal operators, there exist many important techniques concerning polar decompositions T = U|T| with unitary U (for example, symbols, angular cutting and spectral mapping theorems). Many useful results have been obtained under the assumption that U is unitary for the polar decomposition T = U|T|. Using a unitary dilation \hat{U} of U of a semi-hyponormal operator T = U|T|, we study spectral properties of the operator $U\varphi(|T|)$ for a semi-hyponormal operator T = U|T|, and a strictly monotone increasing continuous function $\varphi(\cdot)$.

In [8, Chapter 6, Section 3.2] Xia gave spectral mapping theorems of semi-hyponormal operators T = U|T| with unitary U for the following mapping: $T \to \xi(U)\varphi(|T|)$. In [7] Itoh extended these results to p-hyponormal operators. It is important for these results that

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B20; Secondary 47A10.

Key words and phrases: Hilbert space, hyponormal operator, spectrum, angular cutting. Research of the first author supported by Grant-in-Aid Scientific Research No. 14540190. The paper is in final form and no version of it will be published elsewhere.

M. $CH\bar{O} ET AL$.

U is unitary. There exist important examples without this form (for example, unilateral weighted shift). In this paper we study spectral mapping theorems for a semi-hyponormal operator T which does not have a polar decomposition T = U|T| with unitary U.

Let T be an operator in a Hilbert space \mathcal{H} . T is said to be p-hyponormal if $(T^*T)^p \geq (TT^*)^p$. If p = 1 and $p = \frac{1}{2}$, then T is said to be hyponormal and semi-hyponormal, respectively. By Löwner's Theorem, for 0 , if <math>T is q-hyponormal, then T is p-hyponormal. If T is p-hyponormal, then $\ker(T) \subset \ker(T^*)$ (see [4]). Hence we may assume that U is isometry if T = U|T| is p-hyponormal. Let $\sigma(T), \sigma_p(T)$ and $\sigma_a(T)$ denote the spectrum, the point spectrum and the approximate point spectrum of T, respectively. Put $\sigma_r(T) = \sigma(T) \setminus \sigma_a(T)$. It is known from [8, Chapter 1, Section 3.1] that $\lambda \in \sigma_r(T)$ if and only if there exists a positive number c such that $||(T - \lambda I)x|| \geq c||x||$ ($x \in \mathcal{H}$) and $(T - \lambda I)(\mathcal{H}) \neq \mathcal{H}$.

2. Results. Let T = U|T| be an operator in a Hilbert space \mathcal{H} . If U is isometry, let $\hat{U} = \begin{pmatrix} U & I - UU^* \\ 0 & U^* \end{pmatrix}$ and $\hat{T} = \hat{U} \begin{pmatrix} |T| & 0 \\ 0 & 0 \end{pmatrix}$. Then we have $|\hat{T}| = |T| \oplus 0$. If T = U|T| is p-hyponormal, then we assume that U is isometry and hence we can define \hat{U} and \hat{T} .

PROPOSITION 1. Let T = U|T| be an operator in a Hilbert space \mathcal{H} . If there exists a unitary operator \hat{U} on $\mathcal{H} \oplus \mathcal{H}$ such that $\hat{U}(x \oplus 0) = Ux \oplus 0$, then the following equalities hold for T and $\hat{T} = \hat{U}(|T| \oplus 0)$:

- (1) $\sigma(T) \setminus \{0\} = \sigma(\hat{T}) \setminus \{0\},\$
- (2) $\sigma_a(T) \setminus \{0\} = \sigma_a(\hat{T}) \setminus \{0\},\$
- (3) $\sigma_r(T) \setminus \{0\} = \sigma_r(\hat{T}) \setminus \{0\}.$

Proof. The proof of (1) is very similar to that of (3). Hence there is no need to cite [8, Chapter 2, Lemma 3.5]. If (3) holds, then so does (2). It is sufficient to show that (3) holds. If $\lambda \in \sigma_r(T) \setminus \{0\}$, there exists c > 0 such that $||(T - \lambda I)x|| \ge c||x||$ $(x \in \mathcal{H})$ and $(T - \lambda I)(\mathcal{H}) \neq \mathcal{H}$. Then

$$||(\hat{T} - \lambda I)(x \oplus y)||^{2} = ||(T - \lambda I)x||^{2} + || - \lambda y||^{2} \ge c_{1}^{2}||x \oplus y||^{2}$$

where $c_1 = \min\{c, |\lambda|\}$. Since $(T - \lambda I)(\mathcal{H}) \neq \mathcal{H}$, it is easy to check $(\hat{T} - \lambda I)(\mathcal{H} \oplus \mathcal{H}) \neq \mathcal{H} \oplus \mathcal{H}$, so that $\lambda \in \sigma_r(\hat{T})$.

Conversely if $\lambda \in \sigma_r(\hat{T}) \setminus \{0\}$, then there exists c > 0 such that $||(\hat{T} - \lambda I)(x \oplus y)|| \ge c||x \oplus y||$ $(x \oplus y \in \mathcal{H} \oplus \mathcal{H})$ and $(\hat{T} - \lambda I)(\mathcal{H} \oplus \mathcal{H}) \neq \mathcal{H} \oplus \mathcal{H}$. Then

$$||(T - \lambda I)x|| = ||(\hat{T} - \lambda I)(x \oplus 0)|| \ge c||x \oplus 0|| = c||x||.$$

Suppose that $(T - \lambda I)(\mathcal{H}) = \mathcal{H}$. For $x, y \in \mathcal{H}$, there exists $x_1 \in \mathcal{H}$ such that $(T - \lambda I)x_1 = x$, so that

$$x \oplus y = (\hat{T} - \lambda I)(x_1 \oplus -(1/\lambda)y).$$

This is a contradiction. Hence $\lambda \in \sigma_r(T)$.

THEOREM 2. Let T = U|T| be a semi-hyponormal operator and φ be a strictly monotone increasing continuous function on [0, ||T||]. If φ is operator monotone on [0, ||T||] and

 $\varphi(0) = 0$, then

$$\sigma(U\varphi(|T|)) = \{e^{i\theta}\varphi(r) : e^{i\theta}r \in \sigma(U|T|)\},\$$

$$\sigma_a(U\varphi(|T|)) = \{e^{i\theta}\varphi(r) : e^{i\theta}r \in \sigma_a(U|T|)\},\$$

$$\sigma_r(U\varphi(|T|)) = \{e^{i\theta}\varphi(r) : e^{i\theta}r \in \sigma_r(U|T|)\}.$$

Proof. If $0 \notin \sigma(T)$, then T = U|T| with unitary U. In this case, the result follows from [8, Chapter 6, Theorem 3.2]. We assume that $0 \in \sigma(T)$. Since φ is operator monotone and $\hat{U}|\hat{T}|\hat{U}^* = |\hat{T}^*| \leq |\hat{T}|$, we get $\hat{U}^*\varphi(|\hat{T}|)\hat{U} = \varphi(\hat{U}^*|\hat{T}|\hat{U}) \leq \varphi(|\hat{T}|)$ which implies that $\hat{U}\varphi(|\hat{T}|)$ is semi-hyponormal. By Xia's theorem [8, Chapter 6, Theorem 3.2], we again have

$$\sigma_*(\hat{U}\varphi(|\hat{T}|)) = \{e^{i\theta}\varphi(r): e^{i\theta}r \in \sigma_*(\hat{U}|\hat{T}|)\}$$

where σ_* denotes σ , σ_a or σ_r . By Proposition 1,

$$\sigma_*(\hat{U}\varphi(|\hat{T}|)) \setminus \{0\} = \sigma_*(U\varphi(|T|)) \setminus \{0\}$$

and

$$\sigma_*(U|T|) \setminus \{0\} = \sigma_*(U|T|) \setminus \{0\}.$$

Therefore, we have

$$\sigma_*(U\varphi(|T|)) \setminus \{0\} = \{e^{i\theta}\varphi(r) : e^{i\theta}r \in \sigma_*(U|T|)\} \setminus \{0\}.$$

Next since U satisfies ||U|T|x|| = ||T|x|| for any vector x, we have

 $0 \in \sigma_a(U|T|)$ if and only if $0 \in \sigma_a(U\varphi(|T|))$.

Since $\sigma_r(T) = \sigma(T) \setminus \sigma_a(T)$, we have

 $0 \in \sigma_r(U|T|)$ if and only if $0 \in \sigma_r(U\varphi(|T|))$.

This completes the proof.

By comparison in case of hyponormal operators [2], the following example implies that in the semi-hyponormal case, spectral mapping theorems are complicated.

EXAMPLE. Let $\{e_k\}_{k=1}^{\infty}$ be the canonical orthnormal basis for the Hilbert space l^2 . Let U be the unilateral shift.

Let T = U. Then T is hyponormal and |T| = I, so that T is semi-hyponormal. Let φ be a function on \mathbf{R} such that $\varphi(x) = x + 1$. We remark $\varphi(0) = 1$. Then $U\varphi(I) = 2U$, so that $U\varphi(I)$ is semi-hyponormal. Therefore, $\sigma(U\varphi(I)) = \{z : |z| \le 2\}$ and $\{e^{i\theta}\varphi(r) : r \cdot e^{i\theta} \in \sigma(T)\} = \{z : 1 \le |z| \le 2\}$, so that $\sigma(U\varphi(|T|)) \ne \{e^{i\theta}\varphi(r) : re^{i\theta} \in \sigma(U|T|)\}$.

DEFINITION 1. Let T = U|T| be a semi-hyponormal operator such that U is not unitary. Let $\mathbf{T} = \{z : |z| = 1\}$ be the unit circle. For a unitary operator \hat{U} on $\mathcal{K} = \mathcal{H} \oplus \mathcal{H}$, let $\hat{U} = \int_{\mathbf{T}} \lambda dE(\lambda)$ be the spectral decomposition \hat{U} . Let γ be an arc in \mathbf{T} and $E(\gamma) \neq 0$. For $\hat{T} = \hat{U}|\hat{T}|$, denote

$$\mathcal{K}_{\gamma} = E(\gamma)\mathcal{K}, \ \hat{U}_{\gamma} = \hat{U}_{|\mathcal{K}_{\gamma}} \text{ and } \hat{T}_{\gamma} = E(\gamma)\hat{T}_{|\mathcal{K}_{\gamma}}.$$

 \hat{T}_{γ} is called the section of \hat{T} cut by the arc γ . We denote \hat{T}_{γ} simply by T_{γ} .

THEOREM 3. Let T = U|T| be a semi-hyponormal operator such that U is not unitary. Let γ be an arc in the unit circle **T** with $E(\gamma) \neq 0$. Put $\mathcal{D}_{\gamma} = \{\lambda : \lambda \neq 0, \lambda/|\lambda| \in \gamma\}$. Then

(1)
$$\sigma_p(T_\gamma) \setminus \{0\} = \sigma_p(T) \cap \mathcal{D}_\gamma,$$

in addition, x is an eigenvector of T_{γ} corresponding to the eigenvalue λ if and only if x is an eigenvector of T and $\lambda \in \mathcal{D}_{\gamma}$,

(2)
$$\sigma(T_{\gamma}) \subset \overline{\mathcal{D}}_{\gamma} \cap \sigma(T),$$

moreover, if γ is an open arc, then

(3)
$$\sigma_a(T_\gamma) \cap \mathcal{D}_\gamma = \sigma_a(T) \cap \mathcal{D}_\gamma,$$

(4)
$$\sigma_r(T_\gamma) \cap \mathcal{D}_\gamma = \sigma_r(T) \cap \mathcal{D}_\gamma,$$

thus

(5)
$$\sigma(T_{\gamma}) \cap \mathcal{D}_{\gamma} = \sigma(T) \cap \mathcal{D}_{\gamma}.$$

Proof. By [8, Chapter 6, Theorem 3.9], $\sigma(T_{\gamma}) \subset \sigma(\hat{T}) = \sigma(T)$. An application of [8, Chapter 1, Theorem 3.2] and Proposition 1 complete the proof.

REMARK. For an open arc γ , $\sigma_*(T_{\gamma}) \cap \mathcal{D}_{\gamma}$ is independent of the choice of a unitary operator \hat{U} , where σ_* is σ , σ_a or σ_r .

For a unitary operator U and an operator A, if

$$\mathcal{S}_U^{\pm}(A) = \operatorname{s-}\lim_{n \to \pm \infty} U^{-n} A U^n$$

exist, then $\mathcal{S}_{U}^{\pm}(A)$ are called the *general polar symbols* of A related to U. If T = U|T| is semi-hyponormal with unitary U, then $\mathcal{S}_{U}^{\pm}(|T|)$ exist (cf. [8]). For $0 \leq k \leq 1$, we define

$$T_k = U(k\mathcal{S}_U^+(|T|) + (1-k)\mathcal{S}_U^-(|T|)).$$

The operator T_k is called the *generalized polar symbol* of T with respect to k. In case U is not unitary, let \hat{U} be the unitary dilation of U. For operators \hat{U} and \hat{T} , since $\hat{T} = \hat{U}|\hat{T}|$ is semi-hyponormal with unitary \hat{U} , there exists $S_{\hat{U}}^{\pm}(|\hat{T}|)$. For $0 \leq k \leq 1$, we also define

$$\hat{T}_k = \hat{U}(k\mathcal{S}_{\hat{U}}^+(|\hat{T}|) + (1-k)\mathcal{S}_{\hat{U}}^-(|\hat{T}|)).$$

Then Xia proved the following.

THEOREM A ([8, Chapter 4, Theorem 4.1]). Let T = U|T| be semi-hyponormal with unitary U. Then

$$\sigma(T) = \bigcup_{0 \le k \le 1} \sigma(T_k).$$

We have the following result.

THEOREM 4. Let T = U|T| be semi-hyponormal such that U is not unitary. Then

$$\sigma(T) = \bigcup_{0 \le k \le 1} \sigma(\hat{T}_k).$$

Proof. Since $\hat{T} = \hat{U} \begin{pmatrix} |T| & 0 \\ 0 & 0 \end{pmatrix}$ is semi-hyponormal with unitary \hat{U} , by Theorem A we have

$$\sigma(\hat{T}) = \bigcup_{0 \le k \le 1} \sigma(\hat{T}_k).$$

Since U is not unitary, $\sigma(T) = \sigma(\hat{T})$. Hence the proof is complete.

Let T = U|T| is *p*-hyponormal with U which is not unitary. If $S = U|T|^{2p}$, then S is semi-hyponormal. Let $|\hat{S}| = \begin{pmatrix} |T|^{2p} & 0\\ 0 & 0 \end{pmatrix}$. Then we can define the semi-hyponormal operator $\hat{S} = \hat{U}|\hat{S}|$ with unitary \hat{U} .

THEOREM 5. Let T = U|T| be a p-hyponormal operator such that U is not unitary. Let $S = U|T|^{2p}$ and $\hat{S} = \hat{U} \begin{pmatrix} |T|^{2p} & 0\\ 0 & 0 \end{pmatrix}$. Then $S_{\hat{U}}^{\pm}(|\hat{S}|)$ exist and $\sigma(T) = \bigcup_{0 \le k \le 1} \sigma(T_{[k]}),$

where

$$T_{[k]} = \hat{U}(k\mathcal{S}_{\hat{U}}^+(|\hat{S}|) + (1-k)\mathcal{S}_{\hat{U}}^-(|\hat{S}|))^{\frac{1}{2p}}.$$

Proof. Since $\hat{S} = \hat{U} \begin{pmatrix} |T|^{2p} & 0 \\ 0 & 0 \end{pmatrix}$ is semi-hyponormal with unitary \hat{U} , from Theorem A it follows that

$$\sigma(\hat{S}) = \bigcup_{0 \le k \le 1} \sigma(\hat{S}_k).$$

Proposition 1 implies $\sigma(S) = \sigma(\hat{S})$. Since by Theorem 3 of [5]

$$\sigma(S) = \{ r^{2p} e^{i\theta} : r e^{i\theta} \in \sigma(T) \},\$$

it follows that $re^{i\theta} \in \sigma(T)$ if and only if $r^{2p}e^{i\theta} \in \bigcup_{0 \le k \le 1} \sigma(\hat{S}_k)$. Since

$$\hat{S}_k = \hat{U}(k\mathcal{S}_{\hat{U}}^+(|\hat{S}|) + (1-k)\mathcal{S}_{\hat{U}}^-(|\hat{S}|))$$

is normal, it follows that $r^{2p}e^{i\theta} \in \sigma(\hat{S}_k)$ if and only if $re^{i\theta} \in \sigma(T_{[k]})$. So the proof is complete.

Finally, we introduce Xia spectrum for a *p*-hyponormal operator T = U|T| such that U is not unitary.

For a pair (A, B) of operators, $(z, w) \in \mathbb{C}^2$ belongs to the joint approximate point spectrum $\sigma_{ja}(A, B)$ if there exists a sequence $\{x_n\}$ of unit vectors such that $(A-z)x_n \to 0$ and $(B-w)x_n \to 0$ as $n \to \infty$. It is well known that if (A, B) is a commuting pair, then $\sigma_{ja}(A, B)$ is non-empty (cf. [1, Proposition 2]).

DEFINITION 2. Let
$$T = U|T|$$
 be a *p*-hyponormal operator such that U is not unitary
Let $S = U|T|^{2p}$, $\hat{S} = \hat{U} \begin{pmatrix} |T|^{2p} & 0\\ 0 & 0 \end{pmatrix}$ and
 $|T_{[k]}| = (k\mathcal{S}_{\hat{U}}^+(|\hat{S}|) + (1-k)\mathcal{S}_{\hat{U}}^-(|\hat{S}|))^{\frac{1}{2p}}.$

Since \hat{U} commutes with every $|T_{[k]}|$ $(0 \le k \le 1)$, we see that $\sigma_{ja}(\hat{U}, |T_{[k]}|)$ is non-empty. We define the Xia spectrum $\sigma_X(T)$ of T by

$$\sigma_X(T) = \bigcup_{0 \le k \le 1} \sigma_{ja}(\hat{U}, |T_{[k]}|).$$

The following corollary is a direct consequence of Theorem 5 and the fact that $re^{i\theta} \in \sigma(T_{[k]})$ iff $(e^{i\theta}, r) \in \sigma_{ja}(\hat{U}, |T_{[k]}|)$. So we omit the proof.

COROLLARY 6. Let T = U|T| be a p-hyponormal operator such that U is not unitary. Let $S = U|T|^{2p}$, $\hat{S} = \hat{U} \begin{pmatrix} |T|^{2p} & 0\\ 0 & 0 \end{pmatrix}$ and $|T_{[k]}| = (k\mathcal{S}_{\hat{U}}^+(|\hat{S}|) + (1-k)\mathcal{S}_{\hat{U}}^-(|\hat{S}|))^{\frac{1}{2p}}.$

Then $re^{i\theta} \in \sigma(T)$ if and only if $(e^{i\theta}, r) \in \sigma_X(T)$.

Acknowledgments. The authors express their thanks to the referee for his useful suggestions.

References

- J. Bunce, The joint spectrum of commuting nonormal operators, Proc. Amer. Math. Soc. 29 (1971), 499–505.
- [2] M. Chō, Gigga, Y. M. Han and T. Huruya, *Spectral mapping theorems for hyponormal operators*, Proc. Royal Irish Acad., to appear.
- M. Chō and T. Huruya, p-Hyponormal operators for 0 Mat. 33 (1993), 23–29.
- M. Chō and T. Huruya, Putnam's inequality for p-hyponormal n-tuples, Glasgow Math. J. 41 (1999), 13–17.
- [5] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), 2435–2440.
- M. Chō and M. Itoh, On spectra of p-hyponormal operators, Integral Equations and Operator Theory 23 (1995), 287–293.
- [7] M. Itoh, Spectral mapping theorems for p-hyponormal operators, Acta Sci. Math. (Szeged) 62 (1996), 523–535.
- [8] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Basel, 1983.

144