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Abstract. This is mainly a survey on the theory of caustics and wave front propagations with

applications to differential geometry of hypersurfaces in Euclidean space. We give a brief review

of the general theory of caustics and wave front propagations, which are well-known now. We

also consider a relationship between caustics and wave front propagations which might be new.

Moreover, we apply this theory to differential geometry of hypersurfaces, getting new geometric

properties.

1. Introduction. For a hypersurface in Euclidean space, its parallels consist of those

hypersurfaces a fixed distance r down the normals in a fixed direction. They always have

Legendrian singularities. It is well-known that the singularities of the parallels lie on the

evolute of the hypersurface. The evolute is one of the examples of caustics and the family

of parallels is one of the examples of wave front propagations (also, graphlike wave fronts

[9]). In this paper, we consider a relationship between the caustics and the wave front

propagations. The caustics is the set of critical values of the projection a Lagrangian

submanifold from the phase space onto the configuration space. In the real world, the

caustics given by the reflected ray are visible. However, the wave front propagations are

not visible (cf. Fig. 1). Therefore, we can say that there are hidden structures (i.e., wave

front propagations) on the picture of caustics. We can draw both the parallels (i.e., wave
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Fig. 1. The caustics reflected by a heart shape
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Fig. 2. The parallels and the evolute of an ellipse

front propagations) and the evolute (i.e., caustics) of an ellipse in the plane, see Fig. 2.

In this picture, we can observe the relation between the evolute and the parallels. One of

the main purposes in this paper is to clarify such the relation.

In §2, we give a brief review on the theory of Lagrangian singularities. The big wave

front consists of a one-parameter family of wave fronts which given by the projection of

a big Legendrian submanifold of the contact fibering onto the basis of this fibering. We

also give a brief review on the theory of big Legendrian submanifolds in §3. We consider

a special class of the big Legendrian submanifold which is called a graphlike Legendrian

unfolding in [9]. The graphlike Legendrian unfolding can be always induced by Lagrangian

submanifolds (cf. §4). By definition, a Lagrangian equivalence preserves the caustics.

However, the converse does not hold in general even if Lagrangian submanifold germs

are Lagrange stable (cf. [1, 2, 22]). We define the S.P+-Legendrian equivalence among

big Legendrian submanifold germs in §3. The S.P+-Legendrian equivalence has been

introduced in [10, 12, 20, 23]. It preserves both the diffeomorphism types of bifurcations

for families of small fronts (i.e., wave front propagations) and the caustics. In [15], it has

been shown that Lagrangian equivalence implies the S.P+-Legendrian equivalence of the

induced graphlike Legendrian unfoldings from Lagrangian submanifolds (cf. Proposition

4.2), so that it preserves the diffeomorphism types of bifurcations wave front propagations.

One of the main results in §4 is that the converse holds when Lagrangian submanifold

germs are Lagrange stable (Theorem 4.6).

As an application, we investigate a relationship between the evolute and the family

of parallels of a hypersurface in Euclidean space by using distance squared functions. We

show that the distance squared function is a Morse family of functions and the graphlike

distance squared function is a big Morse family of hypersurfaces in §5. We also review
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the theory of contact between submanifolds due to Montaldi [18] in §7 as the appendix.

In [15], we have considered the contact of hypersurfaces with one-parameter family of

hypersurfaces in Minkowski pseudo-hyperspheres as in Montaldi’s result. We have also

considered the contact of hypersurfaces with a family of hyperspheres in hyperbolic space

[13, 14]. This technique is useful for the study of the contact of hypersurfaces with families

of hyperspheres in Euclidean space in §6.

We shall assume throughout the whole paper that all maps and manifolds are C∞

unless the contrary is explicitly stated.

2. Lagrangian submanifolds and caustics. In this section, we give a brief review on

the theory of Lagrangian singularities due to [1] (also see [2, 3, 5, 8, 11, 21, 22, 23]). We

consider the cotangent bundle π : T ∗
R

n→ R
n over R

n. Let (x, p)=(x1, . . . , xn, p1, . . . , pn)

be the canonical coordinate on T ∗
R

n. Then the canonical symplectic structure on T ∗
R

n

is given by the canonical two form ω =
∑n

i=1 dpi ∧ dxi. A submanifold i : L ⊂ T ∗
R

n is

a Lagrangian submanifold if dimL and i∗ω = 0. In this case, the critical value of π ◦ i
is called the caustic of i : L ⊂ T ∗

R
n and it is denoted by CL. The main result in the

theory of Lagrangian singularities is to describe Lagrangian submanifold germs by using

families of function germs. Let F : (Rk ×R
n, 0) → (R, 0) be an n-parameter unfolding of

function germs. We say that F is a Morse family of functions if the map germ

∆F =

(
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × R

n, 0) → (Rk, 0)

is a non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × R
n, 0). In this case, we

have a smooth n-dimensional submanifold germ C(F ) = (∆F )−1(0) ⊂ (Rk × R
n, 0) and

a map germ L(F ) : (C(F ), 0) → T ∗
R

n defined by

L(F )(q, x) =

(
x,
∂F

∂x1
(q, x), . . . ,

∂F

∂xn

(q, x)

)
.

We can show that L(F )(C(F )) is a Lagrangian submanifold germ. Then we have the

following fundamental result ([1], page 300).

Theorem 2.1. All Lagrangian submanifold germs in T ∗
R

n are constructed by the above

method.

For an n-parameter unfolding of function germs F : (Rk × R
n, 0) → (R, 0), we call

C(F ) =

{
(q, x) ∈ (Rk × R

n, 0)

∣∣∣∣
∂F

∂q1
(q, x) = · · · =

∂F

∂qk
(q, x) = 0

}

the catastrophe set of F , and

BF =

{
x ∈ (Rn, 0)

∣∣∣∣ there exists q ∈ (Rk, 0) such that

(q, x) ∈ C(F ), rank

(
∂2F

∂qi∂qj
(q, x)

)
< k

}

the bifurcation set of F . We also call F a generating family of L(F )(C(F )). Let πn :

(Rk × R
n, 0) → (Rn, 0) be the canonical projection, then we can easily show that the
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bifurcation set of F is the critical value set of πn|C(F ). Hence, we observe that the caustic

of L(F ) coincides with the bifurcation set of F , namely, CL(F )(C(F )) = BF .

We now define an equivalence relation among Lagrangian submanifold germs. Let

i : (L, x) ⊂ (T ∗
R

n, p) and i′ : (L′, x′) ⊂ (T ∗
R

n, p′) be Lagrangian submanifold germs.

Then we say that i and i′ are Lagrangian equivalent if there exist a diffeomorphism germ

σ : (L, x) → (L′, x′), a symplectic diffeomorphism germ τ̂ : (T ∗
R

n, p) → (T ∗
R

n, p′)
and a diffeomorphism germ τ : (Rn, π(p)) → (Rn, π(p′)) such that τ̂ ◦ i = i′ ◦ σ and

π ◦ τ̂ = τ ◦ π, where π : (T ∗
R

n, p) → (Rn, π(p)) is the canonical projection and a

symplectic diffeomorphism germ is a diffeomorphism germ which preserves symplectic

structure on T ∗
R

n. In this case, the caustic CL is diffeomorphic to the caustic CL′ by

the diffeomorphism germ τ.

A Lagrangian submanifold germ in T ∗
R

n at a point is said to be Lagrange stable

if for every map with the given inclusion germ there is a neighborhood in the space of

Lagrangian immersions (in the Whitney C∞-topology) and a neighborhood of the original

point such that each Lagrangian immersion belonging to the first neighborhood has in the

second neighborhood a point at which its germ is Lagrangian equivalent to the original

germ.

We can interpret the Lagrangian equivalence by using the notion of generating fami-

lies. Let Ex be the ring of function germs of x = (x1, . . . , xn) variables at the origin and

Mx = {h ∈ Ex | h(0) = 0} be the unique maximal ideal. Let F and G : (Rk × R
n, 0) →

(R, 0) be function germs. We say that F and G are P -R+-equivalent if there exist a dif-

feomorphism germ Φ : (Rk ×R
n, 0) → (Rk ×R

n, 0) of the form Φ(q, x) = (φ1(q, x), φ2(x))

and a function germ h : (Rn, 0) → R such that G(q, x) = F (Φ(q, x)) + h(x). For any

F1 : (Rk ×R
n, 0) → (R, 0) and F2 : (Rk′ ×R

n, 0) → (R, 0), F1 and F2 are said to be stably

P -R+-equivalent if they become P -R+-equivalent after the addition to the arguments to

qi of new arguments q′i and to the functions Fi of nondegenerate quadratic forms Qi in

the new arguments (i.e., F1 +Q1 and F2 +Q2 are P -R+-equivalent).

Let F : (Rk × R
n, 0) → (R, 0) be a function germ. We say that F is an R+-versal

deformation of f = F |Rk×{0} if

Eq = Jf +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn

|Rk × {0}
〉

R

+ 〈1〉
R
,

where

Jf =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q)

〉

Eq

.

Then we have the following theorem:

Theorem 2.2. Let F : (Rk × R
n, 0) → (R, 0) and G : (Rk′ × R

n, 0) → (R, 0) be Morse

families of functions. Then we have the following:

(1) L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and only if F and G

are stably P -R+-equivalent.

(2) L(F )(C(F )) is Lagrange stable if and only if F is an R+-versal deformation of

f = F |Rk×{0}.
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For the proof of the above theorem, see [1], page 304 and 325. The following propo-

sition describes the well-known relationship between bifurcation sets and equivalence

among unfoldings of function germs:

Proposition 2.3. Let F,G : (Rk × R
n, 0) → (R, 0) be function germs. If F and G are

P -R+-equivalent then there exists a diffeomorphism germ φ : (Rn, 0) → (Rn, 0) such that

φ(BF ) = BG.

3. Legendrian submanifolds and wave front propagations. In this section, we

give a brief review of the classification theory of both the families of wave fronts and the

discriminants.

We consider the projective cotangent bundle π : PT ∗(Rn×R) → R
n×R over R

n×R.

Let Π : TPT ∗(Rn × R) → PT ∗(Rn × R) be the tangent bundle over PT ∗(Rn × R) and

dπ : TPT ∗(Rn × R) → T (Rn × R) the differential map of π.

For any X ∈ TPT ∗(Rn × R), there exists an element α ∈ T ∗
(x,t)(R

n × R) such that

Π(X) = [α]. For an element V ∈ T(x,t)(R
n ×R), the property α(V ) = 0 does not depend

on the choice of representative of the class [α]. Thus we can define the canonical contact

structure on PT ∗(Rn × R) by

K = {X ∈ TPT ∗(Rn × R) | Π(X)(dπ(X)) = 0}.
Because of the trivialization PT ∗(Rn × R) ∼= (Rn × R) × P (Rn × R)∗, we call

((x1, . . . , xn, t), [ξ1 : · · · : ξn : τ ])

a homogeneous coordinate, where [ξ1 : · · · : ξn : τ ] is the homogeneous coordinate of the

dual projective space P (Rn × R)∗. It is easy to show that X ∈ K((x,t),[ξ:τ ]) if and only if∑n

i=1 µiξi + λτ = 0, where dπ(X) =
∑n

i=1 µi(∂/∂xi) + λ(∂/∂t).

We remark that PT ∗(Rn × R) is a fiberwise compactification of the 1-jet space

J1(Rn,R) as follows: We consider an affine open subset Uτ = {((x, t), [ξ : τ ])|τ 6= 0}
of PT ∗(Rn × R). For any ((x, t), [ξ : τ ]) ∈ Uτ , we have

((x1, . . . , xn, t), [ξ1 : · · · : ξn : τ ]) = ((x1, . . . , xn, t), [−(ξ1/τ ) : · · · : −(ξn/τ ) : −1]),

so that we may adopt the corresponding affine coordinates ((x1, . . . , xn, t), (p1, . . . , pn)),

where pi = −ξi/τ. On Uτ we can easily show that θ−1(0) = K|Uτ , where θ = dt −∑n

i=1 pidxi. This means that Uτ may be identified with the 1-jet space J1(Rn,R). We

call the above coordinate a system of canonical coordinates. Throughout the remainder

of this paper, we use this identification so that we have J1(Rn,R) ⊂ PT ∗(Rn × R).

A submanifold i : L ⊂ PT ∗(Rn × R) is a Legendrian submanifold if dimL and

dip(TpL) ⊂ Ki(p) for any p ∈ L. We say that a point p ∈ L is a Legendrian singular

point if rank d(π ◦ i)p < n.

For a Legendrian submanifold i : L ⊂ PT ∗(Rn × R), π ◦ i(L) = W (L) is called a big

wave front. We have a family of small fronts:

Wt(L) = π1(π
−1
2 (t) ∩W (L)) (t ∈ R),

where π1 : R
n × R → R

n and π2 : R
n × R → R are the canonical projections which

gives π1(x, t) = x and π2(x, t) = t respectively. In this sense, we call L a big Legendrian

submanifold. The discriminant of the family Wt(L) is defined as the image of singular
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points of π1|W (L). In the general case, the discriminant consists of three components:

the caustics CL, the projection of the set of singular points of W (L), the Maxwell stratum

ML, the projection of self intersection points of W (L); and also of the envelope of the

family of small fronts ∆ (for more detail, see [15,23]).

For any Legendrian submanifold germ i : (L, p0) ⊂ (PT ∗(Rn × R), p0), there exists a

generating family of i by the theory of Legendrian singularity [1]. Let F : (Rk × (Rn ×
R), 0) → (R, 0) be a function germ such that (F, d2F ) : (Rk × (Rn ×R), 0) → (R×R

k, 0)

is a non-singular, where

d2F (q, x, t) =

(
∂F

∂q1
(q, x, t), . . . ,

∂F

∂qk
(q, x, t)

)
.

In this case, we call F a big Morse family of hypersurfaces. Then Σ∗(F ) = (F, d2F )−1(0)

is a smooth n-dimensional submanifold germ. Define

LF : (Σ∗(F ), 0) → PT ∗(Rn × R)

by

LF (q, x, t) =

(
x, t,

[
∂F

∂x
(q, x, t) :

∂F

∂t
(q, x, t)

])
,

where [
∂F

∂x
(q, x, t) :

∂F

∂t
(q, x, t)

]
=

[
∂F

∂x1
(q, x, t) : · · · :

∂F

∂xn

(q, x, t) :
∂F

∂t
(q, x, t)

]
.

It is easy to show that LF (Σ∗(F )) is a Legendrian submanifold germ. By the main

theorem of Arnol’d-Zakalyukin [1], we can show the following proposition:

Proposition 3.1. All big Legendrian submanifold germs are constructed by the above

method.

For a function germ F : (Rk × (Rn × R), 0) → (R, 0), we call

D(F ) = {(x, t) ∈ (Rn × R, 0) | there exists q ∈ (Rk, 0) such that (q, x, t) ∈ Σ∗(F )}
the discriminant set of F .

Let F : (Rk × (Rn × R), 0) → (R, 0) be a big Morse family of hypersurfaces. We call

F a generating family of LF . In this case, we observe that the big wave front coincides

with the discriminant set of F , namely, W (LF (Σ∗(F ))) = D(F ).

We now consider an equivalence relation among Legendrian submanifolds which pre-

serves both the qualitative pictures of bifurcations and the discriminant of families of

small fronts.

Let i : (L, p0) ⊂ (PT ∗(Rn×R), p0) and i′ : (L′, p′0) ⊂ (PT ∗(Rn×R), p′0) be Legendrian

submanifold germs. We say that i and i′ are strictly parametrized+ Legendrian equivalent

(or, briefly S.P+-Legendrian equivalent) if there exist diffeomorphism germs Φ : (Rn ×
R, π(p0)) → (Rn × R, π(p′0)) of the form Φ(x, t) = (φ1(x), t + α(x)) and Ψ : (L, p0) →
(L′, p′0) such that Φ̂ ◦ i = i ◦Ψ, where Φ̂ : (PT ∗(Rn ×R), p0) → (PT ∗(Rn ×R), p′0) is the

unique contact lift of Φ.

We also consider the notion of stability of Legendrian submanifold germs with respect

to S.P+-Legendrian equivalence, analogous to the stability of Lagrangian submanifold

germs with respect to Lagrangian equivalence in §2 (cf. [1, Part III]).
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The S.P+-Legendrian equivalence has been introduced in [10, 12, 20] for the study

of completely integrable holonomic systems of first order partial differential equations. It

has also been independently defined by Zakalyukin [23], and is called the strong space-

equivalence, in order to apply control theory. We remark that the SP+-Legendrian equiv-

alence relation among big Legendrian submanifold germs preserves both the diffeomor-

phism types of bifurcations for families of small fronts and discriminants.

We study the S.P+-Legendrian equivalence by using the notion of generating families

of Legendrian submanifold germs.

Let f, g : (Rk × R, 0) → (R, 0) be function germs. We say that f and g are S.P-K-

equivalent (or, strictly P-K-equivalent) if there exists a diffeomorphism germ Φ : (Rk ×
R, 0) → (Rk × R, 0) of the form Φ(q, t) = (φ(q, t), t) such that 〈f ◦ Φ〉E(q,t)

= 〈g〉E(q,t)
.

Let F,G : (Rk × (Rn × R), 0) → (R, 0) be function germs. We say that F and G are

x-S.P+-K-equivalent if there exists a diffeomorphism germ Φ : (Rk×(Rn×R), 0) → (Rk×
(Rn ×R), 0) of the form Φ(q, x, t) = (φ(q, x, t), φ1(x), t+α(x)) such that 〈F ◦Φ〉E(q,x,t)

=

〈G〉E(q,x,t)
.

The notion of S.P+-K-versal deformation plays an important role for our purpose.

We define the extended tangent space of f : (Rk × R, 0) → (R, 0) relative to S.P+-K by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉

E(q,t)

+

〈
∂f

∂t

〉

R

.

Then we say that F is an S.P+-K-versal deformation of f = F |Rk×{0}×R if it satisfies

E(q,t) = Te(S.P
+-K)(f) +

〈
∂F

∂x1
|Rk × {0} × R, . . . ,

∂F

∂xn

|Rk × {0} × R

〉

R

.

We remark that F is S.P+-K-versal, then n is an upper bound for

dimR E(q,t)/Te(S.P
+-K)(f).

Moreover, we have the following very important property as a consequence of the versality

theorem [4].

Proposition 3.2. (1) Let F and G be n-parameter S.P+-K-versal deformations of f.

Then F and G are x-S.P+-K-equivalent.

(2) Let ξ1(q, t), . . . , ξn(q, t) be generators of the R-vector space E(q,t)/Te(S.P
+-K)(f).

Then any n-parameter S.P+-K-versal deformations are x-S.P+-K-equivalent to

F (q, x, t) = f(q, t) +
n∑

i=1

xiξi(q, t).

Theorem 3.3. Let F : (Rk × (Rn ×R), 0) → (R, 0) and G : (Rk′ × (Rn ×R), 0) → (R, 0)

be big Morse families of hypersurfaces. Then

(1) LF (C(F )) and LG(C(G)) are S.P+-Legendrian equivalent if and only if F and G

are stably x-S.P+-K-equivalent.

(2) LF (C(F )) is S.P+-Legendre stable if and only if F is a S.P+-K-versal deformation

of f = F |Rk×{0}×R.

Here, F and G are said to be stably x-S.P+-K-equivalent if they become x-S.P+-K-

equivalent after the addition of non-degenerate quadratic forms in additional variables q′.
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Since the big Legendrian submanifold germ i : (L, p0) ⊂ (PT ∗(Rn×R), p0) is uniquely

determined on the regular part of the big wave front W (L), we have the following simple

but significant property of Legendrian submanifold germs:

Proposition 3.4. Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L′, p0) ⊂ (PT ∗(Rn ×
R), p0) be big Legendrian submanifold germs such that regular sets of π ◦ i, π ◦ i′ are dense

respectively. Then (L, p0) = (L′, p0) if and only if (W (L), π(p0)) = (W (L′), π(p0)).

This result has been firstly pointed out by Zakalyukin [22]. Also see [16]. The assump-

tion in the above proposition is a generic condition for i, i′. In particular, if i and i′ are

S.P+-Legendre stable, then they satisfy the assumption. Concerning the discriminant and

the bifurcation of small fronts, we define the following equivalence relation among big wave

front germs. Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L′, p′0) ⊂ (PT ∗(Rn × R), p′0) be

big Legendrian submanifold germs. We say thatW (L) andW (L′) are S.P+-diffeomorphic

if there exists a diffeomorphism germ Φ : (Rn × R, π(p0)) → (Rn × R, π(p′0)) of the form

Φ(x, t) = (φ1(x), t+α(x)) such that Φ(W (L)) = W (L′). By Proposition 3.4, we have the

following proposition.

Proposition 3.5. Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L′, p′0) ⊂ (PT ∗(Rn ×
R), p′0) be big Legendrian submanifold germs such that regular sets of π ◦ i, π ◦ i′ are dense

respectively. Then i and i′ are S.P+-Legendrian equivalent if and only if (W (L), π(p0))

and (W (L′), π(p′0)) are S.P+-diffeomorphic.

4. Graphlike Legendrian unfoldings and equivalence relations. We now consider

a special class of the big Legendrian submanifolds in J1(Rn,R) ⊂ PT ∗(Rn × R). We say

that a big Legendrian submanifold i : L ⊂ J1(Rn,R) is a graphlike Legendrian unfolding if

π2◦π◦i is a submersion at any point p ∈ L. The notion of graphlike Legendrian unfoldings

has been introduced by the first named author [9] in order to describe the perestroikas of

wave fronts given as the level surfaces of the solution for the eikonal equation given by a

general Hamiltonian function. Since L is a big Legendrian submanifold in J1(Rn,R), it

has a generating family at least locally. In this case, it has a special form as follows: Let

F : (Rk × (Rn ×R), 0) → (R, 0) be a big Morse family of hypersurfaces. We say that F is

a graphlike Morse family of hypersurfaces if (∂F/∂t)(0) 6= 0. It is easy to show that the

corresponding big Legendrian submanifold germ is a graphlike Legendrian unfolding. Of

course, all graphlike Legendrian unfolding germs can be constructed in the above way.

We say that F is a graphlike generating family of LF (Σ∗(F)). However, we can reduce

more strict form of graphlike generating families as follows: Let F be a graphlike Morse

family of hypersurfaces. By the implicit function theorem, there exists a Morse family of

functions F : (Rk × R
n, 0) → (R, 0) such that 〈F(q, x, t)〉E(q,x,t) = 〈F (q, x) − t〉E(q,x,t).

Therefore F (q, x) − t is a graphlike generating family of LF(Σ∗(F)). In this case,

Σ∗(F) = {(q, x, F (q, x)) ∈ (Rk × (Rn × R), 0) | (q, x) ∈ C(F )}

and LF : (Σ∗(F), 0) → J1(Rn,R) is given by

LF(q, x, F (q, x)) = (L(F )(q, x), F (q, x)) ∈ J1(Rn,R) ≡ T ∗
R

n × R.
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Define a map LF : (C(F ), 0) → J1(Rn,R) by

LF (q, x) =

(
x, F (q, x),

∂F

∂x1
(q, x), . . . ,

∂F

∂xn

(q, x)

)
,

then we have LF (C(F )) = LF (Σ∗(F)). We call W (LF ) = π(LF (C(F ))) the graphlike

wave fronts of graphlike Legendrian unfolding LF . We simply call F a generating family

of the graphlike Legendrian unfolding LF .

For any Morse family of functions F, we denote that F (q, x, t) = F (q, x) − t. Since

F (q, x, t) is a big Morse family, we can use all the definitions of equivalence relations

of the previous section. Moreover, we can translate the propositions and theorems into

corresponding assertions in terms of graphlike Legendrian unfoldings. We also denote

f(q, t) = f(q) − t for any f ∈ Mk. We can represent the extended tangent space of

f : (Rk × R, 0) → (R, 0) relative to S.P+-K by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q) − t

〉

E(q,t)

+ 〈1〉R.

For a deformation F : (Rk ×R
n ×R, 0) → (R, 0) of f, F is S.P+-K-versal deformation of

f if and only if

E(q,t) = Te(S.P
+-K)(f) +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn

|Rk × {0}
〉

R

.

Then we have the following proposition:

Proposition 4.1. Let F : (Rk × R
n, 0) → (R, 0) be a Morse family of functions. If

LF (C(F )) is a S.P+-Legendre stable, then L(F )(C(F )) is Lagrange stable.

Proof. Since LF (C(F )) is S.P+-Legendre stable, F is S.P+-K-versal deformation of f

by Theorem 3.3. We have

E(q,t) = Te(S.P
+-K)(f) +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn

|Rk × {0}
〉

R

.

It follows that there exist λi, µ ∈ E(q,t) and c, cj ∈ R such that

t =
k∑

i=1

λi(q, t)
∂f

∂qi
(q) + µ(q, t)(f(q) − t) + c+

n∑

j=1

cj
∂F

∂xj

(q, 0).

If we take q = t = 0, then we have 0 = c+
∑n

j=1 cj(∂F/∂xj)(0, 0). On the other hand, if

we take q = 0, then we have (µ(0, t)+1) · t = 0. It follows that µ(0, t) 6= 0 at t 6= 0. By the

continuity of the function germ µ, we have µ(0, 0) 6= 0 and therefore µ(q, t) 6= 0 around

the origin. Finally if we take t = 0, then the assertion follows from Theorem 2.2.

We now consider a relationship of the equivalence relations between Lagrangian sub-

manifold germs and induced graphlike Legendrian unfoldings, that is, between Morse

families of functions and big Morse families of graphlike Legendrian unfoldings. As a

consequence, we give a relationship between caustics and graphlike wave fronts.

Proposition 4.2. If Lagrangian submanifold germs L(F )(C(F )) and L(G)(C(G)) are

Lagrangian equivalent, then the induced graphlike Legendrian unfoldings LF (C(F )) and

LG(C(G)) are S.P+-Legendrian equivalent.
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Proof. By Proposition 2.1, any Lagrangian submanifold germ in T ∗
R

n is given by image

of L(F ) for a Morse family of functions F. Let F and G be Morse families of functions,

then L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and only if F and G

are stably P -R+-equivalent (cf. Theorem 2.2). By definition, if F and G are stably P -

R+-equivalent, then F and G are stably x-S.P+-K-equivalent. By Theorem 3.3, this

completes the proof.

Remark 4.3. The above proposition asserts that the Lagrangian equivalence is a strong-

er equivalence relation than the S.P+-Legendrian equivalence. The S.P+-Legendrian

equivalence relation among graphlike Legendrian unfoldings preserves both the diffeo-

morphism types of bifurcations for families of small fronts and caustics. On the other

hand, if we observe the real caustics of rays, we cannot observe the structure of wave

front propagations. In this sense, there are hidden structure behind the picture of real

caustics. By the above proposition, the Lagrangian equivalence preserve not only the

diffeomorphism type of caustics, but also the hidden geometric structure of wave front

propagations.

Conversely we have the following proposition:

Proposition 4.4. Suppose that L(F )(C(F )) and L(G)(C(G)) are Lagrange stable.

If LF (C(F )) and LG(C(G)) are S.P+-Legendrian equivalent, then L(F )(C(F )) and

L(G)(C(G)) are Lagrangian equivalent.

In order to show the proposition, we need the following lemma:

Lemma 4.5. If f and g : (Rk × R, 0) → (R, 0) are S.P -K-equivalent, then f and g :

(Rk, 0) → (R, 0) are R-equivalent, where f(q, t) = f(q) − t and g(q, t) = g(q) − t.

Proof. By definition of S.P -K-equivalent, there exist a diffeomorphsim germ of Φ : (Rk ×
R, 0) → (Rk × R, 0) of the form Φ(q, t) = (φ(q, t), t) and a non-zero function germ λ :

(Rk×R, 0) → R such that f = λ·g◦Φ. Then the diffeomorphism Φ preserves the zero-level

set of f and g, that is, Φ(f
−1

(0)) = g−1(0). Since the zero-level set of f is the graph of

f and the form of Φ, we have f = g ◦ ψ, where ψ(q) = φ(q, f(q)). It is easy to show that

ψ : (Rk, 0) → (Rk, 0) is a diffeomorphism germ. Hence f and g are R-equivalent.

Proof of Proposition 4.3. By Theorem 3.3, F and G are stably x-S.P+-K-equivalent. It

follows that f and g are stably S.P -K-equivalent. By Lemma 4.5, f and g are stably

R-equivalent. By the uniqueness of R+-versality, we have F and G are stably P -R+-

equivalent.

By definition, the set of Legendrian singular points of graphlike Legendrian unfolding

LF (C(F )) coincides with the set of singular points of π◦L(F ). Therefore the singularities

of graphlike wave fronts of LF (C(F )) lie on the caustics of L(F ). Moreover, if a Lagrangian

submanifold germ L(F )(C(F )) is a Lagrange stable, then the regular set of π ◦LF (C(F ))

is dense. Hence we can apply Proposition 3.5 to our situations.

Theorem 4.6. Suppose that L(F )(C(F )) and L(G)(C(G)) are Lagrange stable. Then the

Lagrangian subamnifold germs L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent

if and only if the graphlike wave fronts W (LF ) and W (LG) are S.P+-diffeomorphic.
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5. Evolutes and parallels in Euclidean spaces. In this section, we firstly review

the classical theory of differential geometry on hypersurfaces in Euclidean space (see,

[11]). Secondly, we consider the evolutes of hypersuface as the caustics and the paral-

lels of hypersuface as the graphlike wave fronts by using the distance squared functions

(cf. [3, 19]).

Let x : U → R
n be an embedding, where U is an open subset in R

n−1. We denote

M = x(U) and identify M and U through the embedding x. The Gauss map is defined by

the unit normal vector ofM , namely, the Gauss mapG : U → Sn is given byG(u) = n(u),

where n(u) is the unit normal vector of M at x(u).

For a hypersurface x : U → R
n, we define the evolute of x(U) = M by

EvM =

{
x(u) +

1

κ(u)
n(u) | κ(u) is a principal curvature at p = x(u), u ∈ U

}

and the set of parallels of x(U) = M by

PM = {x(u) + r · n(u) | r ∈ R \ {0}, u ∈ U} .
We also define the smooth mapping Evκ : U → R

n and Pr : U → R
n by

Evκ(u) = x(u) +
1

κ(u)
n(u), Pr(u) = x(u) + r · n(u),

where we fix a principal curvature κ(u) on U at u with κ(u) 6= 0 and a real number r 6= 0.

We now define family of functions in order to describe the evolute and parallels of a

hypersurface in R
n. For the purpose, we need some concepts and results in the theory of

unfoldings of function germs. Define

D : U × (Rn \M) → R

by D(u,v) = ‖x(u) − v‖2 and

D : U × (Rn \M) × R+ → R

by D(u,v, t) = ‖x(u)− v‖2 − t, where R+ is the set of positive real numbers. We call D

a distance squared function and D a graphlike distance squared function on M = x(U).

Define dv(u) = D(u,v) and dv(u, t) = D(u,v, t).

The following proposition follows from direct calculations:

Proposition 5.1. Let x : U → R
n be a hypersurface. Then

(1) (∂dv/∂ui)(u) = 0 (i = 1, . . . , n − 1) if and only if there exists a real number

r ∈ R \ {0} such that v = x(u) + r · n(u).

(2) (∂dv/∂ui)(u) = 0 (i = 1, . . . , n − 1) and det(H(dv)(u)) = 0 if and only if v =

x(u) + (1/κ(u)) · n(u).

(3) dv(u, t) = (∂dv/∂ui)(u, t) = 0 (i = 1, . . . , n−1) if and only if v = x(u)±
√
t ·n(u).

Here H(dv)(u) is the hessian matrix of the function dv at u.

We can detect the catastrophe set and bifurcation set of distance squared function D

and the discriminant set of graphlike distance squared function D by Proposition 5.1.

C(D) = {(u,v) ∈ U × (Rn \M) | v = x(u) + r · n(u), r ∈ R \ {0}},
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BD =

{
v ∈ R

n \M | v = x(u) +
1

κ(u)
· n(u), u ∈ U

}

and

D(D) = {(v, t) ∈ (Rn \M) × R+ | v = x(u) ±
√
t · n(u), u ∈ U}.

We can naturally interpret the evolutes of a hypersurface as a caustic and parallels of a

hypersurface as graphlike wave fronts (big wave front).

Proposition 5.2. For a hypersurface x : U → R
n, the distance squared function D :

U × (Rn \M) → R is a Morse family of functions and the graphlike distance squared

function D : U × (Rn \M) × R+ → R is a graphlike Morse family of hypersurfaces.

Proof. For any v = (v1, . . . , vn) ∈ R
n \M , we have D(u,v) =

∑n

i=1(xi(u) − vi)
2, where

x(u) = (x1(u), . . . , xn(u)). We shall prove that the mapping

∆D =

(
∂D

∂u1
, . . . ,

∂D

∂un−1

)

is a non-singular at any point. The Jacobian matrix of ∆D is given by



A11(u) · · · A1(n−1)(u) −2x1u1

(u) · · · −2xnu1
(u)

...
. . .

...
...

. . .
...

A(n−1)1(u) · · · A(n−1)(n−1) −2x1un−1
(u) · · · −2xnun−1

(u)



 ,

where Aij(u) = 2(〈xuiuj
(u),x(u)− v〉+ 〈xui

(u),xuj
(u)〉) and 〈, 〉 is the inner product of

R
n. Since x : U → R

n is an embedding, the rank of the matrix



x1u1

(u) · · · xnu1
(u)

...
. . .

...

x1un−1
(u) · · · xnun−1

(u)





is n − 1 at any u ∈ U and hence D is a Morse family of functions. By definition, D is a

graphlike Morse family of hypersurfaces.

By the method for constructing the Lagrangian submanifold germ from a Morse family

of functions (cf. §2), we can define a Lagrangian submanifold germ whose generating

family is the distance squared function D of M = x(U) as follows: For a hypersurface

x : U → R
n where x(u) = (x1(u), . . . , xn(u)), we define

L(D) : C(D) → T ∗
R

n

by

L(D)(u,v) = (v,−2(x1(u) − v1), . . . ,−2(xn(u) − vn)),

where v = (v1, . . . , vn).

On the other hand, by the method for constructing the big Lagrangian submanifold

germ from a big Morse family of functions (cf. §3), we can define a big Legendrian

submanifold germ whose generating family is the graphlike distance squared function

D of M = x(U). However, since D is a graphlike generating family, we can construct

the graphlike Legendrian unfolding as follows: For a hypersurface x : U → R
n where
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x(u) = (x1(u), . . . , xn(u)), we define

LD : C(D) → J1(Rn,R)

by

LD(u,v) = (v, ‖x(u) − v‖2,−2(x1(u) − v1), . . . ,−2(xn(u) − vn)),

where v = (v1, . . . , vn).

Corollary 5.3. Under the above notations, L(D)(C(D)) is a Lagrangian submanifold

such that the distance squared function D is a generating family of L(D)(C(D)) and

LD(C(D)) is a graphlike Legendrian unfolding such that the graphlike distance squared

function D is a graphlike generating family of LD(C(D)).

6. Contact with osculating hypersphere and families of tangent hyperspheres.

For a hypersurface x : U → R
n, we consider the function D : R

n × (Rn \ M) → R

given by D(x,v) = ‖x − v‖2. We denote dv(x) = D(x,v) and we have a hypersphere

dv
−1(r2) = Sn−1(v, |r|), where Sn−1(v, |r|) is the hypersphere in R

n with center v and

radius |r|. It is easy to show that dv is a submersion germ. For any u ∈ U , we consider a

parallel point v = Pr(u) = x(u) + r · n(u). Then we have

dv ◦ x(u) = D ◦ (x × idRn)(u,v) = r2

and
∂(dv ◦ x)

∂ui

(u) =
∂D

∂ui

(u,v) = 0,

for i = 1, . . . , n − 1 by Proposition 5.1. This means that the hypersphere d−1
v (r2) =

Sn−1(v, |r|) is tangent to M = x(U) at p = x(u). In this case, we call Sn−1(v, |r|)
a tangent hypersphere at p = x(u) with center v. However, there are infinitely many

tangent hyperspheres at a general point depending on the real number r. If v is a point

of the evolute, v = Evκ(u), the tangent hypersphere with the center v is called the

osculating hypersphere at p = x(u) which is uniquely determined.

Therefore for a parallel point v = Pv(u) = x(u)+ r ·n(u), we have a regular foliation

F(dv) = {Sn−1(v,
√
c) | c ∈ (R+, r

2)}
whose leaves are hyperspheres with center v such that the case c = r2 corresponding to

the tangent hypersphere with radius |r|. Moreover if r = 1/κ(u), then Sn−1(v, |1/κ(u)|)
is the osculating hypersphere. In this case, (x−1(F(dv)), u) is a singular foliation germ

at u and we say that a osculating hyperspherical foliation of M = x(U) at p = x(u) (or,

u). We denote it by OF(x(U), u).

We shall consider the contact of hypersurfaces with osculating hypersphere. Let

xi : (U, ui) → (Rn, pi) (i = 1, 2) be hypersurface germs. Consider the distance squared

functions Di : (U × (Rn \Mi), (ui,vi)) → R of xi(U) = Mi, where vi = Evκi
(ui). We de-

note that di,vi
(u) = Di(u,vi), then we have di,vi

(u) = dvi
◦xi(u). By using Propositions

7.3 and 7.4 in Appendix, we have the following theorem:

Theorem 6.1. Let xi : (U, ui) → (Rn, pi)(i = 1, 2) be hypersurface germs such that

the corresponding Lagrangian submanifold germs L(Di) : (C(Di), (ui,vi)) → T ∗
R

n are
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Lagrange stable, where vi = Evκi
(ui) are centers of the osculating hyperspheres at pi

respectively. Then the following conditions are equivalent:

(1) K(x1(U),F(dv1
); p1) = K(x2(U),F(dv2

); p2).

(2) d1,v1
and d2,v2

are R+-equivalent.

(3) D1 and D2 are P -R+-equivalent.

(4) L(D1)(C(D1)) and L(D2)(C(D2)) are Lagendrian equivalent.

(5) (a) The rank and signature of the H(d1,v1
)(u1) and H(d2,v2

)(u2) are equal, and

(b) There is an isomorphism γ : R2(d1,v1
) → R2(d2,v2

) such that γ([d1,v1
]) =

[d2,v2
].

Proof. By Proposition 7.3, the condition (1) is equivalent to the condition (2). Since both

of L(Di)(C(Di)) are Lagrange stable, both of Di are R+-versal deformation of di,vi
. By

the uniqueness theorem on the R+-versal deformation of a function, (2) is equivalent

to (3). By Theorem 2.2, (3) is equivalent to (4). It also follows from Theorem 2.2 that

both of di,vi
satisfy the Milnor condition. Therefore we can apply Proposition 7.4 to our

situation, so that (2) is equivalent to (5). This completes the proof.

On the other hand, for a hypersurface x : U → R
n, we consider the function D :

R
n×(Rn\M)×R+ → R given by D(x,v, t) = ‖x−v‖2−t. We define dv(x, t) = D(x,v, t).

It is easy to show that dv,t is a submersion germ for each t ∈ R+. Then for any u ∈ U

and the parallel point v = P±
√

t(u) = x(u) ±
√
t · n(u), we have

dv ◦ (x × idR+
)(u, t) = 0

and
∂(dv ◦ (x × idR+

))

∂ui

(u, t) =
∂D

∂ui

(u,v, t) = 0,

for i = 1, . . . , n−1 by Proposition 5.1. Hence we define a one-parameter family of tangent

hyperspheres

HS(v) = (dv)−1(0) = {(x, t) ∈ R
n × R+ | x ∈ Sn−1(v,

√
t)}.

We call v the center of the one-parameter family of tangent hyperspheres at (x(u), t). By

using Theorem 7.2 in Appendix, we have the following theorem:

Theorem 6.2. Let xi : (U, ui) → (Rn, pi)(i = 1, 2) be hypersurface germs such that the

corresponding graphlike Legrangian unfoldings LDi
: (C(Di), (ui,vi)) → J1(Rn,R) are

S.P+-Legendre stable, where vi are centers of one-parameter family of tangent hyper-

spheres at (pi, ti). Then the following conditions are equivalent:

(1′) PK(x1(U),HS(v1); (p1, t1)) = PK(x2(U),HS(v2); (p2, t2)).

(2′) d1,v1
and d2,v2

are S.P -K-equivalent.

(3′) D1 and D2 are v-S.P+-K-equivalent.

(4′) LD1
(C(D1)) and LD2

(C(D2)) are S.P+-Legendrian equivalent.

(5′) The graphlike wave fronts W (LD1
) and W (LD2

) are S.P+-diffeomorphic.

Proof. By Theorem 7.2, the condition (1′) is equivalent to the condition (2′). Since both

of LDi
(C(Di)) are S.P+-Legendre stable, both of Di are S.P+-K-versal deformation of

di,vi
. By Proposition 3.2, (2′) is equivalent to (3′). By Theorem 3.3, (3′) is equivalent to
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(4′). Also by the assumption that LDi
(C(Di)) are SP+-Legendre stable, the assumption

of Proposition 3.5 is satisfied for LDi
. It follows that (4′) is equivalent to (5′). This

completes the proof.

By Propositions 4.2 and 4.4, two Lagrangian submanifold germs are Lagrangian

equivalent if and only if the induced graphlike Legendrian unfolding germs are S.P+-

Legendrian equivalent under the condition of Lagrange stability. Moreover, by Propo-

sition 4.1, if LD : (C(D), (u,v)) → J1(Rn,R) is S.P+-Legendre stable, then L(D) :

(C(D), (u,v)) → T ∗
R

n is a Lagrange stable. Then we have the following corollary of

Theorems 6.1 and 6.2:

Corollary 6.3. Let xi : (U, ui) → (Rn, pi)(i = 1, 2) be hypersurface germs such that the

corresponding graphlike Legrangian unfoldings LDi
: (C(Di), (ui,vi)) → J1(Rn,R) are

S.P+-Legendre stable, where vi = Evκi
(ui) are centers of the osculating hyperspheres of

xi(U) respectively. Then the following conditions are equivalent:

(1) K(x1(U),F(dv1
); p1) = K(x2(U),F(dv2

); p2).

(2) d1,v1
and d2,v2

are R+-equivalent.

(3) D1 and D2 are P -R+-equivalent.

(4) L(D1)(C(D1)) and L(D2)(C(D2)) are Lagrangian equivalent.

(5) (a) The rank and signature of the H(d1,v1
)(u1) and H(d2,v2

)(u2) are equal, and

(b) There is an isomorphism γ : R2(d1,v1
) → R2(d2,v2

) such that γ([d1,v1
]) =

[d2,v2
].

(6) PK(x1(U),HS(v1); (p1, 1/κ1(u1))) = PK(x2(U),HS(v2); (p2, 1/κ2(u2))).

(7) d1,v1
and d2,v2

are S.P -K-equivalent.

(8) D1 and D2 are v-S.P+-K-equivalent.

(9) LD1
(C(D1)) and LD2

(C(D2)) are S.P+-Legendrian equivalent.

(10) The graphlike wave fronts W (LD1
) and W (LD2

) are S.P+-diffeomorphic.

More precisely, we can replace the condition that LDi
: (C(Di), (ui,vi)) → J1(Rn,R)

are S.P+-Legendre stable with the condition L(Di) : (C(Di), (ui,vi)) → T ∗
R

n are La-

grange stable by Theorem 4.6. As a consequence, we have the following result:

Theorem 6.4. Let xi : (U, ui) → (Rn, pi) (i = 1, 2) be hypersurface germs such that

the corresponding Lagrangian submanifold germs L(Di) : (C(Di), (ui,vi)) → T ∗
R

n are

Lagrange stable, where vi = Evκi
(ui) are centers of the osculating hyperspheres of xi(U)

respectively. Then conditions (1) to (10) in Corollary 6.3 are also equivalent.

7. Appendix. We start by recalling the theory of contact with submanifolds due to

Montaldi [18]. Let Xi, Yi (i = 1, 2) be submanifolds of R
n with dimX1 = dimX2 and

dimY1 = dimY2. We say that the contact of X1 and Y1 at y1 is the same type as the

contact of X2 and Y2 at y2 if there is a diffeomorphism germ Φ : (Rn, y1) → (Rn, y2) such

that Φ(X1) = X2 and Φ(Y1) = Y2. In this case we write K(X1, Y1; y1) = K(X2, Y2; y2).

It is clear that in the definition R
n could be replaced by any manifold. In his paper [18],

Montaldi gives a characterization of the notion of contact by using the terminology of

singularity theory.
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Theorem 7.1. Let Xi (i = 1, 2) be submanifolds of R
n with dimX1 = dimX2. Let

gi : (Xi, xi) → (Rn, yi) be immersion germs and fi : (Rn, yi) → (Rp, 0) be submersion

germs with (Yi, yi) = (f−1
i (0), yi). Then K(X1, Y1; y1) = K(X2, Y2; y2) if and only if

f1 ◦ g1 and f2 ◦ g2 are K-equivalent. For the definition of K-equivalence, see [17].

For our purpose this theorem is not sufficient. We need the theory of contact of

submanifolds with one-parameter families of hypersurfaces. We have two kinds of theories

which describe the contact with one-parameter families of hypersurfaces.

Firstly we consider the one-parameter families of hypersurfaces. Let Xi (i = 1, 2)

be submanifolds in R
n with dimX1 = dimX2 and fi : (Rn × R, (yi, ti)) → (R, 0) be

function germs such that fi,t is a submersion germ for each t ∈ (R, ti). Here, we define

fi,t(y) = fi(y, t). We have hypersurface germs (Rn×R, (yi, ti)) ⊃ Y(fi) = f−1
i (0). We say

that the parametrized contact of X1 and Y1 at (y1, t1) is the same type as the parametrized

contact of X2 and Y2 at (y2, t2) if there is a diffeomorphism germ Φ : (Rn ×R, (y1, t1)) →
(Rn×R, (y2, t2)) with the form Φ(y, t) = (φ(y, t), t+(t2−t1)) such that Φ(X1×R) = X2×R

and Φ(Y1) = Y2. In this case we write

PK(X1,Y1; (y1, t1)) = PK(X2,Y2; (y2, t2)).

We can show the following parametric version of Montaldi’s theorem just along the line

of the proof of the original theorem of Montaldi [18].

Theorem 7.2. Under the above notations, PK(X1,Y1; (y1, t1)) = PK(X2,Y2; (y2, t2))

if and only if f1 ◦ (g1 × idR) and f2 ◦ (g2 × idR) are S.P-K-equivalent.

Secondary we consider the codimension one foliation germs. Let Xi (i = 1, 2) be

submanifolds of R
n with dimX1 = dimX2, gi : (Xi, x̄i) → (Rn, ȳi) be immersion germs

and fi : (Rn, ȳi) → (R, 0) be submersion germs. For a submersion germ f : (Rn, 0) →
(R, 0), we define F(f) to be the regular foliation defined by f ; i.e., F(f) = {f−1(c) | c ∈
(R, 0)}. We say that the contact of X1 with the regular foliation F(f1) at ȳ1 is the same

type as the contact of X2 with the regular foliation F(f2) at ȳ2 if there is a diffeomorphism

germ Φ : (Rn, ȳ1) → (Rn, ȳ2) such that Φ(X1) = X2 and Φ(Y1(c)) = Y2(c) for each c ∈
(R, 0), where Yi(c) = f−1

i (c). In this case we write K(X1,F(f1); ȳ1) = K(X2,F(f2); ȳ2).

We apply the method of Goryunov [7] to the case of R+-equivalence among function

germs, so that we have the following:

Proposition 7.3 ([7, Appendix]). Let Xi (i = 1, 2) be submanifolds of R
n with dimX1 =

dimX2 − 1 (i.e., hypersurface), gi : (Xi, x̄i) → (Rn, ȳi) be immersion germs and fi :

(Rn, ȳi) → (R, 0) be submersion germs. We assume that x̄i are singularities of function

germs fi ◦ gi : (Xi, x̄i) → (R, 0). Then K(X1,F(f1); ȳ1) = K(X2,F(f2); ȳ2) if and only

if f1 ◦ g1 and f2 ◦ g2 are R+-equivalent.

On the other hand, Golubitsky and Guillemin [6] have given an algebraic char-

acterization of R+-equivalence among function germs. We denote by C∞
0 (X) the set

of function germs (X, 0) → R. Let Jf be the Jacobian ideal in C∞
0 (X) (i.e., Jf =

〈∂f/∂x1, . . . , ∂f/∂xn〉C∞

0 (X)). Let Rk(f) = C∞
0 (X)/Jk

f and [f ] be the image of f in

this local ring. We say that f satisfies the Milnor condition if dimRR1(f) <∞.
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Proposition 7.4 ([6, Proposition 4.1]). Let f and g be germs of functions at 0 in X

satisfying the Milnor condition with df(0) = dg(0) = 0. Then f and g are R+-equivalent

if

(1) The rank and signature of the Hessians H(f)(0) and H(g)(0) are equal, and

(2) There is an isomorphism γ : R2(f) → R2(g) such that γ([f ]) = [g].
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