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Abstract. A classification of simple equivalence classes of function germs with respect to new

relations is given. The equivalence relation is similar but weaker than the right action of dif-

feomorphisms which preserve the boundary. It is used in classifying Lagrange projections with

boundary. The simple classes of function germs with respect to the equivalence similar to fibra-

tion preserving action are also discussed.

1. Introduction. Thom-Boardman classes determine finite stratification of arbitrary

order jet spaces of mappings, while the orbits of standard group actions form simple

discrete stratification only for jets of low order. To get examples of stratifications with

extra simple strata we introduce some new equivalence relations determined by conditions

imposed on jets of functions. They are more rough than standard equivalences, and

keep trace only of some invariants of standard singularities. However they have useful

applications.

We describe quasi-boundary singularities of functions and quasi-projections. Quasi-

boundary equivalence plays an intermediate role between the standard right equivalence

of functions (diffeomorphisms action on the source space) and the boundary equivalence

(right action of diffeomorphisms, which preserve a given boundary hypersurface).

Singularities of quasi-projections are equivalence classes which are finer than right

equivalence orbits but are larger than the orbits under the group of the diffeomorphisms

which preserve a given fibration with line fibers.

In each case we classify discrete (simple) equivalence classes and describe correspond-

ing discriminant and bifurcation diagrams.
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In spite of rather artificial nature of the definitions, quasi-boundary singularities have

natural applications.

Their discriminants describe bifurcation of critical point of a function (for example,

its global extremum) inside and on certain domain with a boundary.

Another even more valuable application of quasi-boundary singularities arises in sym-

plectic geometry. We consider Lagrangian mappings of a Lagrangian manifold with a

boundary. A boundary is an isotropic hypersurface in the Lagrangian manifold. These

pairs are natural in various singularity theory applications to differential equations and

variational problems. Isotropic submanifold plays the role of the initial data set and La-

grangian submanifold is the solution of Hamilton-Jacobi equation with the initial data.

Similar problems were studied in [5, 6].

The pair is embedded into the phase space which usually is the cotangent bundle of

the configuration space. Simple classes of the projections to the configuration space of

these pairs are exactly simple quasi-boundary classes.

Arnold’s boundary singularities are related to projections of the pairs of Lagrangian

submanifolds (of dimension n) which have n− 1-dimensional regular intersection and are

transversal in complementary directions [1]. Quasi-equivalence relation (introduced for

generating families) keeps information only on one Lagrangian submanifold and on its

intersection with the second component.

The list of simple classes contains new classes and series of classes corresponding

to non-simple ordinary boundary singularities. Similar properties are valid for quasi-

projections.

We hope that exploring other non-standard equivalences will help to understand better

the geometry beyond standard simple classes in various singularity theory problems.

2. Pseudo- and quasi-boundary singularities. Ordinary boundary singularities, in-

troduced by V. Arnold, are the orbits in the space of smooth functions f : Rn → R of

the action of the diffeomorphisms of Rn which preserve a distinguished hyperplane B

(called boundary). Here we consider germs of smooth functions f : (Rn, 0) → R on

Rn = {(x, y)}, x ∈ Rn−1, y ∈ R with the boundary B = {y = 0}.

Definition 2.1. Two functions f1, f2 are called pseudo-boundary right equivalent if there

is a diffeomorphism θ : Rn → Rn such that f1 = f2 ◦ θ and if b ∈ B is a critical point of

f1 then θ(b) ∈ B, also if c ∈ B is a critical point of f2 then θ−1(c) ∈ B.

Obviously, this is an equivalence relation. We will denote by Pf the equivalence class of

a germ f and call it the pseudo-orbit of f . As usual in singularity theory we are interested

in connected components of orbits. This leads to an infinitesimal characterization of the

equivalence. Differentiating upon parameter all deformations within the pseudo-orbit of

a given germ f we obtain the tangent space TPf at f to the orbit Pf . Consider germs of

function in x, y at the origin, and denote by Cx,y the algebra of these germs.

Clearly, the tangent space is given by the formula

T (Pf ) =
∂f

∂x
Cx,y +

∂f

∂y

{
yCx,y + Rad(Jf )Cx,y

}
,

where Rad(Jf ) is the radical of the Jacobi ideal of f .
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Remark. Unfortunately, this relation does not satisfy the properties of a geometrical

subgroup of equivalences in the J. Damon sense [2]. In particular, the versality theorem

can fail. To avoid this difficulty we use a subspace of the tangent space, which behaves

regularly when the function depends on extra parameters. Namely take the following

sub-module

TQf =
∂f

∂x
Cx,y +

∂f

∂y

{
yCx,y + JfCx,y

}
⊂ TPf ,

as the set of admissible infinitesimal deformations of a function, and introduce the re-

spective notion Qf of the class of a equivalence relation which is finer than the pseudo-

equivalence.

Definition 2.2. A vector field on x, y space is called f-admissible if its ∂
∂y

component

belongs to the ideal yCx,y + JfCx,y in the algebra Cx,y of smooth functions in x, y.

Two functions f1, f2 are called quasi-boundary equivalent if there is a family of diffeo-

morphisms θt : Rn → Rn continuously and piecewise smoothly depending on parameter

t ∈ [1, 2] such that θ2 is the identity mapping, f1 = f2 ◦ θ1, and for any t ∈ [1, 2] the

vector field V = dθt

dt
◦ θ−1

t generated by θt is ft-admissible for the function ft = f2 ◦ θt.

The family of functions ft being the homotopy between f1 and f2 is called admissible.

Apparently, quasi-boundary equivalence implies pseudo-boundary equivalence.

Define pseudo-boundary and quasi-boundary right-plus equivalence modifying the

definition 2.1 and admitting extra addition of functions with constants.

Similarly, introduce the contact version of these definitions. Two hypersurfaces f1 = 0,

and f2 = 0 are called pseudo-boundary equivalent if they are diffeomorphic via a diffeo-

morphism which maps critical points of the first hypersurface which are in the boundary

to those of the second hypersurface and vice versa. The respective definition of quasi-

boundary equivalence of hypersurfaces is straightforward. For shortness, the right quasi-

boundary equivalence will be called below just quasi-equivalence.

The versality theorem for quasi-equivalence holds. As usual, the miniversal deforma-

tion of a function f(x, y) germ is a sum of an organizing center f(x, y) with the linear

combination of the functions whose classes form a basis over R of the quotient space

Cx,y/TQf .

To determine simple classes with respect to quasi-equivalence we start with the fol-

lowing auxiliary remarks.

The quasi-classification of critical points outside the boundary coincides with the

ordinary R-equivalence. In particular, classes Ak, Dk, Ek form the list of simple quasi-

classes outside the boundary. So we consider only the classes of critical points in the

boundary (at the origin).

Standard Arnold’s boundary equivalence (right action of diffeomorphisms preserving

the boundary) imply quasi-equivalence. So simple Arnold’s boundary classes Bk, Ck, F4

remain simple for quasi-classification, but some classes can merge together.

A priori it is not clear why even the jets of quasi-orbits are submanifolds of jet-

spaces. Tangent spaces of admissible deformations can form a non-integrable distribution.

Fortunately, the jets of orbits of simple classes listed below are submanifolds as can be
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seen from the proof of the theorem. The commutator of two f -admissible vector fields is

not f -admissible in general. To tackle quasi-equivalence special techniques are required.

Assuming the critical distinguished point remains at the origin for any parameter

value of the deformation we can consider only admissible vector fields which vanish at

the origin. In a range of cases this permits to show that jets of some order of quasi-orbits

coincide with jets of standard Arnold’s boundary orbits.

In many cases we can find an appropriate prenormal form of a germ.

Lemma 2.3. If Φt(x, y) is an admissible deformation, and (x, y) 7→ (Xt(x, y), Yt(y)) is

a family of diffeomorphisms of Rn which preserve the fibration (x, y), 0 7→ y, 0 then

Gt(x, y) = Φt(Xt(x, y), Yt(y)) is also an admissible family.

Proof. The claim that the deformation Φt(X, Y ) is admissible means that

−
∂Φt(X, Y )

∂t

=
∂Φt(X, Y )

∂X
Ẋ +

∂Φt(X, Y )

∂Y

(
Y A(X, Y, t) + B(X, Y, t)

∂Φt(X, Y )

∂Y

)
(1)

with some smooth functions A, B, Ẋi.

The matrix ∂X
∂x

is invertible, ∂Y
∂y
6= 0, and ∂Φt

∂x
= ∂Φt

∂X
∂X
∂x

, ∂Φt

∂y
= ∂Φt

∂X
∂X
∂y

+ ∂Φt

∂Y
∂Y
∂y

.

The function Y is divisible by y. Hence the decomposition can be written in the form

−
∂Φt(X(x, y), Y (y))

∂t
=

∂Φt(X(x, y), Y (y))

∂x
X̃

+
∂Φt(X(x, y), Y (y))

∂y

(
Y Ã(x, y, t) + B̃(x, y, t)

∂Φt(X(x, y), Y (y))

∂y

)
(2)

with some smooth functions X̃, Ã, B̃ holds. This means that the family Gt is admissible.

Lemma 2.4. If Gt(x, y) is an admissible family then for an arbitrary smooth function

H(t, x, y) the family G̃t(x, y) = Gt(x, y) + H(∂Gt

∂y
)2 is also admissible and G̃t is quasi-

equivalent to Gt for each value of t.

The proof is a straightforward verification of persistence of the homologic decompo-

sition based on the fact that ∂ eGt

∂y
= ∂Gt

∂y
K(x, y, t), and K 6= 0.

Lemma 2.5 (Stabilization). If the rank of the second differential d2
0(f |y=0) = k then the

function germ f(x, y) is quasi-equivalent to
∑k

i=1±x2
i +f̃(x̃, y), x̃ ∈ Rn−1−k, f̃ |y=0 ∈M3

ex .

For quasi-equivalent f germs, the respective reduced f̃ germs are also quasiequivalent. The

reduction of an admissible family remains admissible.

In fact, the required reduction can be performed using the ordinary group of diffeo-

morphisms preserving the boundary. So we apply Lemma 2.3.

Theorem 2.6. A simple quasi-boundary singularity class is either one of the standard

Ak, Dk, Ek classes outside the boundary or a class of a stabilizations of one of the follow-
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ing germs

Bk : ± x2 +±yk, k ≥ 2 k

Fk,l : ± (y + xk)2 ± xl+1, 2 ≤ k ≤ l k + l

Dk,l : ± (y + xk
1)2 + x1x

2
2 ± xl−1

1 , 2 ≤ k ≤ l − 1, l ≥ 4 k + l + 1

(3)

The orbit codimensions in the space of germs are shown in the right column.

Remarks. 1. The class B2 : x2−y2 has another equivalent form C2 : xy (which represents

a single quasi-class containing all ordinary Ck boundary classes in the plane).

2. The classes Fk,k have equivalent forms ±y2 ± xk+1. In particular, F2,2 : y2 + x3

coincides with F4 ordinary boundary singularity class.

3. The classes Dl−1,l have equivalent forms ±y2 + x1x
2
2 ± xl−1

1 .

4. The fencing (non-simple) classes are either of infinite codimension (adjacent to all

Bk-classes) or the following uni-modal (a ∈ R) classes

S̃5 : y3 + x3 + ay2x and Ẽ2,6 : ±(y + x2
1 + ax1x2)

2 + x4
1 + x3

2y

of codimensions respectively 5 and 9.

5. The adjacency of lower codimension classes is shown in the table

A0 ← A1 ← A2 ← A3 ← A4 ← A5 ← . . .

↑ ↑ ↑ ↑ ↑

B2 ← B3 ← B4 ← B5 ← B6 ← . . .

↑ ↑ ↑ ↑

F2,2 ← F2,3 ← F2,4 ← F2,5 ← . . .

↑ ↑ ↑ ↑

S̃5 F3,3 ← F3,4 ← F3,5 ← . . .

↑ ↑

. . . . . . . . .

Any adjacency between simple classes is a consequence of Bk ← F2,k−1, Fl,m ← Fl,m+1,

Fl,m ← Fl+1,m, and also Fk+1,l−1 ← Dk,l, Dl,m ← Dl,m+1, Dl,m ← Dl+1,m. The class

E2,6 is adjacent to D2,5.

6. If n ≥ 3 the Fk,l germ have a stabilization which is quasi-equivalent to

F̃k,l : yx1 + x1x
k
2 + xl+1

2

(provided that 2 ≤ k ≤ l).

7. For n ≥ 4 simple quasi-orbit Dk,l has a stabilization which is quasi-equivalent to

D̃l,m : yx1 + x1x
l
2 + x2x

2
3 + xm−1

2

(for 2 ≤ l ≤ m− 2, 4 ≤ m).

8. Classification with respect to contact quasi-equivalence has the same list of simple

classes as R quasi-equivalence due to weighted homogeneity.

9. Also the R+ quasi-equivalence simple list coincides with the list of the theorem.

Deleting the constant terms from the quasi-equivalence versal deformation we get R+-

versal deformation.
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10. Notice that classes F3,3 and F2,3 are pseudo-equivalent but not quasi-equivalent.

In fact, the transformation x, y 7→ x, y +x2 is pseudo-equivalence between y2 +x4 of F3,3

type and (y + x2)2 + x4 which is of F2,3. However their codimensions of quasi-tangent

spaces are different, and the classes are not quasi-equivalent.

The bifurcation diagram (with respect to quasi-equivalence) of a function germ de-

formation consists of two components. The first is the ordinary discriminant of the de-

formation f given by the equations df = 0, f = 0. The second is its subset satisfying the

extra equation y = 0. For simple singularities the first is the cylinder over the standard

discriminant of a simple hypersurface singularity which is isomorphic to the discriminant

of the corresponding group generated by reflections. This is a hypersurface in parameter

space. The second component has codimension 2 in the ambient space.

The caustic of the R+-versal deformation consists of two hypersurface strata. The

first one is the ordinary caustics of f—that is the subset of parameters of the R+-versal

deformation, which corresponds to the functions with non-Morse critical points. The

other one is the projection to the base of R+-deformation of the second stratum of the

bifurcation set. It is the subset of parameters of the reduced versal deformation which

correspond to functions with critical points in the boundary.

The formulas of versal deformations listed in Theorem 2.6 provide the explicit de-

scription of simple bifurcation diagrams and caustics.

Proposition. 1. The bifurcation diagram of B2 in c, λ plane is a smooth curve and a

distinguished point in it. The bifurcation diagram of B3 ⊂ R3 is a cuspidal cylinder and

a line in it which is tangent to the ridge. In general, the hypersurface component of the

bifurcation diagram for Bk series is a product of generalized swallow tail and a line. The

second component is the maximal smooth submanifold passing through the vertex of the

generalized swallow tail times a line.

2. The B3 caustic is the union of two tangent lines, for B4 this is a semicubic cylinder

and a plane (the configuration is isomorphic to the discriminant of the standard C3

boundary singularity).

3. The caustic of F4 is the union of a Whitney umbrella which is the second compo-

nent, and a smooth tangent surface which is the caustic of the A2 singularity.

Remark. The quasi-bifurcation diagrams cannot be free divisors in the ordinary sense

because of the different dimensions of the components. However it is not hard to describe

all vector fields tangent to the bifurcation diagram.

Proof of Theorem 2.6. By reducing the dimensions of x by the stabilization lemma the

proof splits into a few cases.

1. If k = n− 1 the reduced function f̃ is a function in the variable y only. The powers

of the maximal ideal Cyym+1 form the splitting of the space Cy of functions in y into

quasi-orbits. We get Bm classes.

2. Assume that k < n − 1. The rank of d2f̃ can be 0, 1 or 2. In the latter case the

second jet of f̃ is equivalent to yu, where u ∈ R, v ∈ Rn−k−2 and x̃ = (u, v). So, the

function is quasi-equivalent to h(y, u, v) = yu + g(y, x̃) with g ∈M3
ex,y.
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Lemma 2.7. The germ h(y, u, v) is quasi-equivalent to yu+up(v)+q(v) with q(v) ∈M3
v,

p(v) ∈M2
v.

On the other hand, the same germ h(y, u, v) is quasi-equivalent to y2 − u2 + r(y, v)

with r(y, v) ∈M3
y,v.

An admissible family ht can be reduced to an admissible family of the form yu +

upt(v) + qt(v) and also of the form y2 − u2 + rt(y, v), by smoothly t-dependent family of

quasi-equivalences. (We will call this reduction regular).

Proof. Since ∂h
∂u

= y + ρ(y, x̃) with ρ ∈ M2
y,ex, the germ h can be written as a sum of a

function h1(y, x̃) which is affine in y, and a function h2(y, x̃) which belongs to the ideal

Cy,ex{
∂h
∂u
}2. Therefore, according to Lemma 2.3 h is right equivalent (via a change of u

coordinate only) to h1. Apply now another right equivalence sending the coefficient in

h1 of y to new u. Both are regular transformations. The function takes now the form

H(y, x̃) = yu + ϕ(u, v).

The square H2
y = u2 of the derivative Hy = ∂H

∂y
belongs to the tangent space of the

quasi-orbit of a function H. Hence for any t ∈ [0, 1] the monomial u2 belongs to the

tangent space of the deformation germ Ht = yu + r(u, x̃)u2t + p(v)u + q(v), where r, q, p

are terms of the decomposition of ϕ(u, v) in powers of u. Now Lemma 2.4 implies that

H is quasi-equivalent to the sum of yu with the function affine in u, as required by the

first claim. In the same way we see that H is quasi-equivalent to a germ of the form K =

yu+u2+p(v)u+q(v). Setting now x1 = u+ 1
2 (y+p(v)), we get K = x2

1−
1
4 (y+p(v))2+q(v)

as required by the second claim.

Lemmas 2.3, 2.4 imply the last claim. If germ f depends on extra parameters then

the reduction to the prenormal form can be chosen smooth in parameters.

3. If k = n − 2 then x̃ ∈ R and the normal form of the function h is simply yu. In

particular, this is the case when x, y ∈ R2.

4. If k = n− 3 and rank(d2f) = n− 2 the second jet after stabilization is equivalent

to y2. So, the function is equivalent to f = y2 + g(x, y), g ∈ M3
x,y. Using Lemma 2.4

reduce the germ to the form f = y2 + p(x)y + q(x). Add an extra stabilization variable

u and get f∗ = y2 − u2 + p(x)y + q(x) = −(y + u)2 + 2(y + u)y + p(x)y + q(x). These

operations are regular in the sense of Lemma 2.7. Put ũ = 2(y + u) + p(x) and get

f∗ = −1
4 ũ2 + ũy + ũp(x)− 1

4 p2(x) + q(x), which is a stabilization of the prenormal form

f̃ = ũy + ũp(x) + q̃(x) with q̃(x) = q(x)− 1
4 p2(x). Lemmas 2.3, 2.4 imply that all these

transformations are regular.

5. Notice that, if k ≤ n−2 and after the reduction rank(d2f̃) = 0, the germ f̃ belongs

to M3(y, x̃) and fails to be simple. In fact, the 3-jet of the quasi-equivalence orbit of a

germ from M3(y, x̃) coincides with the ordinary boundary equivalence orbits, since the

difference is in (∂f
∂y

)2 ∈M4. The action of diffeomorphisms on 3-jets of the germ f̃ ∈M3

coincides with the Gl(n − k,R) action by linear changes of variables. Even in the case

of n − k = 2 the four-dimensional space of degree 3 homogeneous polynomials in y, x̃

split in a continuous family of at most 3-dimensional orbits of boundary preserving linear

transformations.
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6. So, to get the complete classification of simple classes it remains to consider the

quasi-equivalence within the space of germs in the form f̃ = ũy + ũp(x) + q̃(x), x ∈ Rm

with p(x) ∈M2
x and q(x) ∈M3

x.

The germ f is right equivalent (in the ordinary sense) to ũY + q(x), where Y = y +p,

and hence is a stabilization of right class of q only. Hence the right class of q is a quasi-

invariant of f . Simple f can happen only for m = 1 or m = 2 when q(x) is of the type

Ak, Dk, Ek.

Now we may fix a simple germ q(x) and consider an admissible deformation ft =

uy + upt(x) + q(x). The quasi-equivalence tangent space at fixed instant t is the space of

germs u∂pt(x)
∂t

which admit a decomposition

u
∂pt(x)

∂t
= (y + pt(x))A(u, x, y) + uyB(u, x, y) + u2K(u, x, y)

+

m∑

i=1

(
u

∂pt(x)

∂xi

+
∂q(x)

∂xi

)
Si(u, x, y). (4)

with some smooth functions A, B, K, Si.

Setting y = −pt(x) and keeping in the formula only homogeneous terms of degree 0

and 1 in u we get

u
∂pt(x)

∂t
= upt(x)b(x) +

m∑

i=1

(
u

∂pt(x)

∂xi

+
∂q(x)

∂xi

)
si(x) +

m∑

i=1

(
∂q(x)

∂xi

)
uri(x)

for some smooth functions b, si, rj . Equating terms of order 0 in u we get

m∑

i=1

(
∂q(x)

∂xi

)
si(x) = 0.

Due to acyclicity of Koszul complex for q this implies that si ∈ Jf . Now the homogeneous

terms linear in u provide

∂pt(x)

∂t
= pt(x)b(x) +

m∑

i=1

(
∂q(x)

∂xi

)
r̃i(x).

Project the equality to a jet space of functions in x of sufficiently high order, and then

project to the local algebra Cx/Jq(x). The tangent space becomes the principal ideal in

Cx/Jq(x) generated by p(x). So an admissible family determines class of p ∈ M2
x in the

local algebra of q up to a multiplication on an invertible factor. Hence simple singularity

classes of p are possible only for discrete ideal structure in Cx/Jq(x). The only possibilities

are Ak classes with q(x) = xk+1
1 and ideals generated by xl

1, 2 ≤ l ≤ k−1, and Dk classes

for q = x1x
2
2 + xk−1

1 with the ideal structure {x2
1} ⊃ {x

3
1} . . . {xk−2

1 }. The second order

terms x2
1 + ax1x2 in the local algebra of E6 (for q = x4

1 + x3
2) generate a one-parameter

family of principal ideals. This is the first case when the prenormal forms fail to be

simple.

3. Lagrangian projections with boundary. Consider a Lagrangian submanifold L

of T ∗Rm with a boundary I, which is an (isotropic) (m − 1)-dimensional submanifold

of L.
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A family of functions f(x, y, λ) depending on parameters λ defines a Lagrangian sub-

manifold L in T ∗Q, Q = {λ} by standard Hörmander formulas for generating families

(provided that Morse non-degeneracy condition holds)

L =

{
(λ, µ) ∈ Rm ×Rm : ∃(x, y) ∈ Rn,

∂f

∂xi

=
∂f

∂y
= 0, µ =

∂f

∂λ

}
.

Critical points of f which belong to B = {y = 0} correspond to the Lagrangian

boundary I.

Standard arguments (see e.g. [1]) show that any germ of Lagrangian submanifold

with boundary has a generating family. Notice that the families are defined not uniquely,

at least up to stabilization and pseudo-equivalences. A discussion of this can be found

in [6]. If a Lagrangian germ with boundary L1, I1 is mapped to another germ L2, I2

by a symplectomorphism of the ambient space, which preserve the Lagrangian fibration

π : T ∗Rm → Rm (the germs are called Lagrangian equivalent), then a generating family

of L1, I1 is sent to a generating family of L2, I2 by a pseudo-equivalence.

The notions of stability and simplicity of Lagrangian submanifolds with boundary

(with respect to Lagrange equivalence) are straightforward. The following statement is

also a direct consequence of the classification of the quasi-simple classes and of the fact

that for regular Lagrangian germs the radical of the ideal
{

∂f
∂x

, ∂f
∂y

}
coincides with the

ideal itself.

Theorem 3.1. 1. A germ L, I is stable if and only if its arbitrary generating family is

versal with respect to quasi-equivalence.

2. Any stable and simple projection of Lagrangian submanifold with a boundary is

symplectically equivalent to the projection determined by one of the following generating

families which are quasi-R+-versal deformations of the classes from Theorem 2.6

B2 ≈ C2 : xy + λ1x,

Bk, k ≥ 3 : x2 + yk +

k−1∑

i=1

λiy
i,

Fk,l, 2 ≤ k ≤ l : yx1 + x1

(
±xk

2 +

k∑

i=1

λix
i−1
2

)
+ xl+1

2 +

l+k−1∑

j=k+1

λjx
j−k
2 ,

Dk,l, 2 ≤ k ≤ l − 2 : yx1 + x1

(
±xk

2 +

k∑

i=1

λix
i−1
2 + λk+1x3

)

+ x2x
2
3 ± xl−1

2 +

l+k−1∑

j=k+1

λjx
j−k
2 + λk+lx3.

The theorem implies the description of stable simple caustics of Lagrangian subman-

ifolds with boundary. In particular:

— The caustic of singularity Bk is a union of a cylinder over generalized swallow tail

(with one-dimensional generators) and a smooth hypersurface having smooth (k − 3)-

dimensional intersection with the first component.
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— The caustic of Fk,l singularity is a union of a cylinder over a generalized swallow

tail of type Al and an image of Morin stable mapping (generalized Whitney umbrella)

being the set of common zeros of two polynomials of degrees l and k.

— The caustic of Dk,l singularity is a union of a cylinder over the caustic of Dk

singularity and a singular hypersurface which is an image of a deformation of a mapping

from R2 to R3 with zero rank at the origin.

4. Quasi-projections. Another interesting example of non-standard equivalence rela-

tion is provided by a non-singular vector field v or foliation in the space where a function

or a complete intersection is defined.

Definition 4.1. Two functions fi : Rn → R, i = 1, 2, are called vf-equivalent if there

is a diffeomorphism Θ : Rn → Rn such that f2 = f1 ◦Θ and if m is a critical point of f1

then the linear part of Θ at m maps the direction of the vector field v to the direction

of v at the image Θ(m).

This equivalence takes an intermediate place between the standard right-equivalence

and the right action of fibration preserving diffeomorphisms θ : Rn → Rn, θ∗v = hv. In

the simplest case of non-singular vector field v = ∂
∂x

, x ∈ R, Rn = {(x, y)}, y ∈ Rn−1,

which we assume to be the case throughout this section, diffeomorphisms θ preserve

the fibration π : (x, y) 7→ y, that is θ : (x, y) 7→ (X(x, y), Y (y)). The singularities of

hypersurfaces with respect to this action were studied by Goryunov in [4]. It is related

to the singularities of projections along fibers, and also to the theory of envelopes of

moving wavefronts, that is to the space-time parameter depending families of functions,

see [7]. The other application of this group is the classification of singularities of divergent

diagrams of mappings and of parameter depending optimization problems [3]. The study

of this intermediate group permits to understand better invariants of fiber preserving

group action.

Similarly to the previous section, we introduce the infinitesimal version of the finer

version of vf -relation, respecting regularity properties of deformation. It will be called

quasi-projection equivalence. So, we use the following tangent space to the finer equiva-

lence class of the function f

Tf =
∂f

∂x
Cx,y +

∂f

∂yi

K

where K is the module of vector functions h(x, y) the components hi of which satisfy

the property ∂hi

∂x
∈ Jf , replacing by K the module of vector-functions {h(x, y) : ∂h

∂x
∈

Rad(Jf )} which enters the genuine vf -tangent space.

In fact, the condition that vector field

u = a
∂

∂x
+ b

∂

∂y

generated by a family of admissible diffeomorphisms preserves the direction of v at some

point means that the commutator [v, u] is collinear to v that is ∂b
∂x

vanishes at that point.

Methods similar to that of Theorem 2.6 prove the following
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Theorem 4.2. The simple quasi-projection classes of function germs are given by the

following list :
A0 : x

Ãk, D̃k, Ẽk : x2 + f(y),

C2 : xy1 ± y2
2 ± · · · ± y2

n−1

Fn+1 : x3 +±y2
1 ± · · · ± y2

n−1

f(y) is a standard simple singularity class Ak, Dk, Ek.

Remarks. 1. The fencing non-simple classes are F̃ : x4 + ax2y2
1 +±y2

1 ± · · · ± y2
n−1, and

C : xy1 + y3
2 ± y2

3 ± · · · ± y2
n−1.

2. The adjacency of the classes of low codimension in the plane (x, y) ∈ R2 is shown

in the table:
A0 ← Ã1 ← Ã2 ← Ã3 ← ← . . .

↑

C2 ← Fn+1 ← F̃

3. The contact quasi-projection classification coincides with the right one given in the

theorem due to weighted homogeneity of the classes.
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