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Abstract. There is a well known relation between simple algebraic groups and simple singu-
larities, cf. [5], [28]. The simple singularities appear as the generic singularity in codimension two
of the unipotent variety of simple algebraic groups. Furthermore, the semi-universal deformation
and the simultaneous resolution of the singularity can be constructed in terms of the algebraic
group. The aim of these notes is to extend this kind of relation to loop groups and simple elliptic
singularities. It is the successful completion of work begun long ago, [29], cf. also [31], [30], [32]
for more general situations.

1. Simple groups and simple singularities. (For details cf. [28].) Let G be a sim-
ple and simply connected algebraic group over C. Then, G acts by conjugation on itself

and the ring of invariant functions on G is a polynomial ring in the fundamental characters
of G

C[G]® = Clxa,---» xal-
The induced map
G — SpecC|xy, ..., xe ~C*
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is called the adjoint quotient map for G. The group G also acts by the adjoint represen-
tation on its Lie algebra g and the ring of invariant functions on g is also a polynomial
ring in ¢ = rank G variables (in this case, for arbitrary g, the generators cannot so easily
be described). The natural map

xX:g—g/G=C"

is similarly called the adjoint quotient map for g. The zero fiber N = x~1(0) is called
the nilpotent variety, since it consists of all the nilpotent elements of g. Under the action
of G the nilpotent variety decomposes into a finite number of orbits. In particular there is
one open and dense orbit, the so called regular orbit. Moreover, there is a unique orbit of
codimension two in N, the so called subregular orbit. Now let T" be a transversal slice to
the subregular orbit (7"~ C**2) and for simplicity assume that G is of type ADE. Then,
due to E. Brieskorn [5], the restriction of the adjoint quotient map x to the transversal
slice T’
x| : C*?% — ¢t
is the semi-universal deformation of the simple hypersurface singularity 7°'N N, where the

equation for "N N is listed in Figure 1.

G TNN
Ag=SLgyq 42 422 =0
Dy = Spiny, eyt 422 =0
Eg oty +22 =0
Er By+yP+22=0
FEg Py +22=0

Figure 1. Simple Singularities

These singularities are characterized in many ways. For example they are the only
2-dimensional hypersurface singularities which can be deformed into only a finite num-
ber of other singularities (up to isomorphism). For that reason they were called simple
singularities, cf. [1]. If G is of type BCFG, the singularity T N N carries an extra finite
symmetry and x|z is only the invariant part of the semi-universal deformation of TN N.

The restriction of the adjoint quotient map for G to a transversal slice at a subregular
unipotent orbit is also a semi-universal deformation. But there is an important technical
difference. The map x|r is quasi-homogeneous with respect to natural C*-actions on T'
and C* with only positive weights. Such C*-actions do not exist for G.

2. Simple elliptic singularities. Let E be an elliptic curve and L —— FE be a
holomorphic line bundle over E of degree d < 0. Then one can contract the zero section
of L to a surface singularity X. It turns out that X is a complete intersection, if and
only if d > —4. For d = —4, the singularity X is the intersection of two quadrics in C*.
More precisely, X is the cone over the elliptic curve E embedded by the line bundle L*
of degree 4 in P3. This singularity is called of type Ds.

For d > —3, the singularity X is a hypersurface singularity of type Eg+d. Its equation
is listed in Figure 2.
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Here, ) is a complex parameter which depends on the elliptic curve E. These singular-
ities and their deformations have been thoroughly studied by K. Saito [23], [24], [25], [26],
E. J. N. Looijenga [16], [17], [18], H. C. Pinkham [20], and J. Y. Mérindol [19]. It turns
out that they deform only into elliptic singularities of the same type with different A
and into simple singularities. For that and other reasons they are called simple elliptic
singularities.

Eg d=-1 2+ y® + 22+ dyz =0
E; d= -2 oyt + 22+ dryz =0
FEg d=-3 22y + 22+ dyz =0

Figure 2. Simple elliptic singularities

3. Loop groups. The (holomorphic) loop group of the simple algebraic group G is
defined by

LG ={p:C" —— G | ¢ is holomorphic}.
The infinite dimensional group £ G has a universal central extension

1 C* LG LG 1

which can be defined via the embedding of £G into the “differentiable” loop group
studied by Pressley and Segal [21].

Now, C* acts on L G by the formula (¢ ¢)(z) = ¢(gz) and this action can be lifted to
L G. The semi-direct product of £G with C* is denoted by

LG=LGxC"
It may be viewed as a certain completion of some affine Kac-Moody group (corresponding
to polynomial loops, cf. e.g. [15], [14]). Such a group has £+ 1 fundamental highest weight
representations. The corresponding characters are convergent for (p,q) with ¢ € D*,
where D* = {q € C| 0 < |q| <1}, cf. [6] for the polynomial case. Hence, there is a map
LG
U -
LG x D* -2 CH! x D*,
where x is given by the £ + 1 fundamental characters and the second projection. This
map is called the adjoint quotient map for £G (cf. [29], [31], [30], [32] in the case of
“formal” loop groups; it has some good categorical properties only after a certain partial
completion, [33]).

4. Subregular singularities. In the sequel we will fix a number ¢ € D*. The zero
fiber U, = {10, q) is called the unstable variety for reasons we will see later. In this
section we are going to describe the singularities of the unstable variety in codimension
two for all £ G, where G is of type ADE. For this purpose we will call an L G orbit in U,
regular, if it has codimension zero in U, and it is called subregular if it has codimension
two in U,. Actually all orbits in U, have finite codimension and there is never one of
codimension one.
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4.1. Case A;. There are one regular and one subregular orbit in U,. Let S be the
subregular orbit and Ts a transversal slice to S. Then the singularity of U, N Ts is of
type Ds.

4.2. Case Ay, £ > 1. There are £ regular orbits Ri,..., Ry and each intersection
R; N R;y, contains a one-parameter family of subregular orbits. For every subregular
orbit, the singularity of U, N Ty is of type A i.e. two smooth, transversally crossing
surfaces:

(Aso) {(z,y,2) € C* | y* + 2* = 0}.

4.3. Case Dy, ¢ > 5. There are one regular orbit and a one-parameter family of
subregular orbits. Generically the singularity of U, N Ts is of type A, but for four
different subregular orbits it is of type Do, (cf. Fig. 3):

(Doo) {(z,y,2) € C* | ay® + 2* = 0}.

—T

Figure 3. The Whitney umbrella D,

4.4. Case D4. The same as for D, with £ > 5, but there are three such one-parameter
families of subregular orbits.

4.5. Case D5. Besides the one-parameter family of subregular orbits there are two
more subregular orbits. The singularity of U, N Ts for those two orbits is of type Ds.

4.6. Case Eg. There are one regular and two subregular orbits. The singularity of
Uy NTs is of type Es.

4.7. Case FEr. There are one regular and one subregular orbit. The singularity of
U, NTs is of type E7.

4.8. Case Eg. There are one regular and one subregular orbit. The singularity of
U, NTs is of type Ej.
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5. Deformations. The restriction of the adjoint quotient map x to a transversal
slice T's to a subregular orbit S is a deformation of the singularity U, N Ts. In the cases
E, and also for the two special subregular orbits of D5, this turns out to be the semi-
universal deformation. But in the other cases, the singularity U, N Ty is non-isolated
and the base of its semi-universal deformation is infinite dimensional. But as in the case
of an algebraic group of type BC'FG there is an extra symmetry and the restriction of
the adjoint quotient map is the invariant part of the semi-universal deformation. More
precisely, in a loop group of type A, or Dy one can find a particular unstable orbit S’
and a transversal slice Tls: to this orbit, such that every subregular orbit (of a given
family in case Ay) has a non-trivial intersection with T'ss. The stabilizer of S’ contains
two C*-actions and the positive weight space T of the first one is a subspace of Ty,
on which the second C* still acts. Denote by T, C T+ the open subset of semi-stable
points with respect to this C*-action, i.e. the union of those C*-orbits, whose closure
does not contain 0. In general, the subgroup H of the loop group which stabilizes T+
is an extension of C* by an unipotent group and the orbit space T0+ /H always exists.
The restriction of the adjoint quotient map to T+ induces a deformation of the surface
singularity Z = T," N U,/H. In addition, there is another one-parameter deformation
of this singularity with weight zero, which comes from the choice of S’ and these two
deformations together form the semi-universal deformation of Z. In each case, one can
also construct the singularity Z as a hypersurface of a smooth 3-dimensional manifold X.
In the following, we will shortly describe this 3-dimensional manifold and the embedding
Z CX.

5.1. If the loop group is of type Ay, then X is the total space of the sum of two line
bundles over an elliptic curve E. The degrees of those line bundles depend on ¢ and also
on the subregular family. The singularity Z is the union of two smooth hypersurfaces
corresponding to the two regular orbits of the loop group, whose closure contain the
chosen subregular family, intersecting transversally in the elliptic curve E.

5.2. If the loop group is of type Dy, then X is the total space of the sum of two line
bundles over a smooth rational curve P*. The degree of those line bundles is % (£—6) if £ is
even. If £ is odd, one line bundle has degree 3(¢—>5) and the other one has degree 3(¢—7).
The singularity Z is an irreducible hypersurface in X whose normalization is smooth. Its
singular locus is the rational curve P! C X where Z intersects itself transversally except
for four points. At those four points, Z has a singularity of type Do. In this case, the
elliptic curve appears as a double cover of the rational curve P!, which is branched exactly
over those four exceptional points.

6. Principal bundles over elliptic curves. We start with an observation due to
E. J. N. Looijenga (unpublished, however, see e.g. [4]). Let P —— E be a principal
G-bundle over the elliptic curve E = C*/¢% and let 7 : C* —— E be the natural
projection. Then, the pull back 7*P of P to C* is holomorphically trivial since G is
connected. Therefore one has P ~ (C* x G)/Z, where the generator 1 € Z acts by

(z,9) — (qz,¢(2) - 9)
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and ¢ € LG. We shall call ¢ a multiplier for P. Mapping, in the other direction, a pair
(¢, q) to the corresponding principal bundle P ~ (C* x G)/Z one obtains a surjective
map

LG % C*
U
LG x ¢ —» {holomorphic G-bundles over E}.

As is easily checked, this map induces a bijection from the set of £ G-conjugacy classes
in LG X g to the isomorphism classes of holomorphic G-bundles on E:

(LG xq)/LG RN {isomorphism classes of holomorphic G-bundles over E}.

Adding the “semi-direct” C*-action on the left side corresponds to allowing translations
of the base F on the right side.

According to V. Baranovsky and V. Ginzburg [4], an element of L G % ¢ belongs to
the variety U, if and only if the corresponding G-bundle over E is unstable (in the sense
of [9], [22]). For that reason, we call U, the unstable variety.

From this fact one can deduce that there are no nontrivial continuous £ G-invariant
functions on £ G'xq. This is the geometric reason why, for our purpose, we need the central
extension £ G. Inside the centrally extended £ G x ¢ each semi-stable orbit contains only
finitely many orbits in its closure and there is exactly one closed orbit in each such closure
(cf. [29] for the case of “formal” loops). Note that centralizers may not be preserved under
central extensions. This may happen to elements in Uy, but it does not occur for semi-
stable ones.

7. Principal bundles and Levi subgroups. The structure group of a G-bundle
over a curve can, by general reasons (e.g. [2]), always be reduced to a Borel subgroup
of GG. But if the bundle is unstable and the curve is elliptic, it can be further reduced.
In fact, in the case of vector bundles, the instability means that there is some subbundle
of positive degree and on an elliptic curve this has to be a direct summand. The general
case can be reduced to that special case, cf. [9]. Therefore the structure group reduces to
a Borel subgroup of some Levi subgroup of G (i.e. the centralizer L = C¢(H)° of some
torus H C G).

In the other direction, one may construct “minimally” unstable G-bundles by extend-
ing to G the structure group of a suitable B(L)-bundle where B(L) is a Borel subgroup of
some Levi subgroup L of G. If L is maximal, i.e. Z(L)° ~ C*, and the semi-simple com-
ponents of L are of type A,, this construction often leads to an essentially unique (up to
translation in the base) unstable G-bundle. But in some cases (D,,) or if Z(L)° ~ (C*)2,
one gets an essential one-parameter family of unstable G-bundles. This has been exten-
sively investigated in [13]. In the following, we will give a short summary of some our
results.

For example, if G is of type Ey, the Dynkin diagrams of the Levi subgroups correspond-
ing to the regular and subregular orbits are the following (the regular cases correspond
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to those of the construction in Friedman-Morgan-Witten [10, Section 5])

(Ee)

regular orbit subregular orbit

Here L = Cg(H)?, where H is the subtorus of the maximal torus spanned by the
one-parameter subgroup corresponding to the filled vertex (i.e. proportional to the cor-
responding fundamental co-weight). In the case Fg there is a symmetry of the diagram
which leads to two subregular orbits.

In the case D, the Dynkin diagrams of regular and subregular orbits are

(Dy)

regular orbit subregular orbit

There is, in fact, a whole one-parameter family of subregular orbits. In the case Dy,
one gets three such families by the symmetry of the diagram. In the case D5 there are
the following two more subregular elements

(Ds)

subregular orbit subregular orbit

Finally, in the case A; with £ > 1 we have

(Ae) O— ¢¢e0 —O—@— +++ —O Oo— +++ —0&—@— -+ —O
regular orbit subregular orbit

The case A; is a little special. Every unstable rank two vector bundle with trivial deter-
minant is of the form L & L* for some line bundle L of degree d > 0. The regular element
corresponds to d = 1 and the subregular to d = 2.

8. The case Spinjg. There is one subregular Spin,,-bundle which corresponds to
the Levi subgroup C* - SLs C Spin,,. This is very easy to describe. There is a unique
indecomposable rank 5 vector bundle V with detV = L2, where L is a line bundle of
degree 1. The bundle

Vev*

is a SO1p-bundle with trivial second Stiefel Whitney class. Hence, the structure group
can be reduced to Spin;, and this is the subregular Spin,,-bundle we are looking for. The
deformations of this bundle are given by extensions

0 v Ve 1% 0

where the extension class ¢ € Ext'(V,V*) = H'(V* ® V*) belongs to the subgroup
H! (/\2 V*). As a Spinyy-bundle, V & V* has one more deformation, namely the one-
parameter deformation of L. But the group £ G contains the translations of the elliptic
curve and hence we may ignore those deformations. The transversal slice to the orbit
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corresponding to V @& V* is therefore
Ts ~ H' (N V*) x D*.
We want to see that U; N'Tg has a Ds singularity. For this purpose we have to find all

& for which V¢ is unstable. By definition V¢ is unstable if and only if there exists an
indecomposable proper subbundle W C V¢ of positive degree. Since then one has

Hom(W, V) # 0,

it follows that the degree of W is 1 and its rank has to be 3, 4 or 5. Actually 4 and 5
can be excluded from the fact that V; is a Spin;j-bundle. Now, for every indecomposable
rank 3 bundle W of degree 1 one has Hom(W, V) ~ C and each nontrivial morphism
W —— V is injective. From this we get the following commutative diagram

0

I

0 — Hom(W, V;) —— Hom(W,V) —— Ext'(W,V*)

| I

id € Hom(V,V) —— Ext'(V,V*) > H'(N'V*) 3¢

T TFW U
Hom(V/W, V) —— Ext'(V/W,V*) > H' (N (V/W)*)

|

0.
It shows that V¢ is unstable if and only if
¢ ImFy NHY (N V) = HY(N(V/W)*) ~C
for some indecomposable vector bundle W of rank 3 and degree 1.

The vector bundle /\2 V* has rank 10 and degree —8. It is actually the direct sum
of a vector bundle V of rank 5 and degree —4 with itself. Moreover, one can show that
there is a canonically defined subbundle V C /\2 V* with the following property. For every
choice of W, the line Im Fy N H?! (/\2 V*) is contained in the four dimensional subspace
HY(V)c HY (N V*).

Recall, that due to M. F. Atiyah’s work [2] the map W —— det W is a bijection
between indecomposable rank 3 vector bundles of degree 1 and Picl(E) ~ F. Therefore,
the unstable locus in H?! ( /\2 V*) is the cone over the image of the natural morphism

®: E— P(HY(V)),
P +— ImFy, ﬂHl(/\2 V*),
where Wp is the rank 3 vector bundle with det Wp = O(P). Finally one can identify the
map ® with the natural embedding of E in P3 given by the line bundle L*. Hence, the
singularity U, N Tg is of type Ds.
Now, a simple argument using the C*-action on T's shows that the restriction of ¥ to
Ts is in fact the semi-universal deformation of the zero fiber U, N Tys.
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Similar but much simpler arguments can be used to settle the case of type A; where
one also finds a Ds-singularity. The corresponding deformation is a subdeformation of
the semi-universal one, preserving a certain symmetry group.

9. Transversal slices. In the cases Fg, E'7 and FEg it is much harder to see the sin-
gularity directly. Instead, we proceed here in a way very similar to Brieskorn’s original
proof in [5] (cf. also [28]): Starting from the Jacobson-Morozov embedding of nilpotent el-
ements into slp-subalgebras of g one can construct a special transversal slice T's admitting
a C*-action such that the restricted adjoint quotient

X:TS—>g//G:(CZ

becomes C*-equivariant (with respect to the natural action on the base induced by the
scalar action on g). Invoking a basic geometric property of this map (e.g. regularity of
X in all points of the special fiber N N Tg, except the origin; B. Kostant) the detailed
knowledge of the weights and degrees of x permits an identification of that fiber (a simple
singularity) and, finally also, of its deformation (the semi-universal one).

In our situation, it turns out that all interesting unstable bundles have a nice descrip-
tion in terms of suitable multipliers which are obtained as follows. Take any element of
infinite order in the affine Weyl group W and lift it to an element ¢ € £G (e.g. inside
the normalizer of a maximal torus). Then z = (@, q) € £ G will represent an unstable
bundle P(z) over E = C*/q”. For example, to get a regular unstable bundle one has
to start from an affine Coxeter element (this is the “multiplier background” behind the
construction in [10, Section 5]).

Using the Killing form and the Chevalley involution on the Lie algebra of LG (cf. e.g.
[15]) one can associate to x an adjoint «* whose shifted connected centralizer z.Z(z*)°,
where

Z(h):={ge LG |gh=hgt forhelg,

is transversal to the orbit of z inside £ G x ¢q. Moreover, exploiting the central extension
and a “destabilizing” one-parameter subgroup of G for P(z) one can construct a C*-action
on the manifold T,, = x.Z(x*)° such that the restricted adjoint quotient

T, X5 ¢t x g,

becomes C*-equivariant. Here the action on the base is given by the natural action of
the centre C* of £G on the fundamental characters. If z is subregular, the connected
centralizer Z(z*)° is unipotent (in the E-cases, at least) and it is possible to compute the
weights of the above action. Invoking again basic geometric properties of x (i.e. regularity
of x at regular elements, cf. G. Briichert [6], and the classification of orbits (i.e. bundles)
met by T,) the explicit knowledge of the weights and degrees of x allows once more an
identification of the singularity of U, N T, (simple elliptic of the same type as /:'G) and
its deformation by § (the semi-universal one of “negative weight”). A partial result in
that last direction had already been obtained in [29], in the framework of “formal” loops.

Note that there is much freedom in the choice of transversal slices, the above one
being in close analogy to the classical case. It is also possible to choose transversal slices
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inside the “polynomial” subgroup of L G. For the regular unstable orbit one may take an
analogue of Steinberg’s cross section, cf. [6].

10. Double loop algebras. In contrast to the finite dimensional case, the Lie alge-
bra of £ G is not useful to construct simple elliptic singularities. This follows from work
due to I. Frenkel and G. Segal, (cf. [8], [21], [27]), which relates the (co-)adjoint orbit
structure of the Lie algebra of £ G with that of the finite dimensional group G. Instead
of this, one has to consider now double loop algebras. These are defined by

Eg={p:S' xS — g|pisC>®}.

There are two derivations 9/0a and 0/03 acting on Eg, where a point in S! x St is
parametrized by (e!®, ). We are interested in the conjugacy classes of the semi-direct
product

Eg x (Ci@(ci).

o« a0
Let us fix a derivation
3:wa—a+n% with Im% > 0.
Then 0 defines a holomorphic structure on S x S by
St x st
U open

f:U —— C is holomorphic : <= 0f = 0.

With this holomorphic structure S' x S' becomes an elliptic curve E. Moreover, an
element ¢ € £g defines a holomorphic structure on the topologically trivial Ad G-bundle
E x g— E by

E

U open

s:U —— g is holomorphic : <= (0 + ¢)s = 0,

where s is defined by matrix multiplication. The adjoint group £G corresponding to £g
acts on £g x O as the gauge group of E x g —— E and hence we have a bijection

(Eg x 9)/EG RN {isomorphism classes of holomorphic G-bundles over E}

(cf. also [3], [7], [9]). This suggests that the simple elliptic singularities and their deforma-
tions should also appear in the double loop algebras g (suitably enlarged by derivations
and central extension). Indeed, the geometry of the loop group can be transferred to the
double loop algebra via the following construction. Let

X={®:C"— G| ®is C>® and &,2~' is holomorphic},

where @, denotes the shifted function ®,(z) = ®(gz). The condition that ®,®~! is
holomorphic, is actually equivalent to the condition that the smooth function ®~19® is
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g-periodic, i.e. églééq = ®~19®. Hence, we get two maps

N X &
& w e
o N
LO/V / ? \ @
Eg> 0 10P o, e LG

if we identify C*/¢% with S x S*. The group LG acts by multiplication from the left and
the group £G acts by multiplication from the right on X. With these actions, the map
onto £g becomes a principal LG-bundle and the map onto LG becomes a principal £G-
bundle as indicated in the diagram. The induced action of £G on Eg is just the adjoint
action on the coset £g x 9 and the induced action of LG on itself is the adjoint action on
LG x q. This diagram can be considered as the analog of Frenkel’s construction [8], which
induces a one-to-one correspondence between adjoint orbits of the affine Lie algebra ﬁg
(with fixed non-zero derivation) and conjugacy classes in G. To get invariant functions,
we still have to add central extensions. Remember that the group LG is a C*-bundle over
the loop group £G. Denote by ¥ the pull-back of this C*-bundle to ¥ and let £ = i/ﬁG.
Then, we get the commutative diagram
/ : \
£ LG

N

(Cé-i-l

In particular, the fundamental characters of £G induce invariant functions on €. It re-
mains to identify the C*-bundle £ over the double loop algebra £g. It appears already
in [26]. One has to take the semi-direct product £g of the universal central extension

0—Z—Eg—Eg—0

of the double loop algebra £g with the two dimensional space of derivations as above.
On this Lie algebra one has a natural invariant Killing form, whose radical Z° is a two
codimensional subspace of the infinite dimensional Z. The quadratic form @ associated
to the Killing form is an invariant function on £ g. Moreover, the Weyl group of £ g is the
semi-direct product of the Weyl group of g with a Heisenberg group. The centre C' ~ Z
of this Heisenberg group lies in Z and therefore, £G still acts on the quotient of £ g by C.
Now, the line bundle € can be identified with the level set on @ divided by this centre.
More precisely,

g:{g@ c&g/Zz° % d ’ Q(p) =c}/C for any c € C.

This can be proved by reduction to the Cartan subalgebra. In particular, it follows from
our construction that the ‘holomorphic invariant functions’ on & g are generated by the
two projections onto the space of derivations, the quadratic form ) associated to the
Killing form and the ¢ + 1 functions induced by the fundamental characters x of the
Kac-Moody group LG.

The use of the Lie algebra é g instead of the Lie group LG has basically one advantage.
The Killing form on the quotient algebra & g/Z° induces a symplectic form on adjoint



98

S. HELMKE AND P. SLODOWY

orbits, the Kostant-Kirillov form. The restriction of this form to a transversal slice to a
subregular orbit should be the ‘primitive form’ [24] as in the finite dimensional case [34].
But a proof of this is still unknown.
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