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Abstract. There is a well known relation between simple algebraic groups and simple singu-

larities, cf. [5], [28]. The simple singularities appear as the generic singularity in codimension two

of the unipotent variety of simple algebraic groups. Furthermore, the semi-universal deformation

and the simultaneous resolution of the singularity can be constructed in terms of the algebraic

group. The aim of these notes is to extend this kind of relation to loop groups and simple elliptic

singularities. It is the successful completion of work begun long ago, [29], cf. also [31], [30], [32]

for more general situations.

1. Simple groups and simple singularities. (For details cf. [28].) Let G be a sim-

ple and simply connected algebraic group over C. Then, G acts by conjugation on itself

and the ring of invariant functions on G is a polynomial ring in the fundamental characters

of G

C[G]G = C[χ1, . . . , χ`].

The induced map

G −−→ SpecC[χ1, . . . , χ`] ' C`
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is called the adjoint quotient map for G. The group G also acts by the adjoint represen-

tation on its Lie algebra g and the ring of invariant functions on g is also a polynomial

ring in ` = rankG variables (in this case, for arbitrary g, the generators cannot so easily

be described). The natural map

χ : g −−→ g//G ' C`

is similarly called the adjoint quotient map for g. The zero fiber N = χ−1(0) is called

the nilpotent variety, since it consists of all the nilpotent elements of g. Under the action

of G the nilpotent variety decomposes into a finite number of orbits. In particular there is

one open and dense orbit, the so called regular orbit. Moreover, there is a unique orbit of

codimension two in N , the so called subregular orbit. Now let T be a transversal slice to

the subregular orbit (T ' C`+2) and for simplicity assume that G is of type ADE. Then,

due to E. Brieskorn [5], the restriction of the adjoint quotient map χ to the transversal

slice T

χ|T : C`+2 −−→ C`

is the semi-universal deformation of the simple hypersurface singularity T ∩N , where the

equation for T ∩N is listed in Figure 1.

G T ∩N
A` = SL`+1 x`+1 + y2 + z2 = 0

D` = Spin2` x`−1 + xy2 + z2 = 0

E6 x4 + y3 + z2 = 0

E7 x3y + y3 + z2 = 0

E8 x5 + y3 + z2 = 0

Figure 1. Simple Singularities

These singularities are characterized in many ways. For example they are the only

2-dimensional hypersurface singularities which can be deformed into only a finite num-

ber of other singularities (up to isomorphism). For that reason they were called simple

singularities , cf. [1]. If G is of type BCFG, the singularity T ∩N carries an extra finite

symmetry and χ|T is only the invariant part of the semi-universal deformation of T ∩N .

The restriction of the adjoint quotient map for G to a transversal slice at a subregular

unipotent orbit is also a semi-universal deformation. But there is an important technical

difference. The map χ|T is quasi-homogeneous with respect to natural C∗-actions on T

and C` with only positive weights. Such C∗-actions do not exist for G.

2. Simple elliptic singularities. Let E be an elliptic curve and L −−→ E be a

holomorphic line bundle over E of degree d < 0. Then one can contract the zero section

of L to a surface singularity X. It turns out that X is a complete intersection, if and

only if d > −4. For d = −4, the singularity X is the intersection of two quadrics in C4.

More precisely, X is the cone over the elliptic curve E embedded by the line bundle L∗

of degree 4 in P3. This singularity is called of type D̃5.

For d > −3, the singularity X is a hypersurface singularity of type Ẽ9+d. Its equation

is listed in Figure 2.
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Here, λ is a complex parameter which depends on the elliptic curve E. These singular-

ities and their deformations have been thoroughly studied by K. Saito [23], [24], [25], [26],

E. J. N. Looijenga [16], [17], [18], H. C. Pinkham [20], and J. Y. Mérindol [19]. It turns

out that they deform only into elliptic singularities of the same type with different λ

and into simple singularities. For that and other reasons they are called simple elliptic

singularities .

Ẽ8 d = −1 x6 + y3 + z2 + λxyz = 0

Ẽ7 d = −2 x4 + y4 + z2 + λxyz = 0

Ẽ6 d = −3 x3 + y3 + z3 + λxyz = 0

Figure 2. Simple elliptic singularities

3. Loop groups. The (holomorphic) loop group of the simple algebraic group G is

defined by

LG = {ϕ : C∗ −−→ G | ϕ is holomorphic}.
The infinite dimensional group LG has a universal central extension

1 −−→ C∗ −−→ L̃G −−→ LG −−→ 1

which can be defined via the embedding of LG into the “differentiable” loop group

studied by Pressley and Segal [21].

Now, C∗ acts on LG by the formula (q ϕ)(z) = ϕ(qz) and this action can be lifted to

L̃G. The semi-direct product of L̃G with C∗ is denoted by

L̂G = L̃GoC∗.
It may be viewed as a certain completion of some affine Kac-Moody group (corresponding

to polynomial loops, cf. e.g. [15], [14]). Such a group has `+1 fundamental highest weight

representations. The corresponding characters are convergent for (ϕ̃, q) with q ∈ D∗,
where D∗ =

{
q ∈ C

∣∣ 0 < |q| < 1
}

, cf. [6] for the polynomial case. Hence, there is a map

L̂G
∪

L̃G×D∗ χ̂−−→ C`+1 ×D∗,
where χ̂ is given by the ` + 1 fundamental characters and the second projection. This

map is called the adjoint quotient map for L̂G (cf. [29], [31], [30], [32] in the case of

“formal” loop groups; it has some good categorical properties only after a certain partial

completion, [33]).

4. Subregular singularities. In the sequel we will fix a number q ∈ D∗. The zero

fiber Uq = χ̂−1(0, q) is called the unstable variety for reasons we will see later. In this

section we are going to describe the singularities of the unstable variety in codimension

two for all L̂G, where G is of type ADE. For this purpose we will call an L̂G orbit in Uq
regular , if it has codimension zero in Uq and it is called subregular if it has codimension

two in Uq. Actually all orbits in Uq have finite codimension and there is never one of

codimension one.
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4.1. Case A1. There are one regular and one subregular orbit in Uq. Let S be the

subregular orbit and TS a transversal slice to S. Then the singularity of Uq ∩ TS is of

type D̃5.

4.2. Case A`, ` > 1. There are ` regular orbits R1, . . . , R` and each intersection

R̄i ∩ R̄i+1 contains a one-parameter family of subregular orbits. For every subregular

orbit, the singularity of Uq ∩ TS is of type A∞ i.e. two smooth, transversally crossing

surfaces:

(A∞)
{

(x, y, z) ∈ C3
∣∣ y2 + z2 = 0

}
.

4.3. Case D`, ` > 5. There are one regular orbit and a one-parameter family of

subregular orbits. Generically the singularity of Uq ∩ TS is of type A∞, but for four

different subregular orbits it is of type D∞ (cf. Fig. 3):

(D∞)
{

(x, y, z) ∈ C3
∣∣ xy2 + z2 = 0

}
.

−x

y

z

Figure 3. The Whitney umbrella D∞

4.4. Case D4. The same as for D` with ` > 5, but there are three such one-parameter

families of subregular orbits.

4.5. Case D5. Besides the one-parameter family of subregular orbits there are two

more subregular orbits. The singularity of Uq ∩ TS for those two orbits is of type D̃5.

4.6. Case E6. There are one regular and two subregular orbits. The singularity of

Uq ∩ TS is of type Ẽ6.

4.7. Case E7. There are one regular and one subregular orbit. The singularity of

Uq ∩ TS is of type Ẽ7.

4.8. Case E8. There are one regular and one subregular orbit. The singularity of

Uq ∩ TS is of type Ẽ8.
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5. Deformations. The restriction of the adjoint quotient map χ̂ to a transversal

slice TS to a subregular orbit S is a deformation of the singularity Uq ∩ TS . In the cases

Ẽ` and also for the two special subregular orbits of D̃5, this turns out to be the semi-

universal deformation. But in the other cases, the singularity Uq ∩ TS is non-isolated

and the base of its semi-universal deformation is infinite dimensional. But as in the case

of an algebraic group of type BCFG there is an extra symmetry and the restriction of

the adjoint quotient map is the invariant part of the semi-universal deformation. More

precisely, in a loop group of type Ã` or D̃` one can find a particular unstable orbit S ′

and a transversal slice TS′ to this orbit, such that every subregular orbit (of a given

family in case Ã`) has a non-trivial intersection with TS′ . The stabilizer of S′ contains

two C∗-actions and the positive weight space T+ of the first one is a subspace of TS′ ,

on which the second C∗ still acts. Denote by T+
0 ⊂ T+ the open subset of semi-stable

points with respect to this C∗-action, i.e. the union of those C∗-orbits, whose closure

does not contain 0. In general, the subgroup H of the loop group which stabilizes T+

is an extension of C∗ by an unipotent group and the orbit space T+
0 /H always exists.

The restriction of the adjoint quotient map to T+ induces a deformation of the surface

singularity Z = T+
0 ∩ Uq/H. In addition, there is another one-parameter deformation

of this singularity with weight zero, which comes from the choice of S ′ and these two

deformations together form the semi-universal deformation of Z. In each case, one can

also construct the singularity Z as a hypersurface of a smooth 3-dimensional manifold X.

In the following, we will shortly describe this 3-dimensional manifold and the embedding

Z ⊂ X.

5.1. If the loop group is of type A`, then X is the total space of the sum of two line

bundles over an elliptic curve E. The degrees of those line bundles depend on ` and also

on the subregular family. The singularity Z is the union of two smooth hypersurfaces

corresponding to the two regular orbits of the loop group, whose closure contain the

chosen subregular family, intersecting transversally in the elliptic curve E.

5.2. If the loop group is of type D`, then X is the total space of the sum of two line

bundles over a smooth rational curve P1. The degree of those line bundles is 1
2 (`−6) if ` is

even. If ` is odd, one line bundle has degree 1
2 (`−5) and the other one has degree 1

2 (`−7).

The singularity Z is an irreducible hypersurface in X whose normalization is smooth. Its

singular locus is the rational curve P1 ⊂ X where Z intersects itself transversally except

for four points. At those four points, Z has a singularity of type D∞. In this case, the

elliptic curve appears as a double cover of the rational curve P1, which is branched exactly

over those four exceptional points.

6. Principal bundles over elliptic curves. We start with an observation due to

E. J. N. Looijenga (unpublished, however, see e.g. [4]). Let P −−→ E be a principal

G-bundle over the elliptic curve E = C∗/qZ and let π : C∗ −−→ E be the natural

projection. Then, the pull back π∗P of P to C∗ is holomorphically trivial since G is

connected. Therefore one has P ' (C∗ ×G)/Z, where the generator 1 ∈ Z acts by

(z, g) 7−→
(
qz, ϕ(z) · g

)
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and ϕ ∈ LG. We shall call ϕ a multiplier for P . Mapping, in the other direction, a pair

(ϕ, q) to the corresponding principal bundle P ' (C∗ × G)/Z one obtains a surjective

map

LGoC∗
∪

LG× q −� {holomorphic G-bundles over E}.
As is easily checked, this map induces a bijection from the set of LG-conjugacy classes

in LG× q to the isomorphism classes of holomorphic G-bundles on E:

(LG× q)/LG 1−1−−→ {isomorphism classes of holomorphic G-bundles over E}.

Adding the “semi-direct” C∗-action on the left side corresponds to allowing translations

of the base E on the right side.

According to V. Baranovsky and V. Ginzburg [4], an element of L̃G × q belongs to

the variety Uq if and only if the corresponding G-bundle over E is unstable (in the sense

of [9], [22]). For that reason, we call Uq the unstable variety .

From this fact one can deduce that there are no nontrivial continuous LG-invariant

functions on LG×q. This is the geometric reason why, for our purpose, we need the central

extension L̂G. Inside the centrally extended L̃G× q each semi-stable orbit contains only

finitely many orbits in its closure and there is exactly one closed orbit in each such closure

(cf. [29] for the case of “formal” loops). Note that centralizers may not be preserved under

central extensions. This may happen to elements in Uq, but it does not occur for semi-

stable ones.

7. Principal bundles and Levi subgroups. The structure group of a G-bundle

over a curve can, by general reasons (e.g. [2]), always be reduced to a Borel subgroup

of G. But if the bundle is unstable and the curve is elliptic, it can be further reduced.

In fact, in the case of vector bundles, the instability means that there is some subbundle

of positive degree and on an elliptic curve this has to be a direct summand. The general

case can be reduced to that special case, cf. [9]. Therefore the structure group reduces to

a Borel subgroup of some Levi subgroup of G (i.e. the centralizer L = CG(H)o of some

torus H ⊂ G).

In the other direction, one may construct “minimally” unstable G-bundles by extend-

ing to G the structure group of a suitable B(L)-bundle where B(L) is a Borel subgroup of

some Levi subgroup L of G. If L is maximal, i.e. Z(L)o ' C∗, and the semi-simple com-

ponents of L are of type An this construction often leads to an essentially unique (up to

translation in the base) unstable G-bundle. But in some cases (Dn) or if Z(L)o ' (C∗)2,

one gets an essential one-parameter family of unstable G-bundles. This has been exten-

sively investigated in [13]. In the following, we will give a short summary of some our

results.

For example, ifG is of type E`, the Dynkin diagrams of the Levi subgroups correspond-

ing to the regular and subregular orbits are the following (the regular cases correspond
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to those of the construction in Friedman-Morgan-Witten [10, Section 5]):

(E`)
◦− · · · −◦−−−

◦∣∣∣
•−−−◦−−−◦

regular orbit
◦− · · · −•−−−

◦∣∣∣
◦−−−◦−−−◦

subregular orbit

Here L = CG(H)o, where H is the subtorus of the maximal torus spanned by the

one-parameter subgroup corresponding to the filled vertex (i.e. proportional to the cor-

responding fundamental co-weight). In the case E6 there is a symmetry of the diagram

which leads to two subregular orbits.

In the case D` the Dynkin diagrams of regular and subregular orbits are

(D`)
◦−−−◦− · · · −◦−−−

◦∣∣∣
•−−−◦

regular orbit
◦−−−◦− · · · −•−−−

◦∣∣∣
◦−−−◦

subregular orbit

There is, in fact, a whole one-parameter family of subregular orbits. In the case D4,

one gets three such families by the symmetry of the diagram. In the case D5 there are

the following two more subregular elements

(D5)
◦−−−◦−−−

•∣∣∣
◦−−−◦

subregular orbit
◦−−−◦−−−

◦∣∣∣
◦−−−•

subregular orbit

Finally, in the case A` with ` > 1 we have

(A`) ◦− · · · −◦−−−•− · · · −◦
regular orbit

◦− · · · −•−−−•− · · · −◦
subregular orbit

The case A1 is a little special. Every unstable rank two vector bundle with trivial deter-

minant is of the form L⊕L∗ for some line bundle L of degree d > 0. The regular element

corresponds to d = 1 and the subregular to d = 2.

8. The case Spin10. There is one subregular Spin10-bundle which corresponds to

the Levi subgroup C∗ · SL5 ⊂ Spin10. This is very easy to describe. There is a unique

indecomposable rank 5 vector bundle V with detV = L2, where L is a line bundle of

degree 1. The bundle

V ⊕ V ∗

is a SO10-bundle with trivial second Stiefel Whitney class. Hence, the structure group

can be reduced to Spin10 and this is the subregular Spin10-bundle we are looking for. The

deformations of this bundle are given by extensions

0 −−→ V ∗ −−→ Vξ −−→ V −−→ 0

where the extension class ξ ∈ Ext1(V, V ∗) = H1(V ∗ ⊗ V ∗) belongs to the subgroup

H1
(∧2

V ∗
)
. As a Spin10-bundle, V ⊕ V ∗ has one more deformation, namely the one-

parameter deformation of L. But the group L̂G contains the translations of the elliptic

curve and hence we may ignore those deformations. The transversal slice to the orbit
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corresponding to V ⊕ V ∗ is therefore

TS ' H1
(∧2 V ∗

)
×D∗.

We want to see that Uq ∩ TS has a D̃5 singularity. For this purpose we have to find all

ξ for which Vξ is unstable. By definition Vξ is unstable if and only if there exists an

indecomposable proper subbundle W ⊂ Vξ of positive degree. Since then one has

Hom(W,V ) 6= 0,

it follows that the degree of W is 1 and its rank has to be 3, 4 or 5. Actually 4 and 5

can be excluded from the fact that Vξ is a Spin10-bundle. Now, for every indecomposable

rank 3 bundle W of degree 1 one has Hom(W,V ) ' C and each nontrivial morphism

W −−→ V is injective. From this we get the following commutative diagram

0

|↑

0 −−→ Hom(W,Vξ) −−→ Hom(W,V ) −−→ Ext1(W,V ∗)

|↑ |↑

id ∈ Hom(V, V ) −−→ Ext1(V, V ∗) ⊃ H1
(∧2 V ∗

)
3 ξ

|↑ |↑FW ∪

Hom(V/W, V ) −−→ Ext1(V/W, V ∗) ⊃ H1
(∧2(V/W )∗

)

|↑
0.

It shows that Vξ is unstable if and only if

ξ ∈ ImFW ∩H1
(∧2 V ∗

)
= H1

(∧2(V/W )∗
)
' C

for some indecomposable vector bundle W of rank 3 and degree 1.

The vector bundle
∧2

V ∗ has rank 10 and degree −8. It is actually the direct sum

of a vector bundle Ṽ of rank 5 and degree −4 with itself. Moreover, one can show that

there is a canonically defined subbundle Ṽ ⊂ ∧2
V ∗ with the following property. For every

choice of W , the line ImFW ∩H1
(∧2 V ∗

)
is contained in the four dimensional subspace

H1(Ṽ ) ⊂ H1
(∧2 V ∗

)
.

Recall, that due to M. F. Atiyah’s work [2] the map W 7−→ detW is a bijection

between indecomposable rank 3 vector bundles of degree 1 and Pic1(E) ' E. Therefore,

the unstable locus in H1
(∧2

V ∗
)

is the cone over the image of the natural morphism

Φ : E −−→ P
(
H1(Ṽ )

)
,

P 7−→ ImFWP
∩H1

(∧2 V ∗
)
,

where WP is the rank 3 vector bundle with detWP = O(P ). Finally one can identify the

map Φ with the natural embedding of E in P3 given by the line bundle L4. Hence, the

singularity Uq ∩ TS is of type D̃5.

Now, a simple argument using the C∗-action on TS shows that the restriction of χ̂ to

TS is in fact the semi-universal deformation of the zero fiber Uq ∩ TS .
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Similar but much simpler arguments can be used to settle the case of type A1 where

one also finds a D̃5-singularity. The corresponding deformation is a subdeformation of

the semi-universal one, preserving a certain symmetry group.

9. Transversal slices. In the cases E6, E7 and E8 it is much harder to see the sin-

gularity directly. Instead, we proceed here in a way very similar to Brieskorn’s original

proof in [5] (cf. also [28]): Starting from the Jacobson-Morozov embedding of nilpotent el-

ements into sl2-subalgebras of g one can construct a special transversal slice TS admitting

a C∗-action such that the restricted adjoint quotient

χ : TS −−→ g//G ' C`

becomes C∗-equivariant (with respect to the natural action on the base induced by the

scalar action on g). Invoking a basic geometric property of this map (e.g. regularity of

χ in all points of the special fiber N ∩ TS , except the origin; B. Kostant) the detailed

knowledge of the weights and degrees of χ permits an identification of that fiber (a simple

singularity) and, finally also, of its deformation (the semi-universal one).

In our situation, it turns out that all interesting unstable bundles have a nice descrip-

tion in terms of suitable multipliers which are obtained as follows. Take any element of

infinite order in the affine Weyl group W̃ and lift it to an element ϕ̃ ∈ L̃G (e.g. inside

the normalizer of a maximal torus). Then x = (ϕ̃, q) ∈ L̂G will represent an unstable

bundle P (x) over E = C∗/qZ. For example, to get a regular unstable bundle one has

to start from an affine Coxeter element (this is the “multiplier background” behind the

construction in [10, Section 5]).

Using the Killing form and the Chevalley involution on the Lie algebra of L̂G (cf. e.g.

[15]) one can associate to x an adjoint x∗ whose shifted connected centralizer x.Z(x∗)o,
where

Z(h) := {g ∈ L̂G | g.h = h.g} for h ∈ L̂G,
is transversal to the orbit of x inside L̃G× q. Moreover, exploiting the central extension

and a “destabilizing” one-parameter subgroup ofG for P (x) one can construct a C∗-action

on the manifold Tx = x.Z(x∗)o such that the restricted adjoint quotient

Tx
χ̂−−→C`+1 × q,

becomes C∗-equivariant. Here the action on the base is given by the natural action of

the centre C∗ of L̂G on the fundamental characters. If x is subregular, the connected

centralizer Z(x∗)o is unipotent (in the E-cases, at least) and it is possible to compute the

weights of the above action. Invoking again basic geometric properties of χ̂ (i.e. regularity

of χ̂ at regular elements, cf. G. Brüchert [6], and the classification of orbits (i.e. bundles)

met by Tx) the explicit knowledge of the weights and degrees of χ̂ allows once more an

identification of the singularity of Uq ∩ Tx (simple elliptic of the same type as L̂G) and

its deformation by χ̂ (the semi-universal one of “negative weight”). A partial result in

that last direction had already been obtained in [29], in the framework of “formal” loops.

Note that there is much freedom in the choice of transversal slices, the above one

being in close analogy to the classical case. It is also possible to choose transversal slices
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inside the “polynomial” subgroup of L̂G. For the regular unstable orbit one may take an

analogue of Steinberg’s cross section, cf. [6].

10. Double loop algebras. In contrast to the finite dimensional case, the Lie alge-

bra of L̂G is not useful to construct simple elliptic singularities. This follows from work

due to I. Frenkel and G. Segal, (cf. [8], [21], [27]), which relates the (co-)adjoint orbit

structure of the Lie algebra of L̂G with that of the finite dimensional group G. Instead

of this, one has to consider now double loop algebras. These are defined by

Eg = {ϕ : S1 × S1 −−→ g | ϕ is C∞}.

There are two derivations ∂/∂α and ∂/∂β acting on Eg, where a point in S1 × S1 is

parametrized by (eiα, eiβ). We are interested in the conjugacy classes of the semi-direct

product

Ego
(
C

∂

∂ α
⊕ C ∂

∂ β

)
.

Let us fix a derivation

∂̄ = ω
∂

∂ α
+ η

∂

∂ β
with Im

ω

η
> 0.

Then ∂̄ defines a holomorphic structure on S1 × S1 by

S1 × S1

∪ open

f : U −−→ C is holomorphic :⇐⇒ ∂̄f = 0.

With this holomorphic structure S1 × S1 becomes an elliptic curve E. Moreover, an

element ϕ ∈ Eg defines a holomorphic structure on the topologically trivial AdG-bundle

E × g −−→ E by

E

∪ open

s : U −−→ g is holomorphic :⇐⇒ (∂̄ + ϕ)s = 0,

where ϕs is defined by matrix multiplication. The adjoint group EG corresponding to Eg
acts on Eg× ∂̄ as the gauge group of E × g −−→ E and hence we have a bijection

(Eg× ∂̄)/EG 1−1−−→ {isomorphism classes of holomorphic G-bundles over E}

(cf. also [3], [7], [9]). This suggests that the simple elliptic singularities and their deforma-

tions should also appear in the double loop algebras Eg (suitably enlarged by derivations

and central extension). Indeed, the geometry of the loop group can be transferred to the

double loop algebra via the following construction. Let

X =
{

Φ : C∗ −→ G
∣∣ Φ is C∞ and ΦqΦ

−1 is holomorphic
}
,

where Φq denotes the shifted function Φq(z) = Φ(qz). The condition that ΦqΦ
−1 is

holomorphic, is actually equivalent to the condition that the smooth function Φ−1∂̄Φ is
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q-periodic, i.e. Φ−1
q ∂̄Φq = Φ−1∂̄Φ. Hence, we get two maps

LG
−bundle

←−−
−−−
−−−
−−−
−−X EG−bundle

−−−−−−−−−−−−−→

∈

Φ 7−−−−−→

7−−−−−→

Eg 3 Φ−1∂̄Φ ΦqΦ
−1 ∈ LG

if we identify C∗/qZ with S1×S1. The group LG acts by multiplication from the left and

the group EG acts by multiplication from the right on X. With these actions, the map

onto Eg becomes a principal LG-bundle and the map onto LG becomes a principal EG-

bundle as indicated in the diagram. The induced action of EG on Eg is just the adjoint

action on the coset Eg× ∂̄ and the induced action of LG on itself is the adjoint action on

LG×q. This diagram can be considered as the analog of Frenkel’s construction [8], which

induces a one-to-one correspondence between adjoint orbits of the affine Lie algebra L̂g

(with fixed non-zero derivation) and conjugacy classes in G. To get invariant functions,

we still have to add central extensions. Remember that the group L̃G is a C∗-bundle over

the loop group LG. Denote by X̃ the pull-back of this C∗-bundle to X and let Ẽ = X̃/LG.

Then, we get the commutative diagram

←−−
−− X̃ −−−−→

Ẽ L̃G
χ̂

−−−−→

−−−−→
C`+1

In particular, the fundamental characters of L̃G induce invariant functions on Ẽ . It re-

mains to identify the C∗-bundle Ẽ over the double loop algebra Eg. It appears already

in [26]. One has to take the semi-direct product Êg of the universal central extension

0 −→ Z −→ Ẽg −→ Eg −→ 0

of the double loop algebra Eg with the two dimensional space of derivations as above.

On this Lie algebra one has a natural invariant Killing form, whose radical Z0 is a two

codimensional subspace of the infinite dimensional Z. The quadratic form Q associated

to the Killing form is an invariant function on Êg. Moreover, the Weyl group of Êg is the

semi-direct product of the Weyl group of g with a Heisenberg group. The centre C ' Z
of this Heisenberg group lies in Z and therefore, EG still acts on the quotient of Êg by C.

Now, the line bundle Ẽ can be identified with the level set on Q divided by this centre.

More precisely,

Ẽ '
{
ϕ ∈ Ẽg/Z0 × ∂̄

∣∣ Q(ϕ) = c
}/
C for any c ∈ C.

This can be proved by reduction to the Cartan subalgebra. In particular, it follows from

our construction that the ‘holomorphic invariant functions’ on Êg are generated by the

two projections onto the space of derivations, the quadratic form Q associated to the

Killing form and the ` + 1 functions induced by the fundamental characters χ̂ of the

Kac-Moody group L̂G.

The use of the Lie algebra Êg instead of the Lie group L̂G has basically one advantage.

The Killing form on the quotient algebra Êg/Z0 induces a symplectic form on adjoint
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orbits, the Kostant-Kirillov form. The restriction of this form to a transversal slice to a

subregular orbit should be the ‘primitive form’ [24] as in the finite dimensional case [34].

But a proof of this is still unknown.
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[24] K. Saito, Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19

(1983), 1231–1264.

[25] K. Saito, Extended affine root systems I. Coxeter transformations, Publ. Res. Inst. Math.

Sci. 21 (1985), 75–179.

[26] K. Saito, Extended affine root systems II. Flat invariants, Publ. Res. Inst. Math. Sci. 26

(1990), 15–78.

[27] G. Segal, Unitary representations of some infinite-dimensional groups, Comm. Math. Phys.

80 (1981), 301–342.

[28] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math. 815,

Springer, Berlin, 1980.

[29] P. Slodowy, Chevalley groups over C((t)) and deformations of simply elliptic singulari-
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