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Abstract. We present a Möbius invariant construction of the Darboux transformation for
isothermic surfaces by the method of moving frames and use it to give a complete classification
of the Darboux transforms of Dupin surfaces.

1. Introduction. The transformation theory of isothermic surfaces was intensively
studied at the turn of the 20th century and in recent years has received a renewed at-
tention because of its connection with the theory of integrable systems. The methods of
integrable systems theory made their first appearance in the study of isothermic surfaces
with Cieśliński–Goldstein–Sym’s zero-curvature formulation of the Gauss–Codazzi equa-
tions of an isothermic surface [13]. This work was taken up by Burstall–Hertrich-Jeromin–
Pedit–Pinkall [8], who described the integrable system of isothermic surfaces in the con-
text of Möbius geometry as an example of the curved flat system of Ferus–Pedit [16]; an
equivalent description was given in [6]. This approach provided a coherent framework for
discussing the classical transformations of isothermic surfaces. For recent accounts on the
transformation theory of isothermic surfaces, we refer the reader to [18, 19, 20], and [7],
where the Darboux transformation is described using the loop group formulation accord-
ing to the general theory of Bäcklund transformations due to Terng–Uhlenbeck [26].
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The Darboux transformation of isothermic surfaces is defined by realizing them as the
focal surfaces of a 2-sphere congruence such that the correspondence induced between the
two envelopes preserves the curvature lines and is conformal. The integrability theorem
says that for a given isothermic surface there exist infinitely many Darboux transforms
[15]. Bianchi [3] proved a permutability theorem for this transformation and introduced
a related spectral transformation, the T-transformation [4], which was independently
discovered also by Calapso [10].

This paper presents a Möbius invariant construction of the Darboux transformation by
the method of moving frames. In this approach the T-transform plays a fundamental role
in the sense that the Darboux transform is computed algebraically, without quadratures,
starting from the T-transform. The latter is computed by solving the Maurer–Cartan
equations for the associated spectral frame. The general construction is applied to discuss
the classical formulae for the Darboux transformation in the context of Möbius geometry
and, as a main result, to determine explicit formulae for the Darboux transforms of Dupin
cyclides. These together with the isothermic surfaces of spherical type, studied by the
authors and U. Hertrich-Jeromin in [20], will provide a complete classification of Darboux
transforms of Dupin surfaces (see Example 3.2). In our discussion, Dupin cyclides arise
as T-transforms of a circular cylinder (a constant mean curvature cylinder). Finally, as
another application of the construction we establish a superposition formula for iterated
Darboux transforms and prove Bianchi’s permutability theorem. This will be useful for
the explicit calculation of multisoliton surfaces (see [22]).

H. Bernstein [2], by carrying out a detailed analysis of the Darboux transforms of the
standard torus of revolution, has been able to construct new explicit examples of isother-
mic tori which are not conformally equivalent to the known examples, such as tori of
revolution and constant mean curvature tori in space forms [23]. These tori have spheri-
cal curvature lines and can develop umbilics, either isolated umbilics or curves of umbilics.
Much of the background material used by Bernstein in her work is presented in this pa-
per. In [22], by the same methods, the authors study the Darboux transforms of constant
mean curvature surfaces in space forms and their relations with the special isothermic
surfaces of Darboux [3]. For the Euclidean and hyperbolic cases see also [19, 20]. That
there exist constant mean curvature Darboux transforms of a constant mean curvature
surface is a classical result of Bianchi [3], [19]. The particular case of Darboux transforms
of the cylinder which have constant mean curvature in Euclidean space has been consid-
ered in [19]. These Darboux transforms are related to Sterling–Wente’s constant mean
curvature multibubbletons [25] (see also Section 4).

Section 2 deals with some basic material. Section 3 presents the construction of the
Darboux transformation by the method of moving frames, and Section 4 computes the
Darboux transforms of Dupin cyclides. Finally, Section 5 proves a superposition formula
and the permutability theorem for iterated Darboux transforms.

Acknowledgments. Part of the material presented here has been circulating for
some time as informal notes on conformal geometry and isothermic surfaces written by
the authors. We thank Holly Bernstein for reading the original notes and making a number
of valuable remarks. We also like to thank Fran Burstall and Udo Hertrich-Jeromin for
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2. Isothermic immersions. Consider Minkowski 5-space R5
1 with linear coordi-

nates x0, . . . , x4 and Lorentz scalar product given by the quadratic form

〈x, x〉 = −x0x4 + (x1)2 + (x2)2 + (x3)2 = ηijx
ixj ; (1)

an orientation for which dx0∧· · ·∧dx4 > 0; and a time-orientation defined by the positive
light-cone L+ = {x ∈ R5

1 : 〈x, x〉 = 0, x0 + x4 > 0}. Classically, the Möbius space S3

(conformal 3-sphere) is realized as the projective quadric {[x] ∈ RP4 : 〈x, x〉 = 0}.
Accordingly, S3 inherits a natural conformal structure and the identity component G
of the pseudo-orthogonal group of (1) acts transitively on S3 as group of orientation-
preserving, conformal transformations (see [12, 9]). In this model for Möbius geometry,
the de Sitter space S4

1 = {y ∈ R5
1 : 〈y, y〉 = 1} parametrizes oriented 2-spheres in S3 by

y 7→ y⊥∩S3, and is acted on by G. A Möbius frame is a basis (g0, . . . , g4) of R5
1 such that

gi = gεi, for g ∈ G, ε0, . . . , ε4 standard basis of R5
1. Geometrically, the unit space-like

vectors g1, g2, g3 represent 2-spheres which intersect orthogonally, and [g0], [g4] ∈ S3 their
intersection points. Regarding g0, . . . , g4 as R5-valued functions defined on G there exist
unique 1-forms {ωij}0≤i,j≤4 such that

dgi = ωji gj , ωki ηkj + ωkj ηki = 0

and satisfying the structure equations

dωij = −ωik ∧ ωkj .
ω = (ωij) = g−1dg is the Maurer–Cartan form of G.

Definition 2.1. Consider S3 endowed with the standard round metric g0, and let
U ⊂ R2 a simply connected domain with preferred coordinates (x, y). A smooth im-
mersion f : U → S3 with no umbilic points is called isothermic if (x, y) are conformal
curvature line coordinates for the induced Riemannian metric ds2

f .

The notion of isothermic immersion is conformally invariant, that is, it only depends
on the conformal class [g0] of the metric on S3. If a and c denote the principal curvatures
along the x and y-directions, respectively, then there exists a function Φ such that

Φ2(dx2 + dy2) =
1
4

(a− c)2ds2
f .

Φ is called the Calapso potential of the isothermic immersion and is a conformal invariant
of the immersion. It is uniquely defined up to the choice of conformal curvature line
coordinates. Geometrically, Φ2 is the conformal factor relating the metric induced by the
central sphere congruence (Gauss conformal map) of f to the metric dx2 + dy2 (see for
example [8]).

2.1. Principal frames. A Möbius frame field along a conformal immersion f : U → S3

is a smooth map a = (a0, . . . , a4) : U → G such that f(p) = [a0](p), for all p ∈ U . For
any such a field, let α = (αij) = a∗ω. We say that a is a principal frame field along f if

α3
0 = 0,
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α3
1 ∧ α1

0 = α3
2 ∧ α2

0 = 0,

α1
0 ∧ α2

0 6= 0.

If f is isothermic, then

α1
0 ∧ dx = α2

0 ∧ dy = 0, (2)

and there exist smooth functions l1, l2 such that α2
1 = l2α

1
0 − l1α2

0. It is not difficult to
see that

d(α0
0 − l1α1

0 − l2α2
0) = 0. (3)

Remark 2.2. Principal frames may be defined along any smooth immersion f : U →
S3 with no umbilic points. (3) is a necessary and sufficient condition for the existence of
a reparametrization h : U → U of U such that f ◦ h is an isothermic immersion.

The totality of principal frames along an isothermic immersion f is a smooth bundle
πf : P(f)→ U whose structure group is diffeomorphic to the group of all elements

g+(V ) =




(v4)−1 (v4)−1tv v0

0 I3 v

0 0 v4


 , v = t(v1, v2, v3),

V ∈ L+. If we think of P(f) as a submanifold of G, then the Maurer–Cartan form ω of
G restricted to P(f) satisfies

ω3
0 = 0, ω1

0 = eudx, ω2
0 = eudy,

ω3
1 = H1e

udx, ω3
2 = H2e

udy,

where u,H1, H2 are smooth real-valued functions defined on the total space P(f). A
straightforward calculation yields

eu(b·g+(V )) =
1
v4 e

u(b), Hj(b · g+(V )) = v4Hj(b)− v3, j = 1, 2,

for each b ∈ P(f), and for each g+(V ). This tells us that, wherever H1(b)−H2(b) 6= 0
(that is away from umbilic points), the real-valued function Φ̃ = 1

2 (H1−H2)eu : P(f)→
R is constant along the fibers of πf . The function Φ : U → R defined by Φ̃ = Φ ◦ πf
coincides with the Calapso potential of the isothermic immersion f .

Example 2.3 (Euclidean frame). The Euclidean group of rigid motions embeds ca-
nonically in the Möbius group G and E3 is viewed as S3 minus the point at infinity
[ε4] = [t(0, 0, 0, 0, 1)]. Let f : U → E3 be an isothermic immersion and consider the
principal Euclidean framing e : U → E(3) along f given by

e =
(
f ;

fx
‖fx‖

,
fy
‖fy‖

,
fx × fy
‖fx × fy‖

)
.

Set ‖fx‖ = ‖fy‖ = eϕ and let a and c be the principal curvature of f with respect to e.
Considering e as a map into E(3) ⊂ G, its Maurer–Cartan form η = (ηij) becomes
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η =




0 0 0 0 0
eϕdx 0 ϕydx− ϕxdy −aeϕdx 0
eϕdy −ϕydx+ ϕxdy 0 −ceϕdy 0

0 aeϕdx ceϕdy 0 0
0 eϕdx eϕdy 0 0



.

In terms of the Euclidean data, the Calapso potential is given by Φ = 1
2 (a− c)eϕ.

Example 2.4 (Central frame). Let f : U ⊂ R2 → S3 be an immersion with no
umbilic points. Then there exists a frame b : U → G along f (cf. [9]), the central frame,
with connection form β given by




−2q2β
1
0 + 2q1β

2
0 p1β

1
0 + p2β

2
0 −p2β

1
0 + p3β

2
0 0 0

β1
0 0 −q1β

1
0 − q2β

20 −β1
0 p1β

1
0 + p2β

2
0

β2
0 q1β

1
0 + q2β

2
0 0 β2

0 −p2β
1
0 + p3β

2
0

0 β1
0 −β2

0 0 0
0 β10 β2

0 0 2q2β
1
0 − 2q1β

2
0



, (4)

such that β1
0 ∧ dx = β2

0 ∧ dy = 0, β1
0 ∧ β2

0 6= 0. The smooth functions p1, p2, p3,q1, q2

form a complete system of conformal invariants for f and satisfy the following structure
equations:

dβ1
0 = −q1β

1
0 ∧ β2

0 , dβ2
0 = −q2β

1
0 ∧ β2

0 , (5)

dq1 ∧ β1
0 + dq2 ∧ β2

0 = (1 + p1 + p3 + q1
2 + q2

2)β1
0 ∧ β2

0 , (6)

dq2 ∧ β1
0 − dq1 ∧ β2

0 = −p2β
1
0 ∧ β2

0 , (7)

dp1 ∧ β1
0 + dp2 ∧ β2

0 = (4q2p2 + q1(3p1 + p3))β1
0 ∧ β2

0 , (8)

dp2 ∧ β1
0 − dp3 ∧ β2

0 = (4q1p2 − q2(p1 + 3p3))β1
0 ∧ β2

0 . (9)

If b = (bi)4
i=0 is a central frame, any other central frame is given by (b0,−b1,−b2, b3, b4).

The mapping b3 : U → S4
1 coincides with the central sphere congruence (Gauss conformal

map) of f . Its second envelope [b4] : U → S3 is called the conformal transform of f .
Let e = (e0, . . . , e4) : U → E(3) ⊂ G be a Euclidean principal framing along f and

denote by η = (ηij) its Maurer–Cartan form. Setting H = 1
2 (a + c), R = 1

2 (a − c), and
dH = R(uη1

0 + vη2
0), we may adapt e to a central framing b = (b0, . . . , b4), where

b0 = Re0, b1 = e1 − ue0,

b2 = e2 + ve0, b3 = e3 +He0,

b4 =
1
R

{
1
2

(
H2 + u2 + v2) e0 − ue1 + ve2 +He3 + e4

}
.

A direct calculation yields

β1
0 = Rη1

0 , β2
0 = Rη2

0 , β3
0 = 0, β3

1 = β1
0 , β3

2 = −β2
0 , β0

3 = 0 (10)

β0
0 =

1
R

[
a1β

1
0 − c2β2

0

]
, β2

1 = − 1
2R

[
c2β

1
0 + a1β

2
0

]
, (11)

β0
1 =

1
R

{[
H

R

(
H

2
− a
)
− u1 −

va2

2R
− u2 − v2

2R

]
β1

0 +
[
uv

R
− u2 −

vc1
2R

]
β2

0

}
, (12)

β0
2 =

1
R

{[
uv

R
+ v1 −

ua2

2R

]
β1

0 +
[
H

R

(
H

2
− c
)

+ v2 −
uc1
2R

+
u2 − v2

2R

]
β2

0

}
, (13)
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where for any function g, g1 and g2 denote the directional derivatives defined by dg =
g1β

1
0 + g2β

2
0 . This allows us to express the set of invariant functions p1, p2, p3, q1, q2 in

Euclidean terms.
If the immersion f is isothermic, then p2 vanishes, and conversely [21]. In this case,

there exists a unique central frame such that

β1
0 = Φdx, β2

0 = Φdy

and Φ =: eψ is the Calapso potential of f .

2.2. The Calapso equation and the T-transformation. Let f : U ⊂ R2 → S3 be an
isothermic immersion and let us retain the notations of the preceding example. From (5)
it follows that q1 = e−ψψy and q2 = −e−ψψx and (4) becomes

β =




2dψ p1e
ψdx p3e

ψdy 0 0
eψdx 0 −ψydx+ ψxdy −eψdx p1e

ψdx

eψdy ψydx− ψxdy 0 eψdy p3e
ψdy

0 eψdx −eψdy 0 0
0 eψdx eψdy 0 −2dψ



,

Moreover, from equation (6), we get

p1 + p3 = −1− e−2ψ∆ψ. (14)

Substituting into equations (8) and (9) yields

d
(
e2ψ(p1 − p3)

)
= −e2ψ {(e−2ψ∆ψ)x + 4ψx(1 + e−2ψ∆ψ)

}
dx

+ e2ψ {(e−2ψ∆ψ)y − 4ψy(1 + e−2ψ∆ψ)
}
dy. (15)

The integrability condition of this equation is precisely the Calapso equation1

∆(e−ψ(eψ)xy) + 2(e2ψ)xy = 0. (16)

Conversely, if Φ = eψ is a solution of (16), the right-hand-side of equation (15) is a
closed 1-form, say γΦ. Thus γΦ = dH for some function H determined up to an additive
constant. Define e2ψ(p1 − p3) = H +m, m any real constant, and set (cf. 14)

p̃1 = p1 +me−2ψ, p̃3 = p3 −me−2ψ.

Accordingly, consider the G-valued 1-forms β(m) defined by



2dψ (p1e
ψ +me−ψ)dx (p3e

ψ −me−ψ)dy 0 0
eψdx 0 −ψydx+ ψxdy −eψdx (p1e

ψ +me−ψ)dx
eψdy ψydx− ψxdy 0 eψdy (p3e

ψ −me−ψ)dy
0 eψdx −eψdy 0 0
0 eψdx eψdy 0 −2dψ



. (17)

The forms β(m) satisfies the Maurer–Cartan integrability condition

dβ(m) = −β(m) ∧ β(m),

1The deduction of Calapso’s equation follows an argument similar to that in [8]; there a
slightly different Möbius invariant frame is considered. The equation named after Calapso was ob-
tained independently by Rothe [24] and Calapso [10] as defining equation for isothermic surfaces.
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and then integrates to a map b(m) : U → G, b(m)−1db(m) = β(m), which is the central
frame of the isothermic immersion fm = [b(m)0]. This 1-parameter family of isothermic
immersions amounts to the second order Möbius deformations2 of f [17, 12, 21]. So, a
solution to Calapso’s equation introduces an auxiliary parameter which describes the con-
formal deformation through isothermic surfaces. All deformations have the same Calapso
potential Φ.

Definition 2.5 (T-transformation). Two isothermic immersions f, f̂ : U → S3 are
said to be T-transforms (spectral deformations) of each other if they have the same
Calapso potential. The T-transformation for isothermic surfaces was originally introduced
by Calapso [10] and Bianchi [4].

Remark 2.6. The spectral family fm constructed above describes all T-transforms
of f = f0. In fact, any umbilic free T-transform of f is Möbius equivalent to fm for some
m ∈ R ([21, 11]).

Example 2.7 (Dupin surfaces). The Calapso potential of an isothermic immersion
f is constant if and only if the invariant functions q1 and q2 vanish. The vanishing of q1

and q2 is a necessary and sufficient condition for f being a cyclide of Dupin (cf. Section
4). We recall that an immersion in S3 is a Dupin surface if each principal curvature is
constant along any line of curvature tangent to its principal direction. It is known that
the only Dupin surfaces in R3 are spheres, planes and the cyclides of Dupin. Examples
of Dupin cyclides include tori of revolution, circular cylinders and cones. It turns out
that all Dupin cyclides are conformally equivalent to either one of these examples [5, 27].
Section 4 will describe Dupin cyclides as T-transforms of a circular cylinder.

Example 2.8 (Willmore isothermic surfaces). In terms of the conformal invariants,
Willmore isothermic surfaces are characterized by the equations3 (cf. [9, 21])

p1 = p3, p2 = 0.

By (8) and (9),
dp1

p1
= 4

(
q2β

1
0 − q1β

2
0

)
= −2β0

0 ,

and then
p1 = c̃e−4ψ,

for a constant c̃. But, by (14),

p1 = −1
2

(
e−2ψ∆ψ + 1

)
.

Then,
∆ψ = ce−2ψ − e2ψ, (18)

2Two immersions f, f̃ : U → S3 are (second order) G-deformations of each other if there is
a smooth map b : U → G with the property that b(p) · f̃ and f agree up to order two at p, for
each p ∈ U . f is said deformable if it admits a non-trivial deformation, i.e., a deformation f̃ that
is not G-equivalent to f . The non-trivial deformations of f arise in a 1-parameter family.

3The equation p1 = p3 is equivalent to the Euler–Lagrange equation ∆H+2H(H2−K) = 0
for the Willmore functional. In fact, using the expressions for p1 and p3 given by (12) and (13),
one computes p3 − p1 = 1

R3 (∆H + 2H(H2 −K)).
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c a constant. It is easily verified that any solution of (18) satisfies the Calapso equation.
Therefore, (18) defines Willmore isothermic surfaces. According as c is positive, negative
or zero, the equation (18) accounts, up to conformal equivalence, for the minimal surfaces
in 3-dimensional space forms H3, S3, R3, respectively [5]. In [20, 11], it has been proved
that the T-transforms of minimal immersions in 3-dimensional space forms are locally
conformally equivalent to constant mean curvature surfaces in space forms and that all
constant mean curvature surfaces in space forms arise in this way.

3. The Darboux transformation by moving frames

Definition 3.1 (Darboux transformation). A Darboux isothermic frame or a curved
flat frame4 is a principal frame a : U → G along an isothermic immersion f : U → S3

such that

(−α0
1 + iα0

2) ∧ (α1
0 + iα2

0) = 0,

α0
3 = 0,

α0
1 ∧ α0

2 6= 0.

If a is a curved flat frame, then (a4,−a1, a2, a3, a0) defines a principal frame along f̂ :=
[a4] and (x, y) are conformal curvature line coordinates for f̂ . Thus f̂ is another isothermic
immersion. Moreover, the mapping σ := a3 : U → S4

1 defines a sphere congruence whose
envelopes are f and f̂ . The correspondence induced by σ between f(U) and f̂(U) preserves
curvature lines (α0

1∧α1
0 = α0

2 ∧α2
0 = 0) and is conformal. In the classical terminology [5],

this is expressed by saying that σ is a conformal Ribaucour congruence, i.e., a Darboux
congruence. Accordingly, f̂ is called a Darboux transform of f .

Example 3.2 (Isothermic surfaces of spherical type). In general, the second enve-
lope of the central sphere congruence (the conformal transform) of an isothermic im-
mersion need not be isothermic, see for example [8]. An isothermic immersion is said of
spherical type if its central sphere congruence is a Darboux congruence5. This is equiva-
lent to

p1 + p3 = 0, p2 = 0,

and hence, by the structure equations, to

∆ψ + e2ψ = 0. (19)

As proved in [20], non-minimal isothermic surfaces of spherical type are Darboux trans-
forms of sphere pieces. Moreover, the congruence realizing the Darboux transform is the
central sphere congruence. This will complement the discussion in Section 4 to give a
complete classification of Darboux transforms of Dupin surfaces.

Let a : U → G be a principal frame along an isothermic immersion f : U → S3 with
connection form α, and let ρ be a smooth function such that

dρ

ρ
= −2(α0

0 − l1α1
0 − l2α2

0).

4For the related notion of curved flats in symmetric spaces we refer to [16, 8].
5Equivalently, its central framing is a curved flat framing.
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Consider the deformed form

αρ :=




α0
0 α0

1 + ρα1
0 α0

2 − ρα2
0 α0

3 0
α1

0 0 −α2
1 −α3

1 α0
1 + ρα1

0

α2
0 α2

1 0 −α3
2 α0

2 − ρα2
0

0 α3
1 α3

2 0 α0
3

0 α1
0 α2

0 0 −α0
0



. (20)

Since αρ satisfies the Maurer–Cartan integrability condition

dαρ = −αρ ∧ αρ,
αρ = aρ−1daρ for some map aρ : U → G, unique up to left multiplication by a constant
element of G. Let V0 ∈ R5

1 be any constant vector. Then

V = aρ−1V0 : U → R5
1

is a solution of
dV = −αρV. (21)

Any solution of (21) is obtained in this way. In particular, a solution V : U → L+ of (21)
is completely determined by a solution aρ : U → G of the equation daρ = aραρ and a
constant vector V0 ∈ L+.

Let V = t(v0, . . . , v4) : U → L+ be a solution of (21) for a fixed ρ. It is not difficult
to see that, generically, the zero locus of v4 is discrete6. Away from this discrete set, we
consider the change of frame given by

g+(V ) =




(v4)−1 (v4)−1tv v0

0 I3 v

0 0 v4


 , v = t(v1, v2, v3).

Lemma 3.3. The frame ag+(V ) is a curved flat framing and the mapping aV from U
into the light-cone L+ represents a Darboux transform of f .

Proof. The proof follows immediately by looking at the corresponding Maurer–Cartan
form

α+ = (g+)
−1
dg+ + (g+)

−1
αg+,

which takes the form


0 −v4ρα1
0 v4ρα2

0 0 0
α1

0
v4 0 −α2

1 + v2

v4α
1
0 − v1

v4α
2
0 −α3

1 + v3

v4α
1
0 −v4ρα1

0
α2

0
v4 α2

1 − v2

v4α
1
0 + v1

v4α
2
0 0 −α3

2 + v3

v4α
2
0 v4ρα2

0

0 α3
1 − v3

v4α
1
0 α3

2 − v3

v4α
2
0 0 0

0 α1
0
v4

α2
0
v4 0 0



.

We now apply the above construction to the Euclidean and central frames.

6Clearly, the locus {v4 = 0} is contained in {v1 = v2 = v3 = 0}. From (21), it follows
that dv1 ∧ dv2

|{v1=v2=v3=0} 6= 0. By the inverse function theorem, we then conclude that

{v1 = v2 = v3 = 0}, if not empty, is made of isolated points.
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Example 3.4 (Darboux transforms via Euclidean frames). Let f be an isothermic
immersion and let e = (e0, . . . , e4) denote the Euclidean principal frame along f with
connection form η. In this case the first order system (21) coincides with the Darboux
fundamental differential system7 ([3], p. 99)

d




v0

v1

v2

v3

v4




= −




0 me−ϕdx −me−ϕdy 0 0
eϕdx 0 −η2

1 −k1e
ϕdx me−ϕdx

eϕdy η2
1 0 −k2e

ϕdy −me−ϕdy
0 k1e

ϕdx k2e
ϕdy 0 0

0 eϕdx eϕdy 0 0







v0

v1

v2

v3

v4



,

for a constant m. Then, eg+(V ) is a curved flat framing and the stereographic projection
from [ε4] of its second envelope eg+(V )(ε4) gives the classical Darboux transform Dm of
f [3]. By construction Dm(f) is represented by the mapping

eV = v0e0 + vjej + v4ε4

into the light-cone. Since e is Euclidean, away from the set of isolated points where v0

vanishes,

Dm(f) = f +
vj

v0 aj(f), j = 1, 2, 3,

where (a1(f), a2(f), a3(f)) is the principal framing of f (cf. [3], p. 100, eq. (7)).

Example 3.5 (Darboux transforms via central frames). Let b be the central frame
along an isothermic immersion f : U → S3. It is easily checked that ρ = me−2ψ for a
real constant m, and that the deformed connection form βρ =: β(m) is given by (17). Let
V : U → L+ be a solution of dV = −β(m)V , and consider the curved flat framing (cf.
Lemma 1)

b̂ := bg+(V ) : U ⊂ R2 → G.

The first envelope b̂(ε0) represents the original immersion f . Let dm(f) := [b̂(ε4)] denote
the Darboux transform of f . The Calapso potential of dm(f) can be computed as follows.
Suppose m > 0 and consider b̃ := (b̂4,−b̂1, b̂2, b̂3, b̂0). b̃ is a principal frame along dm(f)
whose Maurer–Cartan form β̃ is of the form



0 − eψv4 dx
eψ

v4 dy 0 0
v4me−ψdx 0 β2

1− v2

v4 e
ψdx+ v1

v4 e
ψdy (1− v3

v4 )eψdx − eψv4 dx

v4me−ψdy −β2
1 + v2

v4 e
ψdx− v1

v4 e
ψdy 0 (1+ v3

v4 )eψdy eψ

v4 dy

0 −(1− v3

v4 )eψdx −(1+ v3

v4 )eψdy 0 0
0 v4me−ψdx v4me−ψdy 0 0



.

Following the procedure illustrated in Example 2.4, we may adapt the principal frame b̃
further to a central frame. From this we will learn the expression for the Calapso potential

7In Bianchi’s notations we have

v0 = −mσ, v1 = λ, v2 = µ, v3 = −w, v4 = −ϕ,

where λ, µ,w, ϕ, σ are the five transforming functions (funzioni trasformatrici) from f to Dm(f).
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of dm(f). The Calapso potential of the Darboux transform dm(f) is computed to be

Φ̃ =
v3

v4 Φ.

Note that the zero locus of v3 is the umbilic locus of dm(f).
We are then in a position to state:

Lemma 3.6 (Bäcklund’s theorem). With the notations introduced above, let Φ be the
Calapso potential of an isothermic immersion f and let V : U → L+ be a solution of the
completely integrable linear system:

dV = −βm(Φ)V.

Then

Φm =
v3

v4 Φ

is the Calapso potential of the Darboux transform dm(f). The set {v3 = 0} is the umbilic
locus of dm(f).

4. Darboux transforms of Dupin cyclides. Let f : U → S3 be an umbilic free
immersion and let a, c denote its principal curvatures. Let e be a Euclidean principal
frame along f and a be the central frame obtained from e as indicated in Example 2.4.
From (4) and (11), we get

q1 =
−c2
2R

, q2 =
−a1

2R
.

Thus f is a Dupin cyclide, that is, equations ax = cy = 0 hold true, if and only if
q1 = q2 = 0. Using the structure equations, we also get that f is isothermic (p2 = 0), and
that the Calapso potential is a constant function. Moreover, equations (8), (9) and (14)
imply that p1 and p3 are constant functions such that 1 + p1 + p3 = 0. Without loss of
generality, we may assume Φ = 1 and set

p1 = k = const., p3 = −(1 + k).

So, the central frame a along a Dupin cyclide f has Maurer–Cartan form

α =




0 kdx −(1 + k)dy 0 0
dx 0 0 −dx kdx

dy 0 0 dy −(1 + k)dy
0 dx −dy 0 0
0 dx dy 0 0



.

4.1. The central frame of Dupin cyclides. In order to compute the central frame
a = (a0, . . . , a4) of a cyclide f , we need to solve the following linear system

da0 = a1dx+ a2dy

da1 = (ka0 + a3 + a4)dx
da2 = [−(1 + k)a0 − a3 + a4]dy
da3 = −a1dx+ a2dy

da4 = ka1dx− (1 + k)a2dy.

(22)
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Note that

a1 = a1(x), a2 = a2(y),

and set

a1 =
db1
dx

, a2 =
db2
dy

.

From (22), it follows that

a0 = b1 + b2 +A0

a3 = −b1 + b2 +A3

a4 = kb1 − (1 + k)b2 +A4,

(23)

and

d2b1
dx2 = (2k − 1)b1 + kA0 +A3 +A4

d2b2
dy2 = −(2k + 3)b2 − (1 + k)A0 −A3 +A4,

where A0, A3, A4 are constant vectors. The discussion can be reduced to the study of the
following three cases:

I : −1
2
< k <

1
2
, II : k >

1
2
, III : k =

1
2
.

Case I: − 1
2 < k < 1

2

b1 = C1 cos
√

1− 2kx+ C2 sin
√

1− 2kx+ ∆1,

b2 = C3 cos
√

2k + 3y + C4 sin
√

2k + 3y + ∆2,
(24)

Ci,∆α constant vectors. Thus

a1 =
√

1− 2k(−C1 sin
√

1− 2kx+ C2 cos
√

1− 2kx)
a2 =

√
2k + 3(−C3 sin

√
2k + 3y + C4 cos

√
2k + 3y)

(25)

Since ‖a1‖2 = ‖a2‖2 = 1 and 〈a1, a2〉 = 0, it follows that

‖C1‖2 = ‖C2‖2 =
1

1− 2k
, ‖C3‖2 = ‖C4‖2 =

1
2k + 3

, 〈Ci, Cj〉 = 0, i 6= j.

We may assume that

C1 =
ε1√

1− 2k
, C2 =

ε0 − ε4√
2(1− 2k)

, C3 =
ε2√

2k + 3
, C4 =

ε3√
2k + 3

. (26)

From (23), (25), (26), and (24), it follows that

a0 =
2 +
√

2k + 3 sin
√

1− 2kx√
2(1− 2k)(2k + 3)

ε0 +
cos
√

1− 2kx√
1− 2k

ε1 +
cos
√

2k + 3y√
2k + 3

ε2

+
sin
√

2k + 3y√
2k + 3

ε3 +
2−
√

2k + 3 sin
√

1− 2kx√
2(1− 2k)(2k + 3)

ε4,



DARBOUX TRANSFORMS OF DUPIN SURFACES 147

a1 =
cos
√

1− 2kx√
2

ε0 − sin
√

1− 2kxε1 −
cos
√

1− 2kx√
2

ε4

a2 = −sin
√

2k + 3yε2 + cos
√

2k + 3yε3,

a3 =
−(2k + 1)−

√
2k + 3 sin

√
1− 2kx√

2(1− 2k)(2k + 3)
ε0 −

cos
√

1− 2kx√
1− 2k

ε1 +
cos
√

2k + 3y√
2k + 3

ε2

+
sin
√

2k + 3y√
2k + 3

ε3 +
−(2k + 1) +

√
2k + 3 sin

√
1− 2kx√

2(1− 2k)(2k + 3)
ε4,

a4 =
1 + k

√
2k + 3 sin

√
1− 2kx√

2(1− 2k)(2k + 3)
ε0 +

k cos
√

1− 2kx√
1− 2k

ε1 −
(1 + k) cos

√
2k + 3y√

2k + 3
ε2

− (1 + k) sin
√

2k + 3y√
2k + 3

ε3 +
1− k

√
2k + 3 sin

√
1− 2kx√

2(1− 2k)(2k + 3)
ε4.

This yields

Lemma 4.1. For − 1
2 < k < 1

2 , the Dupin cyclide given by the stereographic projection
of f(U) is Möbius equivalent to a torus of revolution in E3.

Case II: k > 1
2

b1 = Γ1 cosh
√

2k − 1x+ Γ2 sinh
√

2k − 1x+
kA0 +A3 +A4

1− 2k
,

b2 = L1 cos
√

2k + 3y + L2 sin
√

2k + 3y +
−(1 + k)A0 −A3 +A4

2k + 3
,

Γα, Lα constant vectors. Then

a1 =
√

2k − 1(Γ1 sinh
√

2k − 1x+ Γ2 cosh
√

2k − 1x)

a2 = −
√

2k + 3(L1 sin
√

2k + 3y − L2 cos
√

2k + 3y)

Since ‖a1‖2 = ‖a2‖2 = 1 and 〈a1, a2〉 = 0, it follows that

‖Γ1‖2 =
−1

2k − 1
, ‖Γ2‖2 =

1
2k − 1

, 〈Γ1,Γ2〉 = 0,

‖L1‖2 = ‖L2‖2 =
1

2k + 3
, 〈L1, L2〉 = 0, 〈Li,Γj〉 = 0,

and we may assume

Γ1 =
ε0 + ε4√
2(2k − 1)

, Γ2 =
ε1√

2k − 1
, L1 =

ε2√
2k + 3

, L2 =
ε3√

2k + 3
.

By imposing the other conditions

‖a0‖2 = 0, ‖a3‖2 = 1, ‖a4‖2 = 0 〈ai, aj〉 = 0, i 6= j, i, j = 0, 3, 4,

we obtain the following expressions for a0, a1, a2, a3, a4:

a0 =

√
2k + 3 cosh

√
2k − 1x+ 2√

2(2k − 1)(2k + 3)
ε0 +

sinh
√

2k − 1x√
2k − 1

ε1 +
cos
√

2k + 3y√
2k + 3

ε2

+
sin
√

2k + 3y√
2k + 3

ε3 +

√
2k + 3 cosh

√
2k − 1x− 2√

2(2k − 1)(2k + 3)
ε4,
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a1 =
sinh
√

2k − 1x√
2

ε0 + cosh
√

2k − 1xε1 +
sinh
√

2k − 1x√
2

ε4

a2 = − sin
√

2k + 3yε2 + cos
√

2k + 3yε3

a3 = −
√

2k + 3 cosh
√

2k − 1x+ (2k + 1)√
2(2k − 1)(2k + 3)

ε0 −
sinh
√

2k − 1x√
2k − 1

ε1 +
cos
√

2k + 3y√
2k + 3

ε2

+
sin
√

2k + 3y√
2k + 3

ε3 −
√

2k + 3 cosh
√

2k − 1x− (2k + 1)√
2(2k − 1)(2k + 3)

ε4,

a4 =
k
√

2k + 3 cosh
√

2k − 1x+ 1√
2(2k − 1)(2k + 3)

ε0 +
k sinh

√
2k − 1x√

2k − 1
ε1 −

(k + 1) cos
√

2k + 3y√
2k + 3

ε2

− (k + 1) sin
√

2k + 3y√
2k + 3

ε3 +
k
√

2k + 3 cosh
√

2k − 1x− 1√
2(2k − 1)(2k + 3)

ε4.

From this we have

Lemma 4.2. For k > 1
2 , the Dupin cyclide given by the stereographic projection of

f(U) is a Möbius equivalent to a circular cone in E3.

Case III: k = 1
2 . In this case

b1 =
1
2

(
1
2
A0 +A3 +A4

)
x2 + Γ1x+ Γ2

b2 = L1 cos 2y + L2 sin 2y +
1
4

(
−3

2
A0 −A3 +A4

)
.

According to (23) and the orthogonality conditions we may choose the constant vectors
of integration so that

a0 =
1
2

(
x2 +

1
4

)
ε0 + xε1 +

1
2

(cos 2yε2 + sin 2yε3) + ε4,

a1 = xε0 + ε1,

a2 = − sin 2yε2 + cos 2yε3,

a3 = −1
2

(
x2 − 3

4

)
ε0 − xε1 +

1
2

(cos 2yε2 + sin 2yε3)− ε4,

a4 =
1
4

(
x2 +

9
4

)
ε0 +

1
2
xε1 −

3
4

(cos 2yε2 + sin 2yε3) +
1
2
ε4

In this case we have

Lemma 4.3. For k = 1
2 , the Dupin cyclide given by the stereographic projection of

f(U) is Möbius equivalent to a circular cylinder in E3.

Remark 4.4. As already observed, from the previous formulae we can conclude that
Dupin cyclides arise as T-transforms of the circular cylinder.
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4.2. The Darboux transformation of Dupin cyclides. The linear system (21) becomes

dv0 = −k̃v1dx+ (1 + k̃)v2dy

dv1 = −v0dx+ v3dx− k̃v4dx

dv2 = −v0dy − v3dy + (1 + k̃)v4dy

dv3 = −v1dx+ v2dy

dv4 = −v1dx− v2dy,

(27)

where k̃ = k +m. Note that
v1 = v1(x)

v2 = v2(y).

Let u1, u2 be functions such that du1 = v1dx, du2 = v2dy. Then

dv0 = −k̃du1 + (1 + k̃)du2

dv3 = −du1 + du2

dv4 = −du1 − du2,

that is
v0 = −k̃u1 + (1 + k̃)u2 + α0

v3 = −u1 + u2 + α3

v4 = −u1 − u2 + α4,

(28)

α0, α3, α4 constants. Combining (27) and (28) yields ODEs for u1 and u2:

d2u1

dx2 + (1− 2k̃)u1 = −α0 + α3 − k̃α4

d2u2

dy2 + (3 + 2k̃)u2 = −α0 − α3 + (1 + k̃)α4.

Five cases may occur:

I : k̃ >
1
2
, II : k̃ =

1
2
, III : −3

2
< k̃ <

1
2
, IV : k̃ = −3

2
, V : k̃ < −3

2
.

Case I.

u1 = c1 cosh
√

2k̃ − 1x+ c2 sinh
√

2k̃ − 1x+
(−α0 + α3 − k̃α4)

1− 2k̃

u2 = l1 cos
√

2k̃ + 3y + l2 sin
√

2k̃ + 3y +
(−α0 − α3 + (1 + k̃)α4)

3 + 2k̃
Case II.

u1 =
1
2

(
−α0 + α3 − α4

2

)
x2 + c1x+ c2

u2 = l1 cos 2y + l2 sin 2y +
1
4

(
−α0 − α3 +

3
2
α4
)

Case III.

u1 = c1 cos
√

1− 2k̃x+ c2 sin
√

1− 2k̃x+
(−α0 + α3 − k̃α4)

1− 2k̃

u2 = l1 cos
√

2k̃ + 3y + l2 sin
√

2k̃ + 3y +
(−α0 − α3 + (1 + k̃)α4)

3 + 2k̃
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Case IV.

u1 = c1 cos 2x+ c2 sin 2x+
1
4

(
−α0 + α3 +

3
2
α4
)

u2 =
1
2

(
−α0 − α3 − α4

2

)
y2 + l1x+ l2

Case V.

u1 = c1 cos
√

1− 2k̃x+ c2 sin
√

1− 2k̃x+
(−α0 + α3 − k̃α4)

1− 2k̃

u2 = l1 cosh
√
−2k̃ − 3y + l2 sinh

√
−2k̃ − 3y +

(−α0 − α3 + (1 + k̃)α4)

3 + 2k̃

Remark 4.5. Starting from the solution Φ ≡ 1 of Calapso’s equation, according to
Bäcklund’s theorem (Lemma 3.6), we obtain new solutions

Φ =
−u1 + u2 + α3

u1 + u2 − α4

of the Calapso equation.

If V = t(v0, . . . , v4) is a solution of (27), then the Darboux transform of f associated
with V is represented by the mapping aV : U − {v4 = 0} → L+ given by

(−k̃u1 + (1 + k̃)u2 + α0)a0 +
du1

dx
a1 +

du2

dy
a2 + (−u1 + u2 + α3)a3 + (−u1 − u2 + α4)a4.

The constants of integration must be chosen so that ‖aV ‖2 = 0.

Remark 4.6. Bernstein [2] constructs explicit examples of isothermic tori which are
neither conformally equivalent to tori of revolution nor to constant mean curvature tori in
space forms. These tori are obtained by carefully analyzing the Darboux transforms of the
torus of revolution computed above. They have spherical curvature lines and, in contrast
to the original surface, can have umbilics; either isolated umbilics or lines of umbilics can
occur. The proof uses the expression for the Calapso potential of the Darboux transforms,
computed according to Bäcklund’s theorem (Lemma 3.6), in combination with equation
(18) whose solutions correspond to constant mean curvature surfaces in 3-dimensional
space forms (cf. Example 2.8).

The existence of constant mean curvature Darboux transforms of a constant mean
curvature surface is a classical result of Bianchi [3], [19]. In particular, the constant
mean curvature Darboux transforms of the cylinder have been considered in [19]. They
are related to Sterling–Wente’s constant mean curvature multibubbletons which in turn
are obtained from the cylinder via the Bianchi–Bäcklund transformation [25]. In fact,
Hertrich-Jeromin–Pedit [19] prove that any Bianchi–Bäcklund transform of a constant
mean curvature surface is a Darboux transform. For recent studies on constant mean
curvature Darboux transforms of constant mean curvature surfaces in space forms and
their relations with the classical special isothermic surfaces of Darboux [3] we refer the
reader to [22].
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5. Superposition and permutability. As another application of our construction
we provide a superposition formula for iterated Darboux transforms of a given isothermic
surface and give a proof of Bianchi’s permutability theorem [3]. This formula is particu-
larly useful for the explicit calculation of multisoliton surfaces (see figures and [22]).

Let a(1), a(2) : U → G be two curved flat frames having the same isothermic immersion
f = [a(1)

0 ] = [a(2)
0 ] : U → S3 as first envelope and with second envelopes f (1) and f (2),

respectively. Let α(1) = (αij), α
(2) = (α̃ij) be the corresponding connection forms 8.

Fig. 1. Darboux transforms of the torus

8(αij) can be described by

α0
0 = α3

0 = α0
3 = 0

α1
0 = eudx, α2

0 = eudy, α0
1 = me−udx, α0

2 = −me−udy
α3

1 = H1e
udx, α3

2 = H2e
udy,

for functions H1,H2, u : U → R, and some constant m (see [8]).
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Fig. 2. Darboux transforms of the cylinder

The deformed forms associated with α(1) are given by

α
(1)
λ :=




0 λα0
1 λα0

2 0 0
α1

0 0 −α2
1 −α3

1 λα0
1

α2
0 α2

1 0 −α3
2 λα0

2

0 α3
1 α3

2 0 0
0 α1

0 α2
0 0 0




for some constant λ. Similarly for α(2).
According to Section 3, there is a solution V = t(v0, . . . , v4) : U → L+ of the integrable

linear system

dV = −α(1)
λ V, (29)

for some λ, such that, on the complement of the discrete zero locus of v4, the frames
a(1), a(2) are related by the gauge change

a(2) = a(1)g+(V ).

Next, away from the set of isolated points where v0 vanishes, define the mapping g−λ (V ) :
U → G by

g−λ (V ) =




(λ)−1
v0 0 0

v I3 0
λv4 (v0)−1

λtv λ(v0)−1


 .

We have
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Lemma 5.1. ā(1) := a(1)g−λ (V ) is a curved flat framing whose second envelope [ā(1)
4 ] =

f (1). Its connection form is given by



0 λ
v0α

0
1

λ
v0α

0
2 0 0

v0( 1
λ−1)α1

0 0 −α2
1 +λ v

2

v0α
0
1−λ v

1

v0α
0
2 −α3

1 +λ v
3

v0α
0
1

λ
v0α

0
1

v0( 1
λ−1)α2

0 α2
1−λ v

2

v0α
0
1 +λ v

1

v0α
0
2 0 −α3

2 +λ v
3

v0α
0
2

λ
v0α

0
2

0 α3
1−λ v

3

v0α
0
1 α3

2−λ v
3

v0α
0
2 0 0

0 v0( 1
λ−1)α1

0 v0( 1
λ−1)α2

0 0 0



.

Definition 5.2. Let f ′ = [ā(1)
0 ] be the first envelope of ā(1). We say that the isother-

mic map f ′ is the superposition of the two Darboux transforms f (1) and f (2) of f . We
write

f ′ = f (1) ∗f f (2).

Proposition 5.3 (Permutability Theorem). If an isothermic immersion f has two
Darboux transforms f (1) and f (2), then there is another isothermic immersion f ′ which
is a Darboux transform of f (1) and f (2) and is such that

f ′ = f (1) ∗f f (2) = f (2) ∗f f (1).

Proof. We can write

a(1) = a(2)g+(V )−1 = a(2)g+(V̂ ),

where

V̂ = t(v0,−
tv

v4 ,
1
v4 ). (30)

By a direct calculation it is easily verified that, if V : U → L+ is a solution of (29), then
V̂ is a solution of

dV̂ = −α(2)
µ V̂ ,

where µ is given by
µ = λ(µ− 1). (31)

Thus, f (2) ∗f f (1) is the isothermic map represented by the first column of the framing
ā(2) = a(2)g−µ (V̂ ), where g−µ (V̂ ) is defined in analogy with (5). It is now easily seen that,

if V̂ and µ are related to V and λ as in (30) and (31), then [ā(2)
0 ] = [ā(1)

0 ].
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