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Abstract. We formulate the Leray problem for inhomogeneous fluids in two dimensions and

outline the proof of the existence of a solution. There are two kinds of results depending on

whether the given value for the density is a continuous function or only an L
∞ function. In the

former case, the given densities are attained in the sense of uniform convergence and in the latter

with respect to weak-∗ convergence.

1. Introduction. The classical so-called Leray problem consists of finding a solution

for the incompressible stationary Navier-Stokes equations with a constant density, in a

domain with unbounded straight channels, such that the velocity of the fluid in each

channel tends to a given Poiseuille flow in the end of the channel. A Poiseuille flow is a

solution of the incompressible stationary Navier-Stokes equations in a straight channel

that is parallel to the walls of the channel and satisfies the nonslip boundary condition,

i.e. vanishes at the boundary of the channel; see (5) below. The Leray problem seems to

have been proposed, in the 1950s, by Jean Leray to Olga A. Ladyzhenskaya, cf. [1, p. 476].

Despite the effort of brilliant mathematicians, see e.g. [6], up to now its solution is known

only in the case of Poiseuille flows with small fluxes, a result due to Charles J. Amick [1,

Theorem 3.8]. Not surprisingly, the main difficulty in solving the problem is to deal with

the nonlinear term in the Navier-Stokes equations. This difficulty is overcome by seeking
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a solution with the velocity field v in the form v = u+ a, for a new unknown u, where a

is a suitable extension of the given Poiseuille flows. It turns out that the nonlinear term

can be estimated by the fluxes of the Poiseuille flows [1], thus the result comes about

under the restriction that these fluxes are small, in comparison with the viscosity of the

fluid. In the case of inhomogeneous fluids, i.e. fluids with a nonconstant density, besides

the given values for the fluid velocity in the ends of the domain, we prescribe values for

the density in the ‘incoming channels’ (i.e. in the channels where the fluid is incoming).

In this situation additional problem arise, as for instance, proving that the prescribed

values are in some sense attained.

In the case of a continuous given density, we prove the existence of a solution such

that the density attains the given value in the supremum norm. In the case of a given L∞-

density, we present a new approach that permits to pass from smooth-density solutions to

L∞-density solutions. The result for smooth-density solutions is based on the streamline

formulation, an approach strictly limited to the two dimensional case. In fact, the smooth

density ρ is of the form ρ = ω(ψ) where ψ is the streamline function, i.e. ∇⊥ψ = v

(∇⊥ψ := (−∂yψ, ∂xψ)), and ω is some scalar function connected to the given values for

the density and for the velocity vector field; cf. [2, 7]. In the case of a L∞-density, the

composition ω(ψ) is for our purpose meaningless, since for a discontinuous ω it may not

yield a measurable function.

For this reason, to obtain a L∞ solution, we regularize the data and take appropriate

associated scalar functions ωǫ, ǫ > 0. Then we introduce approximating solutions ρǫ =

ωǫ(ψǫ), vǫ = ∇⊥ψǫ, and we are able to pass to the limit as ǫ tends to zero due to careful

(with respect to ǫ) uniform estimates derived for the smooth case. An important step in

the arguments is to attain the given value for the density, which is posed at the end of the

channel where the fluid is incoming, i.e. at x = −∞ in the description of the domain we

give below. Here we have a special difficulty, essentially because the density is only in L∞

and we have to deal with the double limit of taking ǫ tending to zero and x tending to

minus infinity. To overcome this difficulty we use the weak formulation of the ‘transport

equation’ ∇ · (ρv) = 0 (the stationary equation of conservation of mass), in which the

given density at minus infinity is taken into account, and choose special test functions. In

fact, we do not get exactly a desired weak formulation. Instead, we get an approximate

one, but with an error term that decays exponentially at minus infinity. This is due to

the exponential decay of the approximated velocity vǫ to the Poiseuille flow, uniformly

with respect to ǫ.

Now, we describe our problem more precisely. The fluid fills a domain Ω ⊂ R
2 that

is simply-connected, it has a smooth unbounded boundary Γ and it is the union of three

disjoint sets, Ω = Ω− ∪ Ω0 ∪ Ω+, such that Ω0 is bounded and, in possibly different

coordinate systems, Ω− = {(x, y) ∈ R
2 : x < 0, y ∈ Σ−} and Ω+ = {(x, y) ∈ R

2 : x >

0, y ∈ Σ+}, with Σ± = (−d±, d±) for arbitrarily given constants d± > 0. That is, Ω±

is given as the image by some affine transformation of the strip Ω̃± = {(x, y) ∈ R
2 :

±x > 0, y ∈ Σ±}. The open intervals Σ± can be taken as the same interval (−1, 1), and

in this case we can write Ω̃± = ±(0,∞)× (−1, 1). For sake of simplicity we will consider

the standard situation Ω± = ±[1,∞) × (−1, 1) and Ω = Ω− ∪ Ω0 ∪ Ω+. The sets Ω± are

thought as being the channels. This kind of domain was introduced by Amick, which he
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called an admissible domain [1, Definition 1.1]. The Navier-Stokes equations describing a

stationary inhomogeneous incompressible fluid in Ω are the following:
{

ν∆v = ρ(v · ∇)v + ∇p

∇ · v = 0, ∇ · (ρv) = 0 .
(1)

Here, ρ, v = (v1, v2), p, and ν are, respectively, the mass density, the velocity, the pressure

and the given constant viscosity of the fluid. The first equation represents the conservation

of momentum and the second and third equations represent the incompressibility of the

fluid and the conservation of mass, respectively.

The velocity field v is assumed to be parallel at far distances in each straight channel

and, incoming in Ω− and outgoing in Ω+. Since the conservation of mass equation is a

‘transport equation’ for the density ρ, with the transport vector given by v, it is natural

to give the density only at the end of the channel where the fluid is incoming, i.e. in Ω−.

Besides, we assume that the fluid does not slip on the boundary Γ of Ω, so the vector field

v in each channel Ω± is of Poiseuille type. Thus, coupled with the systems of equation

(1), we have the following boundary conditions:

v = 0 on Γ (2)

(nonslip boundary condition)

lim
±x→∞

v = v±, (3)

and

lim
x→−∞

ρ = ρ− (4)

where v± is a given Poiseuille flow in Ω± (see (5) below), and ρ− is a given function in

Cb(Σ−) or L∞(Σ−). If X is a topological space, Cb(X) will denote the space of bounded

and continuous functions defined on Ω, endowed with the supremum norm ||f ||Cb(X) =

supx∈X |f(x)|.

To state our main results (see Theorems 1 and 2 below), we need some more notations.

First, let

α± =

∫

Σ±(x)

v± · n±,

(the flux of the Poiseuille flow v± in Ω±) where n± = (±1, 0) is the unit normal to

Σ±(x) = {x} × (−1, 1) (the cross section of Ω± at ‘x’). More precisely, we have

v± = v±(y) = (θ±(y), 0) for θ±(y) = ±
3

4
α±(1 − y2), y ∈ Σ± = (−1, 1); (5)

cf. [1, p. 485]. Because the incompressibility equation ∇ · v = 0 and the Divergence

Theorem, we assume the compatibility condition α− + α+ = 0, i.e. α+ = −α−. We

assume also that α− is a strictly negative real number (and so α+ > 0), i.e. the velocity

field v− is incoming in Ω− and v+ is outgoing in Ω+. More generally, the flux of a

vector velocity field v through Σ±(x) is given by
∫

Σ±(x)
v · n±. Similarly, the flux of the

momentum ρv through Σ±(x) is given by
∫

Σ±(x)
ρv · n±.

Let Hk,loc(Ω) be the space of vector fields v in Ω such that v belongs to the Sobolev

space W k,2(Ω′), for any bounded open subset Ω′ of Ω, v is divergence free, i.e. ∇ ·v = 0,

and its derivatives up to order k − 1 have vanishing trace on Γ. Let also V be the space



54 F. AMMAR-KHODJA AND M. M. SANTOS

of the vector fields Φ in C∞
0 (Ω) (the underscript ‘0’ stands for compact support, i.e. the

support set of Φ is a compact set contained in Ω) and Φ is divergence free, i.e.∇·Φ = 0.

Finally, let l = ||ρ−||L∞(Σ−) (l = ||ρ−||Cb(Σ−) if ρ− ∈ Cb(Σ−)). Our main results are the

following theorems.

Theorem 1. Assume that ρ− ∈ Cb(Σ−). Then there is a constant c = c(Ω) > 0 such

that for c|α−|l < ν, the problem (1)-(4) has a weak solution (ρ,v) ∈ Cb(Ω) × H1,loc(Ω),

in the following sense:

i.

ν

∫

Ω

∇v · ∇Φdx =

∫

Ω

ρ(v · ∇Φ) · vdx, (6)

for all Φ = (Φ1,Φ2) in V, where ∇v · ∇Φ := ∇v1 · ∇Φ1 + ∇v2 · ∇Φ2 and

v · ∇Φ := (v · ∇Φ1,v · ∇Φ2),

ii.
∫

Ω

ρv · ∇ϕdx = 0 for all ϕ in C∞
0 (Ω), (7)

iii.

v − v± ∈W 2,2(Ωct), for some t > 0, (8)

where Ωct := Ωc−,t ∪ Ωc+,t, Ωc±,t := {(x, y) ∈ Ω± ; ±x > t}; and

iv.

lim
x→−∞

||ρ(x, ·) − ρ−||Cb(Σ−) = 0. (9)

Furthermore, the flux of v in Ω± is equal to α± and the flux β± of the momentum ρv in

Ω± can be written as

β± = ±

∫ 0

α−

ρ−
(

ψ−1
− (s)

)

ds, (10)

where ψ and ψ− are stream functions associated with v and v−, respectively, i.e. ∇⊥ψ =

v and ψ−
′ = −θ−; more precisely, we take ψ(x, y) = −(±

∫ y

−1
v1(x, τ)dτ ) in Ω± and

ψ−(y) = −
∫ y

−1
θ−(τ ) dτ in Σ±. Finally, we have ||ρ||Cb(Ω) ≤ l and

||∇(v − v±)||L2(Ω±) + ||∇v||L2(Ω0) ≤ C|α±|

(

1 +
ν + |α±|l

ν − c|α±|l

)

(11)

for some other constant C = C(Ω).

Theorem 2. Assume that ρ− ∈ L∞(Σ−). Then there is a constant c = c(Ω) > 0 such

that for c|α−|l < ν, the problem (1)-(4) has a weak solution (ρ,v) ∈ L∞(Ω)×H1,loc(Ω),

in the sense that it satisfies i. to iii. of Theorem 1 and additionally

iv.

∗ − lim
x→−∞,a.e.

ρ(x, ·) = ρ−, (12)

where ∗ − lim
x→−∞,a.e.

denotes the limit in the weak-∗ topology of L∞(Σ±), with x

tending to −∞ except for a set of zero Lebesgue measure.

Equations (6) and (7) are just the weak formulations (in the sense of distributions) of

the conservation of momentum and mass equations, respectively, i.e. just multiply these

equations by the test functions indicated in (6) and (7) and formally integrate by parts.
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In equation (6) the pressure p is canceled out because the (vector valued) test functions

Φ are divergence free. It is classical that we can recover the pressure from (6); see e.g.

[8, Propositions I.1.1 and I.1.2, p. 14]. The incompressibility equation is inserted in the

space H1,loc(Ω). Condition (8) implies that v ∈ Cb(Ω
c
t) and

lim
±x→∞

||v(x, ·) − v±||Cb(Σ±) = 0.

Indeed, since Ωc±,t is bounded in one direction, from the Sobolev Imbedding Theorem,

we have v − v± ∈ Cb(Ω
c
±,t) and there is a constant k, independent of |x| > t + 1, such

that

||v(x, ·) − v±||Cb(Σ±) ≤ ||v − v±||Cb(Ωc
±,|x|−1

) ≤ k||v − v±||W 2,2(Ωc
±,|x|−1

);

thus lim±x→∞ ||v(x, ·) − v±||Cb(Σ±) ≤ k lim±x→∞ ||v − v±||W 2,2(Ωc
±,|x|−1

) = 0. Equation

(12) says that the given density value ρ− at the end of the incoming channel Ω− is

attained ‘in average’ almost everywhere, i.e. there is a Lebesgue measurable set E ⊂ Σ−

with zero Lebesgue measure such that

lim
x→−∞
x∈Σ−/E

∫

Σ−

ρ(x, y)ξ(y) dy =

∫

Σ−

ρ−(y)ξ(y) dy,

for all ξ ∈ L1(Σ−).

In the next sections we outline the proofs of Amick’s theorem for the classical Leray

problem and of Theorems 1 and 2.

2. The classical Leray problem. In this section we outline the proof of Amick’s

theorem for the classical Leray problem. Amick’s theorem states that the problem (1)-(3)

with ρ ≡ 1 (constant density) has a weak solution whenever the flux α− (α+) is sufficiently

small. The proof starts with the variational formulation (6) where, as we mentioned above,

v is sought in the form v = u + a for a suitable extension a of the given Poiseuille flows;

see (3) and (5). This extension belongs to H1,loc(Ω), coincides with the Poiseuille flow in

Ωc±,t for some large t, and in Ωt := Ω−,t ∪ Ω0 ∪Ω+,t, Ω±,t := {(x, y) ∈ Ω± ; ±x < t}, it

satisfies the estimate

||∇a||L2(Ωt) ≤ c|α−| (13)

for some positive constant c = c(Ω); see [1, §3.1] or [3, Lemma XI.3.1]. The existence of

the new unknown u satisfying

ν

∫

Ω

∇(u + a) · ∇Φ dx =

∫

Ω

((u + a) · ∇Φ) · (u + a) dx (14)

for all Φ ∈ V can be obtained, for instance, in the space V—the closure of V in the

Dirichlet norm ||∇u||L2(Ω)—by Galerkin method [3, 4] or Leray-Schauder principle (cf.

[2]), once we have a priori estimate for u in V. To obtain a priori estimate for u in V we

multiply the conservation of momentum equation by u and integrate by parts (alternately,

we can take Φ = u in (14)). Thus we have

ν||∇u||2L2(Ω) = −ν

∫

Ωt

∇a · ∇u +

∫

Ω

(u · ∇)u · a +

∫

Ω

(a · ∇)u · a (15)
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To control the ‘quadratic’ term on the left hand side of (15), we need to estimate the three

terms on the right hand side. As we pointed out in the Introduction, the difficult term

is the nonlinear one, here the second term on the right hand side of (15), since it is also

quadratic with respect to u. It is this term that imposes the restriction regarding the size

of the flux α− for the existence of a solution to the problem (1)-(3). To estimate it, we

separate the integral in two parts, one with the integral over Ωt and the other, over Ωct =

Ωc−,t ∪ Ωc+,t. The first integral is bounded by c|α−|||u||
2
L2(Ωt)

in virtue of (13), Hölder’s

inequality and Sobolev type inequality, i.e. |
∫

Ωt
(u · ∇)u · a| ≤ ||ua||L2(Ωt)||∇u||L2(Ωt) ≤

||a||L4(Ωt)||u||L4(Ωt)||∇u||L2(Ωt) ≤ c||∇a||L2(Ωt)||∇u||2L2(Ωt)
, where from now on c denotes

some positive constant depending only on Ω. For the second, we estimate ||ua||L2(Ωc
±,t

)

using Fubini’s theorem applied on Ωc±,t and Hölder and Sobolev type inequalities applied

on Σ± as follows.
∫

Ωc
±,t

|u|2|a|2 = ±

∫ ±∞

±t

∫

Σ±

|u|2|a|2 ≤ ±

∫ ±∞

±t

||u||2L4(Σ±)||a||
2
L4(Σ±)

≤ ±c

∫ ±∞

±t

||∇u||2L2(Σ±)||∇a||2L2(Σ±).

Next we use that ||∇a||L2(Σ±) is proportional to the flux α−, which can be seen directly

from (5). Then, the second term on the RHS of (15) is estimated by c|α−|||∇u||2L2(Ω).

The other terms on the RHS of (15) can be estimated by c|α−|||∇u||L2(Ω). Therefore we

obtain that ||∇u||2L2(Ω) is bounded by some constant independent of u if c|α−| << ν. For

a rigorous proof we refer to [1] or [3, Chapter XI].

3. The density-dependent Leray problem: Continuous case. In this section we

outline the proof of Theorem 1. For a rigorous and complete proof and more details we

refer the reader to [4].

Our approach depends on the streamline formulation ρ = ω(ψ), v = ∇⊥ψ, where

ω ∈ Cb(R) is connected to the data v− and ρ−, essentially by the formula ω = ρ− ◦ψ−1
− .

This is a natural choice because we expect that at −∞ we have ρ = ρ− and ψ = ψ−

so ω(ψ−(y)) should be equal to ρ−(y) for all y ∈ Σ−. More precisely, ω is a function in

Cb(R) satisfying

ω(s) = ρ−(ψ−1
− (s)), ∀ s ∈ ψ− (Σ−) . (16)

We recall that ψ− is the streamline function of v− defined in Theorem 1, i.e. ψ−(y) :=

−
∫ y

−1
θ(τ ) dτ . We note that ψ− is a monotonic function for y ∈ Σ−, thus (16) de-

fines ω in a unique way and ψ− (Σ−) is the interval (0,−α−). To have the condition

||ρ||Cb(Ω) ≤ l satisfied it is enough to extend ω in Cb(R) outside the interval (0,−α−)

such that ||ω||Cb(R) ≤ l. For a ω satisfying the above conditions we look for a solu-

tion v = ∇⊥ψ of (6) with ρ = ω(ψ) and v = u + a = ∇⊥ψ where a is as in

the previous section. (ψ will solve the nonlinear equation for the biharmonic operator

∆2, ν∆2ψ = curl
(

ω(ψ)(∇⊥ψ · ∇)∇⊥ψ
)

, which can be seen by applying the operator

curl = ∂y − ∂x to the conservation of momentum equation.) Indeed, it is possible to

prove the following theorem by Leray-Schauder principle (cf. [2]) or Galerkin method [4].
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Theorem 3. Given any ω in Cb(R), there is a constant c = c(Ω) > 0 such that for

c|α−|||ω||Cb(R) < ν, the problem

ν

∫

Ω

∇(u + a) · ∇Φ dx =

∫

Ω

ω(ψ)((u + a) · ∇Φ) · (u + a) dx, ∀Φ ∈ V (17)

has a solution ψ ∈W 2,2
loc (Ω), where u + a = ∇⊥ψ, u ∈ V.

To prove this theorem, proceeding as in the previous section, we can estimate the

nonlinear term
∫

Ω
ω(ψ)(u · ∇)u · a from above by c|α−|||ω||Cb(R)||∇u||2L2(Ω). Then any

sequence (ψk), ψk = uk + a, of approximating solution to (17) is bounded in W 2,2(Ω′)

where Ω′ is an arbitrary bounded open subset of Ω. Thus, from the Sobolev imbedding

theorem, we have that (ψk) converges to some ψ in Cb(Ω
′). Since ω is fixed and continuous,

ω(ψk) converges to ω(ψ), also in Cb(Ω
′). With these estimates it is possible to pass to

the limit in (17) to obtain an exact solution from approximating solutions.

Since ψ ∈ W 2,2
loc (Ω), the pair (ρ,v) = (ω(ψ),∇⊥ψ) belongs to Cb(Ω) × H1,loc(Ω) and

it is obvious from (17) that it satisfies (6) in Theorem 1. The condition (7) is certainly

true in the case of ω ∈ C1(R). In the case of ω only continuous, we first consider (17)

with approximating smooth functions ωǫ uniformly bounded in Cb(R) with respect to

ǫ, then we pass to the limit as ωǫ tends to ω. Property (8) is a regularity property

and can be deduced as usual in the regularity theory for the Stokes equations, since

u = v − v±, along with some pressure function τ ∈ L2
loc(Ω), is a weak solution of the

Stokes equation ν∆u = ∇τ + f , in the domain Ωct for any sufficiently large t, where

f := ρ(v · ∇)v. Because ρ ∈ L∞(Ω) one can verify that f ∈ L2(Ωt) by a boot strap

argument and Sobolev embedding theorems and so u ∈ W 2,2(Ωt); cf. [3, Lemma XI.4.1]

where the homogeneous case (ρ ≡ 1) is treated or see [4] for a complete proof. Regarding

(9), from ψ − ψ− ∈ W 2,2(Ωct) we have limx→−∞ ||ψ(x, ·) − ψ−||Cb(Σ−) = 0, then ψ is

bounded in Ω− and given an arbitrary ǫ > 0 there exists a s > 0 such that |x| ≥ s

implies |ρ(x, y) − ρ−(y)| = |ω(ψ(x, y)) − ω(ψ−(y))| < ǫ for all y ∈ Σ−, since ω is locally

uniformly continuous. The flux of v in Ω± is equal to α± because v = u+a with u ∈ V.

Indeed, the flux of u in Ω± is equal to zero and the flux of a in Ω± is equal to α±, since

a coincides with v± at large distances and ∇ · a = 0. To prove (10) we have

β± :=

∫

Σ±

ρv · n± = ±

∫ 1

−1

(ρv1)(x, y) dy = ±

∫ 1

−1

(ω(ψ)ψy(x, y)) dy

= ±(−

∫ 1

−1

∂y(
∫ ψ(x,y)

0
ω(s) ds) dy)

= ±(

∫ ψ(x,−1)

0

ω(s) ds−

∫ ψ(x,1)

0

ω(s) ds)

= ±

∫ ψ(x,−1)

ψ(x,1)

ω(s) ds = ±

∫ 0

α±

ω(s) ds = ±

∫ 0

α±

ρ−(ψ−
−1(s)) ds .

The condition ||ρ||Cb(Ω) is attained, as we mentioned above, by choosing ω satisfying also

||ω||Cb(R) ≤ l. Finally, we have (11) by the following steps:
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||∇(v − v±)||L2(Ω±) = ||∇(a − v±)||L2(Ω±) + ||∇u||L2(Ω±)

= ||∇(a − v±)||L2(Ω±,t) + ||∇u||L2(Ω)

≤ C|α±| + ||∇u||L2(Ω) ≤ C|α±| + C
|α±| (ν + |α±|l)

ν − c|α±|l
,

where we used (13) and other estimates one can obtain to control ||∇u||L2(Ω), as indicated

above. Analogously, one finds ||v||L2(Ω0) ≤ C|α±| + C |α±|(ν+|α±|l)
ν−c|α±|l .

4. The density-dependent Leray problem: Discontinuous case. In this section

we briefly describe the approximating scheme to achieve Theorem 2. For a rigorous and

complete proof and more details we refer the reader to the forthcoming paper [5]. In [4]

we also give a preliminary version of this result.

Our approximating scheme relies on an appropriate mollification of the data ρ−,v−

and, at the approximated level, on the streamline function formulation. Let ǫ > 0 be

arbitrary but sufficiently small. Extend ρ− and ψ− to (−∞,∞) by zero outside Σ− and

let ρǫ− = ρ−∗mǫ and ψǫ− = ψ−∗mǫ be standard mollifications of these extended functions,

i.e. ∗ stands for convolution of functions on the real line and mǫ(y) = ǫ−1m(y/ǫ), where

m is a positive smooth function with support in (−1, 1) and such that
∫ ∞

−∞
m(y)dy = 1.

Next, let ωǫ be a smooth function from R to R such that

||ωǫ||Cb(R) ≤ l (18)

and

ωǫ(ψǫ−(y)) = ρǫ−(y) for y ∈ Σǫ−, Σǫ− := (−1 + ǫ , 1 − ǫ), . (19)

Notice that condition (19) on ωǫ is reasonably imposed, since ψǫ− is an injective function.

In fact, ψǫ− is a decreasing function since θ− is a strictly positive function on Σ− and mǫ

is also a strictly positive function on its support, i.e. on the interval (−ǫ, ǫ). Thus we can

write

ωǫ(s) = ρ−((ψǫ−)−1(s)), for s ∈ (ψǫ−(1 − ǫ), ψǫ−(−1 + ǫ)) .

Outside the set (ψǫ−(1− ǫ), ψǫ−(−1 + ǫ)) we take ωǫ arbitrary but smooth (say, C∞) and

satisfying (18) for all sufficiently small ǫ > 0.

Our idea is to obtain an approximate solution (ρǫ,vǫ) to our Problem (1)-(4) of the

type (ρǫ,vǫ) = (ωǫ(ψǫ),∇⊥ψǫ) and recover an exact solution (ρ,v) by taking the limit

of (ρǫ,vǫ) as ǫ goes to zero. From Theorem 3 there is a solution uǫ = ∇⊥ψǫ − a ∈ V,

ψǫ ∈ H2,loc(Ω) of the following variational problem:

ν

∫

Ω

∇(uǫ + a) · ∇Φ dx =

∫

Ω

ωǫ(ψǫ)((uǫ + a) · ∇Φ) · (uǫ + a) dx, ∀Φ ∈ V . (20)

In view of (18) and the estimates indicated in the previous section, there exists a pair

(ρ,u) in L∞(Ω)×V such that, up to some subsequence of ǫ→ 0, (uǫ) converges to u in

the weak topology of V and ρǫ converges to ρ in the weak-∗ topology of L∞(Ω) as ǫ→ 0.

Then it is possible to show that the pair (ρ,v), v = u + a, satisfies all the claims stated

in Theorem 2 [5, 4].
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