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Abstrat. We onsider a free boundary problem of a two-dimensional Navier-Stokes shear �ow.There exist a unique global in time solution of the onsidered problem as well as the globalattrator for the assoiated semigroup. As in [1℄ and [2℄, we estimate from above the dimensionof the attrator in terms of given data and the geometry of the domain of the �ow. This researhis motivated by a free boundary problem from lubriation theory where the domain of the �owis usually very thin and the roughness of the boundary strongly a�ets the �ow. We show howit an enlarge the dimension of the attrator. To this end we establish a new version of theLieb-Thirring inequality with onstants depending on the geometry of the domain.1. Introdution. We onsider the problem of �nite dimensionality of a strongly turbu-lent boundary driven �ow onsidered in lubriation theory. The two-dimensional domainoupied by the �ow is assumed to be periodi with a period ell Ω a thin (or elongated)domain along the �rst oordinate diretion (not neessarily just a retangle), so that theboundary ∂Ω onsists of three relevant parts: the upper boundary Γ1, the lower boundary
Γ2, and the lateral boundary parts ΓL. The veloity of the �uid satis�es a free boundaryondition on the upper boundary and non homogeneous boundary ondition on the lower2000 Mathematis Subjet Classi�ation: 35R35, 76F10.Key words and phrases: Navier-Stokes equations, free boundary ondition, lubriation theory,global in time solution, energy dissipation rate, dimension of global attrator, Lieb-Thirringinequality.Researh of G. �ukaszewiz was supported by Polish Government grant KBN 2 P303A 03022 and by EA-3058 UJM-Saint-Étienne Frane.The paper is in �nal form and no version of it will be published elsewhere.

[61]



62 M. BOUKROUCHE AND G. ŁUKASZEWICZboundary. We show how the geometry of Ω may a�et the dimension of the global attra-tor assoiated with the �ow, by giving un upper bound on its dimension that dependsexpliitly on the geometry of Ω and on the data. Our estimate redues to one obtainedearlier in [5℄ or [10℄ when Ω beomes an elongated retangle.There is a quikly growing literature devoted to better and better estimates of aver-aged parameters and attrator dimension of a variety of �ows. We mentioned in [1℄ a fewpositions whih are related to our researh and some other to give a larger ontext. Ourresult is a diret generalization of that in [1℄ and [10℄, see also [9℄.This artile is organized as follows. In setion 2 we give a preise formulation of theonsidered problem and reall a result on existene of a unique global in time solutionand the assoiated global attrator. Setion 3 is devoted to estimating the time averagedenergy dissipation rate of the �ow. In setion 4 we prove a new anisotropi version of theLieb-Thirring inequality for funtions de�ned on a non-retangular domain. We use thisinequality in setion 5 to give an upper bound of the global attrator dimension in termsof data and geometry of the domain.2. Formulation of the problem. We onsider two-dimensional Navier-Stokes equa-tions,
ut − ν∆u+ (u.∇)u+ ∇p = 0, (2.1)

div u = 0 (2.2)in the hannel
Ω∞ = {x = (x1, x2) : −∞ < x1 <∞, 0 < x2 < h(x1)},where h is a funtion, positive, smooth, and L-periodi in x1. Let

Ω = {x = (x1, x2) : 0 < x1 < L, 0 < x2 < h(x1)}and ∂Ω = Γ̄0 ∪ Γ̄L ∪ Γ̄1, where Γ0 and Γ1 are the bottom and the top, and ΓL is thelateral part of the boundary of Ω. We are interested in solutions of (2.1)�(2.2) in Ω whihare L-periodi with respet to x1. We assume
u.n = 0, τ.σ(u).n = 0 at Γ1; (2.3)the �rst ondition in (2.3) is the nonpenetration boundary ondition, while the seondone means that the tangential omponent of the normal stress tensor σ.n vanishes on Γ1.The omponents of the stress tensor σ are

σij(u) = ν

(

∂ui

∂xj
+
∂uj

∂xi

)

− pδij , 1 ≤ i, j ≤ 3;where δij is the Kroneker symbol. Moreover, we assume
u = U0e1 = (U0, 0) at Γ0 (2.4)where U0 is a positive onstant, and initial ondition
u(x, 0) = u0(x) for x ∈ Ω. (2.5)The problem is motivated by a �ow in an in�nite (reti�ed) hannel Ω× (−∞,+∞),where Γ1 × (−∞,+∞) represents the outer ylinder, and Γ0 × (−∞,+∞) represents the



ATTRACTOR DIMENSION 63inner, rotating ylinder. In the lubriation problems the gap h between ylinders is neveronstant. We an assume that the reti�ation does not hange the equations as the gapbetween ylinders is very small with respet to their radii. When h = const, and the freeboundary ondition (2.3) is replaed by
u = 0 on Γ1, (2.6)problem (2.1), (2.2), (2.6), (2.4), (2.5) was intensively studied in several ontexts, someof them mentioned in [1℄ where the ase h 6= const and the �rst derivative h′ 6= 0 wasstudied. The problem we onsider in this paper seems not to have been studied earlier.In appliations, suitable norms of h′ may haraterize some partiular feature of the�ow suh as roughness of the surfae of the outer ylinder, for example. It is expetedthat the more rough the outer ylinder is, the more turbulent is behavior of the �ow, andthe e�et is the more observable the smaller is the gap between the ylinders.These features of the �ow an be dedued from our estimates of the dimension of theglobal attrator, depending on geometry of the domain of the �ow, expressed in termsof the funtion h and its �rst derivative h′. In tehnial terms, the in�uene of geometryof the domain shows up in the onstants appearing in the new anisotropi version of theLieb-Thirring inequality we prove in this paper.In our onsiderations we use the bakground �ow method and homogenize the bound-ary ondition (2.4) by de�ning a smooth bakground �ow, a simple version of the Hopfonstrution, desribed in detail in setion 3.Let

u(x1, x2, t) = U(x2)e1 + v(x1, x2, t) (2.7)with
U(0) = U0, U(h(x1)) = 0, U ′(h(x1)) = 0, x1 ∈ (0, L). (2.8)Then v is L-periodi in x1 and satis�es
vt − ν∆v + (v.∇)v + Uv,x1

+(v)2U
′e1 + ∇p = νU ′′e1 (2.9)

div v = 0 (2.10)
v = 0, on Γ0, v.n = 0, τ.σ(v).n = 0 on Γ1 (2.11)and initial ondition

v(x, 0) = v0(x) = u0(x) − U(x2)e1. (2.12)By (v)2 we denote the seond omponent of v.Now, we de�ne a weak form of the homogenized problem above. To this end we needsome notations. Let
Ṽ = {v ∈ C∞(Ω∞)2 : v is x1-‘L-periodi, div v = 0, v|Γ0

= 0, and v.n|Γ1
= 0},

V = closure of Ṽ in H1(Ω) ×H1(Ω),

H = closure of Ṽ in L2(Ω) × L2(Ω).We de�ne salar produts
(u, v) =

∫

Ω

u(x)v(x)dx and [[u, v]] = (∇u,∇v)



64 M. BOUKROUCHE AND G. ŁUKASZEWICZin H and V , respetively, and norms
[v] = (v, v)

1

2 and [[v]] = [[v, v]]
1

2 .We denote by B the bilinear form de�ned for (u, v) ∈ V × V by
(B(u, v), w) = ((u · ∇)v, w) ∀ω ∈ V,and

a(u, v) = ν(∇u,∇v).Then the natural weak formulation of the homogenized problem (2.9)-(2.12) is asfollows.Problem 2.1. Find
v ∈ C([0, T ];H) ∩ L2(0, T ;V )for eah T > 0, suh that

d

dt
[v(t),Θ] + a(v(t),Θ) + (B(v(t), v(t)),Θ) = F (v(t),Θ), (2.13)for all Θ ∈ V , and

v(x, 0) = v0(x)where
F (v,Θ) = −a(ξ,Θ) − (B(ξ, v),Θ)− (B(v, ξ),Θ), (2.14)and ξ = Ue1 is a suitable bakground �ow.We have the following existene theorem.Theorem 2.1. There exists a unique weak solution of problem 2.1 suh that for all η, T ,

0 < η < T , v ∈ L2(η, T ;H2(Ω)), and for eah t > 0 the map v0 7→ v(t) is ontinuousas a map in H. Moreover, there exists a global attrator for the assoiated semigroup
{S(t)}t≥0 in the phase spae H.Proof. Cf. [10℄, see also [2℄.In the next setion we shall estimate the time averaged energy dissipation rate of the�ow.3. Energy dissipation rate estimate. The aim of this setion is to estimate the timeaveraged energy dissipation rate per unit mass ǫ of the �ow u, the weak solution ofproblem (2.1)�(2.5). We de�ne

ǫ =
ν

|Ω| 〈[[u]]
2〉 = lim sup

T→+∞

ν

|Ω|
1

T

∫ T

0

[[u(t)]]2dt. (3.1)We estimate �rst the averaged energy dissipation rate of the homogenized �ow v, andthen use the relation, f. (2.7),
[[u(t)]]2 = [[v(t)]]2 + 2

∫

Ω

U ′(v)1,x2
dx+

∫

Ω

|U ′|2dx. (3.2)To estimate the right hand side of (3.2) we use equation (2.13). Taking Θ = v in(2.13) and using the notation B(u, v, w) for (B(u, v), w), we obtain
1

2

d

dt
[v]2 + a(v, v) +B(v, v, v) = F (v, v). (3.3)



ATTRACTOR DIMENSION 65Sine v = 0 on Γ0 and v.n = 0 on Γ1, v is L-periodi in x1, and div v = 0, we have
B(v, v, v) = 0, and

1

2

d

dt
[v]2 + ν[[v]]2 = F (v, v). (3.4)Integrating the above inequality in t on the interval (0, T ), dividing by T , and taking

lim sup of both sides we estimate the averaged energy dissipation rate of v. First, however,we have to estimate arefully the term F (v, v) on the right hand side of (3.4). By (2.14),
F (v, v) = −a(ξ, v) −B(v, ξ, v). (3.5)We have

|a(ξ, v)| ≤ ν[[ξ]] · [[v]] ≤ ν[[ξ]]2 +
ν

4
[[v]]2. (3.6)To estimate the last term in (3.5) we use the following lemma.Lemma 3.1. For any η > 0 there exists a smooth extension

ξ = ξ(x2) = U(x2)e1 = (U(x2), 0)of the boundary ondition for u, suh that
|B(v, ξ, v)| ≤ η[[v]]2 for all v ∈ V.Proof. Cf. [1℄, [2℄.Lemma 3.2. Let U be as in lemma 3.1. Then

∫

Ω

|U(x2)|2dx1dx2 ≤ 1

2
Lh0U

2
0 ε, (3.7)and

∫

Ω

|U ′(x2)|2dx1dx2 ≤ 4LU2
0

h0

1

ε
. (3.8)where h0 = min0≤x1≤L h(x1).Proof. Cf. [1℄, [2℄.Let hM = max0≤x1≤L h(x1), and hM/h0 ≃ 1. Then we an de�ne the Reynoldsnumber of the �ow u by Re = (h0U0)/ν.Lemma 3.3. If Re≫ 1 then the time averaged energy dissipation rate per unit mass ǫ(v)for the �ow v an be estimated as follows,

ǫ(v) ≤ 64L

|Ω| U
3
0 ≤ 64

h0
U3

0 .Finally, we an formulate the main theorem in this setion.Theorem 3.1. For the Navier-Stokes turbulent �ow u de�ned in setion 2 with Re >> 1the time averaged energy dissipation rate per unit mass ǫ de�ned in (3.1) an be estimatedas follows:
ǫ ≤ C

U3
0

h0
, (3.9)where C is a numerial onstant.



66 M. BOUKROUCHE AND G. ŁUKASZEWICZProof. By (3.2) we have
〈[[u]]2〉 ≤ 2〈[[v]]2〉 + 2

∫

Ω

|U ′|2dx,and then we use (3.8) to estimate the seond term on the right hand side.Our estimate (3.9) has the same form as the usual estimate in turbulene theory ofthe averaged energy dissipation rate for the Navier-Stokes boundary driven �ow in aretangular domain [3℄, [4℄, [6℄, [10℄.In setion 5 we shall use the estimates of ǫ to �nd an upper bound of the dimensionof the global attrator.4. A new version of the Lieb-Thirring inequality. In the present study we prove ageneralization of the form of the Lieb-Thirring inequality obtained in [10℄ for a retangulardomain.Let
H̃1 = {v ∈ C∞(Ω∞)2 : v is L-periodi in x1, v|Γ0

= 0, v.n|Γ1
= 0}and

H1 = closure of H̃1 in H1(Ω) ×H1(Ω).Lemma 4.1. Let ϕj ∈ H1, j = 1, . . . ,m be a suborthonormal family in L2(Ω). Then
∫

Ω

(

m
∑

j=1

ϕ2
j

)2

≤ σ1

m
∑

j=1

∫

Ω

|∇ϕj |2 + σ2m+ σ3, (4.1)where σ1 = κ1(1 + max0≤x1≤L |h′(x1)|2), σ2 = κ2(
1

L2 + 1
h2

0

),
σ3 = κ3

∫

Ω

(

h′(x1)

h(x1)

)4

(1 + h′(x1)
4)dx,and κ1, κ2, κ3 are some absolute onstants.Proof. Let Ω1 = (0, L) × (0, h0), and let ψj ∈ H1(Ω1), j = 1, . . . ,m, be a family offuntions that are suborthonormal in L2(Ω1) in the sense that

m
∑

i,j=1

ξiξj

∫

Ω1

ψiψjdy ≤
m

∑

k=1

ξ2k, ∀ξ ∈ IRm.We know ([10℄, Lemma 4.1) that for this family there exists an absolute onstant C0,suh that
∫

Ω1

(

m
∑

j=1

ψ2
j

)2

dy ≤ C0

( m
∑

j=1

∫

Ω1

(

∂ψj

∂y1

)2

dy +
|ψj |2L2(Ω1)

L2

)
1

2

×
( m

∑

j=1

∫

Ω1

(

∂ψj

∂y2

)2

dy +
|ψj |2L2(Ω1)

h2
0

)
1

2

, (4.2)Now, for our family ϕj de�ned in Ω, we set
ψj(y1, y2) = ϕj(x1, x2)

√

h(x1)

h0
,



ATTRACTOR DIMENSION 67where
h0 = min

0≤x1≤L
h(x1), y1 = x1, y2 = x2

h0

h(x1)
.For x = (x1, x2) in Ω, y = (y1, y2) is in Ω1, and the family ψj , j = 1, . . . ,m, in Ω1 hasthe laimed properties. Changing variables in the above inequality and observing that

dy1dy2 =
h0

h(x1)
dx1dx2

∂ψj

∂y1
=

(

∂ϕj

∂x1

√

h(x1)

h0
+ ϕj

h′(x1)

2
√

h0h(x1)

)

+

√

h(x1)

h0

∂ϕj

∂x2

h′(x1)

h(x1)
x2,

∂ψj

∂y2
=
∂ϕj

∂x2

√

h(x1)

h0with h(x1)/h0 ≥ 1, we obtain
∫

Ω

(

m
∑

j=1

ϕ2
j

)2

dx ≤ C0

( m
∑

j=1

∫

Ω

(

∂ϕj

∂x1
a+ ϕjb+ aµ

∂ϕj

∂x2
x2

)2
dx

a2
+

|ϕj |2L2(Ω)

L2

)
1

2

×
( m

∑

j=1

∫

Ω

(

∂ϕj

∂x2

)2

dx+
|ϕj |2L2(Ω)

h2
0

)
1

2 (4.3)where
a =

√

h(x1)

h0
, b =

h′(x1)

2
√

h0h(x1)
, µ =

h′(x1)

h(x1)
.After simple alulations we get

∫

Ω

(

m
∑

j=1

(ϕj)
2
)2

dx ≤ C0

2

m
∑

j=1

∫

Ω

((

∂ϕj

∂x1

)2

+

(

∂ϕj

∂x2

)2)

dx+ C0|ϕj |2L2(Ω)

(

1

L2
+

1

h2
0

)

+
C0

2

∫

Ω

m
∑

j=1

∂ϕj

∂x1
ϕjµdx+

C0

8

∫

Ω

(

m
∑

j=1

ϕ2
j

)

µ2dx+ C0

∫

Ω

m
∑

j=1

∂ϕj

∂x1

∂ϕj

∂x2
µx2dx

+
C0

2

∫

Ω

m
∑

j=1

ϕj
∂ϕj

∂x2
µ2x2dx+

C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x2

)2

µ2x2
2dx. (4.4)When h′ = 0, only the �rst two terms on the right hand side are not zero. We estimatethe additional terms as follows.

C0

2

∫

Ω

m
∑

j=1

∂ϕj

∂x1
ϕjµdx ≤ C0

2

∫

Ω

( m
∑

j=1

(

∂ϕj

∂x1

)2) 1

2 (

m
∑

j=1

ϕ2
j

)
1

2

µdx

≤ C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x1

)2

dx+
C0

8

∫

Ω

(

m
∑

j=1

ϕ2
j

)

µ2dx

≤ C0

2

∫

Ω

m
∑

j=1

(∂ϕj

∂x1

)2

dx+
1

16

∫

Ω

( m
∑

j=1

ϕ2
j

)2

dx+
(C0)

2

16

∫

Ω

µ4(x1)dx,
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C0

8

∫

Ω

( m
∑

j=1

ϕ2
j

)

µ2dx ≤ 1

16

∫

Ω

( m
∑

j=1

ϕ2
j

)2

dx+
(C ′

0)
2

16

∫

Ω

µ4(x1)dx.Now,
C0

∫

Ω

m
∑

j=1

∂ϕj

∂x1

∂ϕj

∂x2
µx2dx ≤ C0

∫

Ω

( m
∑

j=1

(

∂ϕj

∂x1

)2) 1

2

( m
∑

j=1

(

∂ϕj

∂x2

)2) 1

2

µx2dx

≤ C0

2

∫

Ω

µ2(x1)x
2
2

m
∑

j=1

(

∂ϕj

∂x1

)2

dx+
C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x2

)2

dx,and
C0

2

∫

Ω

m
∑

j=1

ϕj
∂ϕj

∂x2
µ2x2dx ≤ C0

2

∫

Ω

(

m
∑

j=1

ϕ2
j

)
1

2

( m
∑

j=1

(

∂ϕj

∂x2

)2) 1

2

µ2x2dx

≤ C0

8

∫

Ω

(

m
∑

j=1

ϕ2
j

)

µ4x2
2dx+

C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x2

)2

dx

≤ 1

16

∫

Ω

(

m
∑

j=1

ϕ2
j

)2

dx+
(C0)

2

16

∫

Ω

µ8(x1)x
4
2dx+

C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x2

)2

dx.Applying the above inequalities in (4.4) and replaing x2 by h(x1) in some integrals weobtain the elegant estimate
∫

Ω

(

m
∑

j=1

ϕ2
j

)2

≤ C ′′
0

m
∑

j=1

∫

Ω

(1 + h′(x1)
2)|∇ϕj |2 + C0

(

1

L2
+

1

h2
0

) m
∑

j=1

|ϕj |L2(Ω)

+C ′′
3

∫

Ω

(

h′(x1)

h(x1)

)4

(1 + h′(x1)
4)dxwhene, as

m
∑

j=1

|ϕj |L2(Ω) = m,(4.1) follows.5. Dimension estimate of the global attrator. We rewrite equation (2.13) for thehomogenized �ow v in the short form
dv

dt
= L(v), v(0) = v0,where, for all Θ ∈ V ,

〈L(v(t)),Θ〉 = −a(v(t),Θ) −B(v(t), v(t),Θ) + F (v(t),Θ)and F is de�ned in (2.14). Now, to estimate from above the dimension of the globalattrator we follow the standard proedure, f. e.g. [7℄, [8℄. First, for an integer m > 1and vetors ξj ∈ H, j = 1, . . . ,m, we onsider the orresponding problems linearized



ATTRACTOR DIMENSION 69about the orbit v(t),
d

dt
Uj = L′(v)Uj , Uj(0) = ξj , for j = 1, . . . ,m (5.1)where L′(v) is the Fréhet derivative of L at v = v(t), with

(L′(v)Uj ,Θ) = −a(Uj ,Θ) − B(v, Uj ,Θ) −B(Uj , v,Θ) (5.2)
− B(ξ, Uj ,Θ) −B(Uj , ξ,Θ)

= −a(Uj ,Θ) −B(u, Uj ,Θ) −B(Uj , u,Θ).Let, for a partiular time τ , Θj = Θj(τ ), j ∈ IN be an orthonormal basis of H with
Θ1(τ ), . . . ,Θm(τ ) spanning

Qm(τ )H = Qm(τ, v0, ξ1, . . . , ξm)H = Span[U1(τ ), . . . , Um(τ )],

Qm(τ ) being the orthogonal projetor of H onto the spae spanned by Uj(τ ), j =

1, . . . ,m, solutions of (5.1). We then have Θj(τ ) ∈ V , j = 1, . . . ,m, for a.e. τ ∈ IR+.The trae of L′(v(τ )) ◦Qm(τ ) is
Tr(L′(v(τ )) ◦Qm(τ )) =

m
∑

j=1

(L′(v(τ ))Θj(τ ),Θj(τ )). (5.3)Let A be the global attrator for the homogenized �ow v(τ ) = S̃(τ )v0, and let
qm = lim

T→∞
sup qm(T ),where

qm(T ) = sup
v0∈A

sup

{

1

T

∫ T

0

Tr(L′(v(τ )) ◦Qm(τ ))dτ : ξj ∈ H, [ξj ] ≤ 1, j = 1, . . . ,m

}

.Then, the fratal dimension of the attratorA is less than or equal to the �rst nonnegativeinteger m0 for whih qm0
≤ 0, [7℄.Now, our aim is to obtain estimate (5.7) and then inequality (5.8).Lemma 5.1. The following estimate holds:

Tr(L′(v) ◦Qm) ≤ −ν
m

∑

j=1

[[Θj ]]
2 + |ρ|L2(Ω)[[u]], (5.4)where

ρ(x) =
m

∑

j=1

|Θj(x)|2.Proof. From (5.2) and (5.3) we obtain
m

∑

j=1

(L′(v)Θj ,Θj) ≤ −ν
m

∑

j=1

[[Θj ]]
2 −

m
∑

j=1

B(Θj , u,Θj)

≤ −ν
m

∑

j=1

[[Θj ]]
2 +

∫

Ω

|∇u|
(

m
∑

j=1

|Θj(x)|2
)

dxwhene (5.4) follows.



70 M. BOUKROUCHE AND G. ŁUKASZEWICZNow, in our estimates of the trae we use lemma 4.1. By this lemma and from
∫

Ω

ρ(x)dx = mwe have
m2

|Ω| ≤ |ρ|2L2(Ω) ≤ σ1

m
∑

j=1

[[Θj ]]
2 + σ2m+ σ3. (5.5)Moreover,

|ρ|L2(Ω)[[u]] ≤
ν

2σ1
|ρ|2L2(Ω) +

σ1

2ν
[[u]]2 ≤ ν

2

( m
∑

j=1

[[Θj ]]
2 +

σ2

σ1
m+

σ3

σ1

)

+
σ1

2ν
[[u]]2 (5.6)by the seond inequality in (5.5). Thus, by (5.4), (5.6),

Tr(L′(v) ◦Qm) ≤ −ν
2

m
∑

j=1

[[Θj ]]
2 +

νσ2

2σ1
m+

νσ3

2σ1
+
σ1

2ν
[[u]]2,and by (5.5) again, we �anally obtain

Tr(L′(v(τ )) ◦Qm(τ )) ≤ −ν
2σ1|Ω|m

2 +
νσ2

σ1
m+

νσ3

σ1
+
σ1

2ν
[[u]]2. (5.7)From (5.7), realling ǫ de�ned in (3.1), we have

qm ≤ −ν
2σ1|Ω|m

2 +
νσ2

σ1
m+

νσ3

σ1
+
σ1|Ω|
2ν2

ǫ. (5.8)De�ne
a =

ν

2σ1|Ω| , 2b =
νσ2

σ1
, c =

νσ3

σ1
+
σ1|Ω|
2ν2

ǫ.We an write
qm ≤ −am2 + 2bm+ c.Let
p =

b+
√
b2 + ac

aand let E(p) denote the integer part of p. We have m0 = E(p) + 1 if p 6= E(p), and
m0 = p if p = E(p). Using the inequality √

x2 + y2 ≤
√

2 max{|x|, |y|} we an estimate
p by a simpler expression,

p ≤ 3 max

{

b

a
,

√

c

a

}

.Further, taking into aount de�nitions of a, b, c, as well as estimate (3.9) of ǫ, we obtain
p ≤ 3 max

{

σ2|Ω| ,
√

2σ3|Ω| + σ2
1

|Ω|2
h4

0

(Re)3
}

. (5.9)From the above estimates we dedue the following theorem about strongly turbulent �owsin thin domains.



ATTRACTOR DIMENSION 71Theorem 5.1. Consider the Navier-Stokes �ow u as desribed in setion 2. Assume thatthe domain Ω is thin and that the �ow is strongly turbulent, namely
hM

L
<< 1 and Re >> 1. (5.10)Then the fratal dimension of the global attrator ANSE for this �ow an be estimated asfollows:

dim(ANSE) ≤ κmax{σ2|Ω| ,

√

2σ3|Ω| + σ2
1

(

LhM

h2
0

)2

(Re)3. (5.11)where σ1 = κ1(1 + max0≤x1≤L |h′(x1)|2), σ2|Ω| := κ2(
1

L2 + 1
h2

0

)|Ω|,

σ3 = κ3

∫

Ω

(

h′(x1)

h(x1)

)4

(1 + h′(x1)
4)dx,and where κ, κ1, and κ3 are some numeri onstants. For a retangular domain Ω =

(0, L) × (0, h0) we obtain, in partiular,
dim(ANSE) ≤ κ

L

h0
(Re)3/2. (5.12)Proof. By (5.9), (5.11) follows.Estimate (5.12) was obtained in [5℄ for the ase of homogeneous boundary onditionon the top part of the boundary. Estimate (5.11) is its diret generalization for moregeneral geometry of the �ow domain. Observe that the estimate depends expliitly onthe �rst derivative h′.6. Conlusions. In setion 3 we estimated the time averaged energy dissipation rate ofthe onsidered �ow applying the bakground �ow method. We used a version of Hopf'sonstrution of the bakground �ow and obtained the same estimate as that obtainedearlier for a retangular domain by Doering and Constantin who used a bakground �owsuitable for the hannel ase, f. [3℄, [4℄.In setion 4 we generalized an anisotropi version of the Lieb-Thirring inequalityobtained in [10℄, from retangular to non-retangular domains de�ned in setion 2. Thisinequality an be generalized further to inlude three dimensional domains.In setion 5 we provided an estimate of the dimension of the global attrator of theonsidered �ow, with onstants given expliitly in terms of the data, inluding geometryof the domain. In partiular, for a retangle, our estimate redues to that obtained earlier,f. e.g. [5℄. Inequality (5.11) agrees with our expetations about the behavior of stronglyturbulent shear �ows in thin domains met in lubriation theory. It helps to understandthe in�uene of geometry of the �ow and roughness of the boundary on the �uid behavior.Moreover, inequality (5.9) serves as an estimate of the number of degrees of freedom ofturbulent �ows not only in thin �lms.Aknowledgements. Partial support from the EC �naned network HYKE no. HPRN-CT-2002-00282 is gratefully aknowledged.
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