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Abstract. We give the Lp-Lq estimate for the Stokes semigroup in a perturbed half-space and

some global in time existence theorems for small solutions to the Navier-Stokes equation.

1. Background. The non-stationary Stokes system is given by the equations:

(S)

{

~ut − ∆~u + ∇π = ~f, div ~u = 0, in (0, T ) × Ω,

~u|
∂Ω

= 0, ~u|t=0 = ~a

with unknown velocity ~u = T (u1, . . . , un) and pressure π (scalar function) in some domain

Ω ⊂ Rn (n ≥ 2), whose boundary is denoted by ∂Ω and assumed to be a C1,1 hypersurface

at least. Here and hereafter, T M means the transposed M and n-vectors of functions are

denoted by letters with arrow. If we define the spaces Jp(Ω) and Gp(Ω) by the relations:

Jp(Ω) = the closure of {~u ∈ C∞
0 (Ω)n | div ~u = 0 in Ω} in Lp(Ω)n,

Gp(Ω) = {∇π ∈ Lp(Ω)n | π ∈ Lp,loc(Ω)},

we know the unique decomposition (so called Helmholtz decomposition)

(HD) Lp(Ω)n = Jp(Ω) ⊕ Gp(Ω)

with a linear continuous projection P : Lp(Ω)n → Jp(Ω) for many types of domains

(cf. Fujiwara and Morimoto [18], Farwig and Sohr [16], [17], Galdi [19], Miyakawa [32],

Simader and Sohr [37] and references therein). Then, we can define the Stokes operator

2000 Mathematics Subject Classification: Primary 76D07; Secondary 35B40.

Key words and phrases: Stokes equation, perturbed half space, Lp-Lq estimate, Navier-Stokes
equation.

Research of the second author supported by Grant-in-Aid for Scientific Research (B)-12440055,
Ministry of Education, Sciences, Sports and Culture, Japan.

The paper is in final form and no version of it will be published elsewhere.

[157]



158 T. KUBO AND Y. SHIBATA

A by

(SO) A = P (−∆)

with definition domain:

(SD) Dp(A) = {~u ∈ Jp(Ω) ∩ W 2
p (Ω)n | ~u|

∂Ω
= 0}.

Having the Stokes operator A in hand, the non-stationary Stokes equation (S) can be

formulated as an ordinary differential equation in the Banach space Jp(Ω):

(O) ~u ′(t) + A~u(t) = P ~f(t), ~u(0) = ~a.

Hence, the question is whether A generates an analytic semigroup. Through the Laplace

transform, this question is related to the resolvent estimate:

(R) |λ|‖(λ + A)−1 ~f‖
Lp(Ω)

+ ‖(λ + A)−1 ~f‖
W2

p (Ω)
≤ Cǫ,p‖~f‖

Lp(Ω)

for λ ∈ Σǫ = {z ∈ C \ {0} | | arg z| ≤ π − ǫ} with some ǫ ∈ (0, π/2), where 1 < p < ∞. In

fact, once obtaining (R), we have the representation formula:

(Rp) T (t)~f =
1

2πi

∫

Γ

eλt(λ + A)−1 ~f dλ, ~f ∈ Jp(Ω)

where Γ = {λ = eiθs | s ≥ ǫ} ∪ {λ = e−iθs | s ≥ ǫ} ∪ {λ = ǫeis | −θ ≤ s ≤ θ} with some

θ ∈ (π/2, π) and ǫ > 0, which combined with (R) implies not only the generation of the

analytic semigroup {T (t)}t≥0 by A but also the semigroup estimates:

‖T (t)~a‖
Lp(Ω)

≤ Cpe
ǫt‖~a‖

Lp(Ω)
,(SE)

‖T (t)~a‖
W2

p (Ω)
≤ Cpe

ǫtt−1‖~a‖
Lp(Ω)

for any t > 0 (cf. Pazy [33]).

Concerning the references for (R), when Ω = Rn, since the Helmholtz projection

commutes with the Laplacian, the resolvent estimate (R) is reduced to that for the

Laplacian. The case of the half-space Ω = R
n
+ was settled by McCracken [30], where

R
n
+ = {x = (x1, . . . , xn) ∈ R | xn > 0},

and the case of bounded domains by Giga [20] and Solonnikov [38]. The case of exterior

domains was treated by Borchers and Sohr [7], Farwig and Sohr [16], Borchers and Varn-

horn [9] and Varnhorn [42]. When Ω is a perturbed half-space which is a domain such

that Ω∩BR = Rn
+ ∩BR for some R > 0 where BR = {x ∈ Rn | |x| > R}, (R) was proved

by Farwig and Sohr [16]. The case of cones in R3 was settled by Deuring [15]. The case

of aperture domains was settled by Farwig and Sohr [17]. The case of infinite layers like

R
n−1 × (−1, 1) was settled by Wiegner [5] and Abe and Shibata [1] and [2]. The case of

the asymptotically flat layer was settled by Abels [4].

To obtain Lp–Lq estimates:

‖T (t)~a‖
Lq(Ω)

≤ Cp,q eǫt t−
n
2 ( 1

p
− 1

q )‖~a‖
Lp(Ω)

,(1)

‖∇T (t)~a‖
Lq(Ω)

≤ Cp,q eǫt t−
n
2 ( 1

p
− 1

q )− 1
2 ‖~a‖

Lp(Ω)
,(2)
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for t > 0 and 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1), we combine (SE) with the Sobolev

inequality:

(3) ‖u‖
W

j
q (Ω)

≤ C‖∇mu‖a
Lp(Ω)

‖u‖1−a
Lp(Ω)

+ ‖u‖
Lp(Ω)

provided that 0 ≤ j < m, 1 ≤ p < ∞, m−j−n/p is not non-negative integer, j/m < a ≤ 1

and 1/q = j/n+1/p−am/n ≥ 0. The estimates (1) and (2) play an important role in the

study of Navier-Stokes equation. In fact, by using the Stokes semigroup, we can reduce

the Navier-Stokes equation:

(NS)

{

~ut + (~u · ∇)~u = ∇π + ∆~u, div ~u = 0 in (0, T ) × Ω

~u|
∂Ω

= 0, ~u|t=0 = ~a

to the integral equation:

(I) ~u(t) = T (t)~a −
∫ t

0

T (t − s)P ((~u(s) · ∇)~u(s)) ds,

where we have set

(~v · ∇)~w = T
((

n
∑

j=1

vj∂j

)

w1, . . . ,
(

n
∑

j=1

vj∂j

)

wn

)

, ∂j = ∂/∂xj ,

for the vectors of functions ~v = T (v1, . . . , vn) and ~w = T (w1, . . . , wn). Employing the

argument due to Kato [24] and using (1) and (2) we can prove the locally in time

existence theorem of (I). More precisely, we see that for any initial data ~a ∈ Jn(Ω)

there exists a time t0 > 0 such that the integral equation (I) admits a unique solution

~u(t) ∈ C0([0, t0), Jn(Ω)) with ∇~u(t) ∈ C0((0, t0), Ln(Ω)) (cf. Giga and Miyakawa [21]).

However, in proving a globally in time existence of solutions to (I) at least with small

initial data as well as in the study of time-asymptotic behaviour, we have to show (1)

and (2) without eǫt. To show this, we need more precise analysis of (λ+A)−1 near λ = 0.

That λ = 0 is in the resolvent set was derived in the bounded domain case by Giga [20]

and Solonnikov [38], and in the infinite layer case by Abe and Shibata [2], which implies

that (1) and (2) hold, replacing eǫt by e−ct with some constant c > 0.

When Ω = Rn, applying the Young inequality to the concrete solution formula, we

have (1) and (2) without eǫt, namely

‖T (t)~a‖
Lq(Ω)

≤ Cp,qt
−n

2 ( 1
p
− 1

q )‖~a‖
Lp(Ω)

, ∀ t > 0,(4)

‖∇T (t)~a‖
Lq(Ω)

≤ Cp,qt
−n

2 ( 1
p
− 1

q )− 1
2 ‖~a‖

Lp(Ω)
, ∀ t > 0,(5)

for 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1). When Ω = Rn
+, applying the Fourier multiplier

theorem to the concrete solution formula obtained by Ukai [41] and using the Sobolev

inequality:

(6) ‖∇ju‖
Lq(R

n
+

)
≤ C‖∇mu‖a

Lp(R
n
+

)
‖u‖1−a

Lp(R
n
+

)

provided that 0 ≤ j < m, 1 ≤ p < ∞, m−j−n/p is not non-negative integer, j/m < a ≤ 1

and 1/q = j/n+1/p− am/n ≥ 0, we have (4) and (5) for 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1)

(cf. Borchers and Miyakawa [8] and Desch, Hieber and Prüss [14]).
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When Ω is an exterior domain, (4) holds for 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1) but

(5) holds only for 1 ≤ p ≤ q ≤ n (q 6= 1). This result was first proved by Iwashita [23]

for 1 < p ≤ q < ∞ in (4) and 1 < p ≤ q ≤ n in (5) when n ≥ 3. The refinement of his

result was done by the following authors: Chen [10] (n = 3, q = ∞), Shibata [35] (n = 3,

q = ∞), Borchers and Varnhorn [9] (n = 2, (4) for p = q), Dan and Shibata [11], [12]

(n = 2), Dan, Kobayashi and Shibata [13] (n = 2, 3), and Maremonti and Solonnikov [31]

(n ≥ 2). Especially, that Iwashita’s restriction: q ≤ n in (5) is unavoidable was shown by

Maremonti and Solonnikov [31].

When Ω is an aperture domain, Abels [3] proved (4) for 1 < p ≤ q < ∞ and (5) for

1 < p ≤ q < n when n ≥ 3 ; and Hishida [22] proved (4) for 1 ≤ p ≤ q ≤ ∞ and (5) for

1 ≤ p ≤ q ≤ n (q 6= 1) and 1 ≤ p < n < q < ∞ when n ≥ 3.

Moreover, (I) was solved globally in time for small initial data in Jn(Ω) by using (4)

and (5) in the following papers: Kato [24] in the whole space case; Ukai [41] and Borchers

and Miyakawa [8] in the half-space case; Iwashita [23] and Dan and Shibata [11] in the

exterior domain cases; Abe and Shibata [2] in the infinite layer case; Hishida [22] in the

aperture domain case.

In this paper, we report on the results about (4) and (5) and the related topics in

the perturbed half-space cases. And also, we report on some results on the Navier-Stokes

flow in the perturbed half-space case. The detailed proofs of the results stated below are

found in the papers due to Kubo and Shibata [28] and [29].

2. Notation. Before stating our main theorem precisely, we outline our notation used

throughout the paper. If X is a subset in the complex number field C or functional space,

then Xn denotes the n-th product:

Xn = {(x1, . . . , xn) | xj ∈ X, j = 1, . . . , n}.

If X be a subset of C, then X \ (−∞, 0] is defined by

X \ (−∞, 0] = X \ {x + i0 ∈ C | −∞ < x ≤ 0}.

Given an n-vector of functions ~v = T (v1, . . . , vn) and point x = (x1, . . . , xn) ∈ R
n we set

~v ′ = T (v1, . . . , vn−1), x′ = (x1, . . . , xn−1).

The dot · stands for the usual inner products both of Rn and of Rn−1. Given R > 0, we

set

BR = {x ∈ R
n | |x| < R}, BR = {x ∈ R

n | |x| > R}, B+
R = BR ∩ R

n
+.

For the differentiation, we use the symbols:

∂α
x u = ∂α1

1 · · · ∂αn
n u for α = (α1, . . . , αn) ∈ N

n
0 ,

∂α′

x′ u = ∂α1
1 · · · ∂αn−1

n−1 u for α′ = (α1, . . . , αn−1) ∈ N
n−1
0 ,

∂α
x ~u = T (∂α

x u1, . . . , ∂
α
x un), ∂α′

x′ ~u = T (∂α′

x′ u1, . . . , ∂
α′

x′ un)

where N0 = N ∪ {0} and N is the set of all natural numbers, and moreover we set

∇ju = (∂α
x u | |α| = j), ∇u = ∇1u, ∇j~u = T (∇ju1, . . . ,∇jun).
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Sobolev spaces of vector-valued functions are used as well as of scalar functions. Thus,

given a domain D in Rn, ‖ · ‖
Lp(D)

denotes the usual Lp norm on D and we set

‖u‖
Wm

p (D)
=

∑

|α|≤m

‖∂α
x u‖

Lp(D)
, ‖~u‖

Lp(D)
=

n
∑

j=1

‖uj‖Lp(D)
, ‖~u‖

Wm
p (D)

=

m
∑

j=1

‖uj‖W m
p (D)

.

Lp(D) denotes the usual Lp space on D and C∞
0 (D) the set of all functions in C∞(Rn)

whose support is compact and contained in D. Moreover, we set

Lp,R(D) = {u ∈ Lp(D) | u(x) = 0 for x 6∈ BR},
Wm

p,loc(D) = {u ∈ Lp,loc(D) | ∂α
x u ∈ Lp,loc(D), |α| ≤ m},

Ŵ 1
p (D) = {u ∈ Lp,loc(D) | ∂ju ∈ Lp(D), j = 1, . . . , n},

Wm
p (D) = {u ∈ Lp(D) | ∂α

x u ∈ Lp(D), |α| ≤ m}.
By CA,B,··· we denote the constants depending on the quantities A, B, . . .. For two

Banach spaces X and Y , L (X, Y ) denotes the set of all bounded linear operators from

X into Y . A (Uǫ, X) denotes the set of all X-valued holomorphic functions defined on

Uǫ = {z ∈ C | |z| < ǫ}. BC(I; X) and Ck(I; X) denote the set of all X-valued bounded

continuous functions and Ck functions defined on I, respectively.

3. Main results about Stokes flow in the perturbed half-space. In this section,

we will state our main results concerning the Stokes system (S) in the half-space and the

perturbed half-space, which is defined as follows.

Definition 1. (1) The half-space Rn
+ is defined by

R
n
+ = {x = (x1, . . . , xn) ∈ R

n | xn > 0}.
(2) Let Ω be a domain in Rn. We call Ω a perturbed half-space if there exists a number

R > 0 such that

(7) Ω ∩ BR = R
n
+ ∩ BR.

As we already stated in section 1, when Ω is a perturbed half-space, Farwig and

Sohr [16] proved the Helmholtz decomposition (HD) and the resolvent estimate (R) on

Ω. Therefore, we know that the Stokes operator (SO) with domain (SD) generates the

analytic semigroup {T (t)}t≥0 on Jp(Ω). Then, we have the following theorem.

Theorem 1. Let Ω be a perturbed half-space in R
n (n ≥ 2) whose boundary ∂Ω is a C1,1

hypersurface. Then, the Stokes semigroup {T (t)}t≥0 satisfies the following two estimates:

‖T (t)~a‖
Lq(Ω)

≤ Cp,qt
−n

2 ( 1
p
− 1

q )‖~a‖
Lp(Ω)

,(8)

‖∇T (t)~a‖
Lq(Ω)

≤ Cp,qt
−n

2 ( 1
p
− 1

q )− 1
2 ‖~a‖

Lp(Ω)
,(9)

for any ~a ∈ Jp(Ω), t > 0 and 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1).

The main step in our proof of Theorem 1 is to show the following local energy decay

estimate.

Theorem 2. Let Ω be a perturbed half-space in Rn (n ≥ 2) whose boundary ∂Ω is a C1,1

hypersurface. Let 1 < p < ∞ and R be a number such that (7) holds. Then, the Stokes
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semigroup {T (t)}t≥0 satisfies the following estimate:

(10) ‖∂j
t T (t)P~a‖

W2
p (Ω∩BR)

≤ Cp,Rt−
n+1

2 −j‖~a‖
Lp(Ω)

for any t ≥ 1, j ∈ N0 and ~a ∈ Lp,R(Ω).

If we consider the Stokes system in the half-space:

~vt − ∆~v + ∇π = 0, div~v = 0 in (0,∞) × R
n
+,(11)

~v|
xn=0

= 0, ~v|t=0 = ~b,

then we know by Ukai [41] and Borchers and Miyakawa [8] that the solution ~v of (11)

satisfies the Lp–Lq estimate:

‖~v(t)‖
Lq(R

n
+

)
≤ Cp,qt

−n
2 ( 1

p
− 1

q )‖~b‖
Lp(R

n
+

)
,(12)

‖∇~v(t)‖
Lq(R

n
+

)
≤ Cp,qt

−n
2 ( 1

p
− 1

q )− 1
2 ‖~b‖

Lp(R
n
+

)
(13)

for any t > 0 and 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1). Since

‖~v(t)‖
Lp(B

+
R

)
≤ CR‖∇~v(t)‖

Lp(B
+
R

)

as follows from the boundary condition: ~v|
xn=0

= 0, using (13) and Theorem 2, we have

(14) ‖T (t)P~a‖
W2

p (Ω∩BR)
≤ Cp,Rt−

n
2p

− 1
2 ‖~a‖

Lp(Ω)

for any ~a ∈ Lp(Ω) and t ≥ 1. Combining (12), (13) and (14) by the cut-off technique

and following the argument due to Hishida [22, the proof of Theorem 2.1], we can show

Theorem 1.

In order to prove Theorem 2, we need some precise information about solutions to

the resolvent problem in R
n
+:

(λ − ∆)~w + ∇θ = ~f, div ~w = 0 in R
n
+,(15)

~w|
xn=0

= 0,

which is stated in the following two theorems.

Theorem 3. Let R(λ) and Π(λ) denote the solution operators of (15) which are defined

by

~w = R(λ)~f = T (R1(λ)~f, . . . , Rn(λ)~f ) and θ = Π(λ)~f

for λ ∈ C \ (−∞, 0]. Let R > 0, 1 < p < ∞ and set

B
j
p,R = L (Lp,R(Rn

+)n, W j
p (B+

R))

for j = 1, 2. Then there exist operators Gk
j (λ) ∈ A (U1/16, B

2
p,R), k = 1, 2, 3, j = 1, . . . , n,

and Gk
π(λ) ∈ B

1
p,R, k = 1, 2, 3 such that

(16)
Rj(λ)~f = λ

n−1
2 G1

j(λ)~f + (λ
n
2 log λ)G2

j(λ)~f + G3
j(λ),

Π(λ)~f = λ
n−1

2 G1
π(λ)~f + (λ

n
2 log λ)G2

π(λ)~f + G3
π(λ),
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in B+
R when n ≥ 2 and n is even; and

(17)
Rj(λ)~f = λ

n
2 G1

j(λ)~f + (λ
n−1

2 log λ)G2
j(λ)~f + G3

j(λ),

Π(λ)~f = λ
n
2 G1

π(λ)~f + (λ
n−1

2 log λ)G2
π(λ)~f + G3

π(λ),

in B+
R when n ≥ 3 and n is odd, provided that λ ∈ U1/16 \ (−∞, 0] and ~f ∈ Lp,R(Ω).

Theorem 4. Let 1 < p < ∞, 0 < ǫ < π/2, and let R(λ) and Π(λ) be the operators given

in Theorem 3 for λ ∈ C \ (−∞, 0]. Let Σǫ be the set in C defined by

(18) Σǫ = {λ ∈ C \ {0} | | arg λ| ≤ π − ǫ}.
Then, there exist operators R(0)∈L (Lp,R(Rn

+)n, W 2
p,loc(R

n
+)n) and Π(0)∈L (Lp,R(Rn

+)n,

W 1
p,loc(R

n
+)) which satisfy the following three conditions:

(i) Given ~f ∈ Lp,R(Rn
+), ~v = R(0)~f and θ = Π(0)~f satisfy the equation:

(19) − ∆~v + ∇θ = ~f, div~v = 0 in R
n
+, ~v|

xn=0
= 0.

(ii)

‖R(λ)~f − R(0)~f ‖
W1

p (B
+
R

)
+ ‖Π(λ)~f − Π(0)~f ‖

Lp(B
+
R

)
≤ Cp,R,ǫ|λ|

1
4 ‖~f ‖

Lp(Rn)

for any ~f ∈ Lp,R(Rn
+) and λ ∈ Σǫ with |λ| ≤ 1/16, where Cp,R,ǫ is a constant

independent of ~f and λ.

(iii)

|[R(0)~f ](x)| ≤ Cp,R|x|−(n−1)‖~f ‖
Lp(R

n
+

)
,

|∇[R(0)~f ](x)| ≤ Cp,R|x|−(n−1)‖~f ‖
Lp(R

n
+

)
,

|[Π(0)~f ](x)| ≤ Cp,R|x|−(n−1)‖~f ‖
Lp(R

n
+

)
,

for any ~f ∈ Lp,R(Rn
+) and x ∈ Rn

+ with |x| ≥ 2
√

2R, where Cp,R is a constant

independent of ~f and x.

Constructing a parametrix of the resolvent problem in a perturbed half-space, we can

derive from Theorem 3 and Theorem 4 that the resolvent operator (λ + A)−1 has the

expansion formula of the same type near λ = 0 in the space L (Lp,R(Ω)n, W 2
p (Ω∩BR)n)

as in the half-space case, which is applied to (Rp) implies Theorem 2. The detailed proof

of Theorems 1 and 2 is given in Kubo and Shibata [29] and that of Theorems 3 and 4

in Kubo-Shibata [28]. The fundamental idea of the proofs of Theorems 1 and 2 by using

Theorems 3 and 4 goes back to a paper due to Shibata [34].

4. The Navier-Stokes flow in a perturbed half-space. Following the arguments

due to Kato [24], Kozono [25], Hishida [22] and Wiegner [43] and using Theorem 1 we

can show the following theorem.

Theorem 5. Let n ≥ 2. There exists a constant δ = δ(Ω, n) > 0 with the following

property: if ~a ∈ Jn(Ω) satsifies ‖~a‖
Ln(Ω)

≤ δ, then the integral equation

~u(t) = T (t)~a −
∫ t

0

T (t − s)P ((~u(s) · ∇)~u(s))ds
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admits a unique strong solution ~u(t)∈BC([0,∞); Jn(Ω)) with ∇~u(t)∈C0((0,∞); Ln(Ω)).

Moreover as t → ∞,

‖~u(t)‖
Lr(Ω)

= o(t−
1
2+ n

2r ) for n ≤ r ≤ ∞,

‖∇~u(t)‖
Lr(Ω)

= o(t−1+ n
2r ) for n ≤ r < ∞.

Theorem 6. Let n ≥ 2. There exists a constant η = η(Ω, n) ∈ (0, δ] with the following

property: if ~a ∈ L1(Ω) ∩ Jn(Ω) satisfies ‖~a‖
Ln(Ω)

≤ η, then the solution ~u(t) obtained in

Theorem 5 satisfies the estimates:

‖~u(t)‖
Lr(Ω)

= O(t−(n−n
r
)/2) for 1 < r ≤ ∞,

‖∇~u(t)‖
Lr(Ω)

= O(t−(n−n
r
)/2− 1

2 ) for 1 < r < ∞,

as t → ∞.

5. On the periodic solution of the Navier-Stokes equation in the perturbed

half-space. We can show that if the incompressible fluid in the perturbed half-space

is governed by the periodic external force, the Navier-Stokes equations have a periodic

strong solution with the same period as the external force. Let Ω be a domain in R
n(n ≥

3). Let us consider the following Navier-Stokes equations in Ω:


















∂~u

∂t
− ∆~u + ~u · ∇~u + ∇π = ~f, x ∈ Ω, t ∈ R,

div ~u = 0, x ∈ Ω, t ∈ R,

~u|∂Ω = 0.

(NSP)

Applying the projection operator Pr to both sides of the first equation of (NSP), we

have
d~u

dt
+ Ar~u + Pr(~u · ∇~u) = Pr

~f(E)

on Jr(Ω) for t ∈ R. The above (E) can be further transformed to the following integral

equation:

~u(t) =

∫ t

−∞

T (t − s)Pr
~f(s)ds −

∫ t

−∞

T (t − s)Pr((~u · ∇)~u(s))ds.(I-E)

Concerning the external force ~f , we impose the following assumption:

Assumption 1. Let the exponents r and q be such as 2 < r < n, n
2 < q < n. When

n ≥ 4, we assume that

~f ∈ BC(R; Lp(Ω) ∩ Lℓ(Ω))(20)

for 1 < p, ℓ < ∞ with 1/r + 2/n < 1/p, 1/q < 1/ℓ < 1/q + 1/n.

When n = 3, we assume that

Pp
~f(s) = As

p~g(s) (s ∈ R) with some ~g ∈ BC(R; D(As
p))(21)

for 1 < p < min(r, q) and δ > 0 satisfying 3/2p + δ ≥ max(1 + 3/2r, 1/2 + 3/2q) and that

~f ∈ BC(R; Lℓ(Ω))

for 1/q < 1/ℓ < 1/q + 1/3.
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Using the method due to Kozono and Nakao [26], we can show the following two

theorems in the perturbed half-space case.

Theorem 7. Let Ω and ~f satisfy Assumption 1. Suppose that ~f(t) = ~f(t + ω) for all

t ∈ R with some ω > 0. Then there is a constant η = η(n, r, q, p, ℓ, δ) > 0 such that if

sup
s∈R

‖Pp
~f(s)‖

Lp(Ω)
+ sup

s∈R

‖Pℓ
~f(s)‖

Lℓ(Ω)
≤ η when n ≥ 4,

sup
s∈R

‖~g(s)‖
Lp(Ω)

+ sup
s∈R

‖Pℓ
~f(s)‖

Lℓ(Ω)
≤ η when n = 3,

we have a periodic solution ~u of (I-E) with the same period ω as ~f in the class

BC(R; Jr(Ω)) with ∇~u ∈ BC(R; Lq(Ω)).

Such a solution ~u is unique within this class provided sups∈R
‖~u(s)‖

Lr(Ω)
+

sups∈R
‖∇~u(s)‖

Lq(Ω)
is sufficiently small.

Theorem 8. In addition to the hypotheses of Theorem 7, let us assume furthermore that
~f is a Hölder continuous function on R with values in Ln(Ω). Then the periodic solution

~u given by Theorem 7 has the following additional properties:

(i) ~u ∈ BC(R; Jn(Ω)) ∩ C1(R; Jn(Ω));

(ii) ~u(t) ∈ D(An) for all t ∈ R and An~u ∈ C0(R; Jn(Ω));

(iii) ~u satisfies (E) in Jn(Ω) for all t ∈ R.
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