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Abstrat. In this survey we report on existene results for some free boundary problems forequations desribing motions of both inompressible and ompressible visous �uids. We alsopresent ways of ontrolling free boundaries in two ases: a) when the free boundary is governedby surfae tension, b) when surfae tension does not our.1. Introdution. We present some results onerning free boundary problems for non-stationary Navier-Stokes equations. We are interested in a free boundary problem forequations desribing the motion of a visous general (heat-onduting) �uid whih anbe formulated as follows: �nd a domain Ωt ⊂ R

3 with a boundary St = S1 ∪ S2t (S1 isa �xed part of St independent of time t; S2t is a free part of St) as well as a veloityvetor �eld v = v(x, t) (v = (v1, v2, v3)), density ρ = ρ(x, t) and temperature θ = θ(x, t)satisfying for x ∈ Ωt, t ∈ (0, T ), T > 0, the ompressible Navier-Stokes system with initialonditions: Ωt|t=0 = Ω, v|t=0 = v0, ρ|t=0 = ρ0, θ|t=0 = θ0 in Ω, the Dirihlet boundaryondition for v and θ on S1× (0, T ) and the Neumann type ondition for the stress tensorand for θ on ⋃
t∈(0,T ) S2t × {t}.Therefore, the equations under onsideration are as follows (see [LanLif℄, [Ser℄):

ρ[vt + (v · ∇)v] − div T(v, p) = ρf̃ in Ω̃T ,(1.1)

ρt + div(ρv) = 0 in Ω̃T ,(1.2)

ρcv(θt + v · ∇θ) − div(κ∇θ) + θpθ div v(1.3)

−
µ

2

3∑

i,j=1

(vixj
+ vjxi

)2 − (ν − µ)(div v)2 = ρr, in Ω̃T ,
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280 E. ZADRZYŃSKAwhere T > 0, Ω̃T ≡
⋃

t∈(0,T ) Ωt × {t}, Ωt ⊂ R
3 is an unknown domain at time t withboundary St = S1 ∪ S2t; T = T(v, p) is the stress tensor given by

T(v, p) = {−pδij + µ(vixj
+ vjxi

) + (ν − µ) div vδij}i,j=1,2,3.Moreover, f̃ = f̃(x, t) is the fore per unit mass ating on the �uid; r = r(x, t) denotesthe heat soures per unit mass; p = p(ρ, θ) is the pressure, κ = κ(ρ, θ) the oe�ientof heat ondutivity, cv = cv(ρ, θ) the spei� heat at onstant volume; ν = ν(ρ, θ) and
µ = µ(ρ, θ) are the visosity oe�ients. The funtions κ, cv, ν, µ are positive and
ν > (1/3)µ.We omplete equations (1.1)�(1.3) with the following initial onditions:

Ωt|t=0 = Ω, St|t=0 = S,(1.4)

v|t=0 = v0 in Ω,(1.5)

ρ|t=0 = ρ0 in Ω,(1.6)

θ|t=0 = θ0 in Ω.(1.7)We also omplete system (1.1)�(1.3) with boundary onditions whih depend on thegeometry of Ωt. We onsider two kinds of free boundary problems.Drop problem. This is the problem desribing the motion of an isolated mass of a�uid bounded by a free boundary. In this ase Ωt ⊂ R
3 is a bounded domain with theboundary St = S2t (S1 = ∅).For the drop problem the following boundary onditions are assumed:

Tn − σHn = −p0n on S̃T ≡
⋃

t∈(0,T )

St × {t},(1.8)

v · n = −
φt

|∇φ|
on S̃T ,(1.9)

κ
∂θ

∂n
= θ on S̃T(1.10)or

(1.10′) κ
∂θ

∂n
= κa(θa − θ) on S̃T ,where n is the unit outward vetor normal to St; σ is a onstant oe�ient of surfaetension; p0 is the onstant external pressure; θ = θ(x, t) the heat �ow per unit surfae;

κa the onstant oe�ient of outer heat ondutivity; θa the onstant atmospheri tem-perature; φ(x, t) = 0 desribes the boundary St; H denotes the double mean urvatureof St expressed by
Hn = ∆St

(t)x,where ∆St
(t) is the Laplae-Beltrami operator on St.We an distinguish the two ases σ > 0 and σ = 0 in the boundary ondition (1.8). If

σ > 0 we say that the free boundary is governed by surfae tension.Condition (1.9) is alled the kinemati boundary ondition. It means that �uid par-tiles do not ross the free boundary.



FREE BOUNDARY PROBLEMS 281In drop problems it is usually assumed that
(1.11) f̃ = f + k∇U,where f = f(x, t) denotes the external fore �eld per unit mass; k is the onstant oe�-ient of gravitation, and U(x, t) =

∫
Ωt

ρ(y,t)
|x−y|dy is the self-gravitational potential.In the ase of k > 0 the seond term on the right-hand side of (1.11) is alled theself-gravitational fore.Surfae waves problem. This is the problem desribing the motion of a �uid oupyinga semi�nite domain in R

3 bounded above by a free surfae S2t ≡ {x = (x′, x3) ∈ R
3 :

x′ ∈ R
2, x3 = F (x′, t)}, and below by a �xed part of boundary St, that is, by S1 ≡ {x ∈

R
3 : x′ ∈ R

2, x3 = −b(x′)}, where F is an unknown funtion and b is a given funtion.Therefore, initial ondition (1.4) takes the form
(1.12) F |t=0 = F0(x

′), x′ ∈ R
2.For the surfae waves problem the following boundary onditions are assumed:

Tn − σHn = −p0n on S̃T
2 ≡

⋃
t∈(0,T ) S2t × {t},(1.13)

v · n = −
Ft√

1 + |∇′

xF |
2

on S̃T
2 ,(1.14)

κ
∂θ

∂n
= θ on S̃T

2 ,(1.15)or
κ

∂θ

∂n
= κa(θa − θ) on S̃T

2 , ∗ (1.15′)

v = 0 on S1 × (0, T ),(1.16)

θ = θb on S1 × (0, T ),(1.17)where n is the unit outward vetor normal to S2t; in (1.13) σ > 0 or σ = 0; θb is theonstant temperature at S1, ∇′
x = ∇x′ ; (1.14) is the kinemati ondition in this ase.Moreover, in surfae waves problems it is usually assumed that

(1.18) f̃ = f − ge3,where f = f(x, t) is an external fore �eld per unit mass, g denotes the aelaration ofgravity and e3 =t (0, 0, 1).Thus, the seond term on the right-hand side of (1.18) is the gravity.We an also onsider some speial ases of system (1.1)�(1.3).1 o Barotropi ompressible �uid. This is a �uid of the state equation: p = p(ρ). Thefree boundary problem for suh a �uid is desribed by equations (1.1)�(1.2) (where thevisosity oe�ients ν and µ are only funtions of ρ) with onditions (1.4)�(1.6), (1.8)�(1.9) or (1.5)�(1.6), (1.12)�(1.14), (1.16).2oInompressible �uid. Assuming that ρ = const (let for simpliity ρ = 1) equations(1.1)�(1.2) take the form of the lassial Navier-Stokes equations
vt + (v · ∇)v − ν∆v + ∇p = f̃ in Ω̃T ,(1.19)
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div v = 0 in Ω̃T ,(1.20)where p = p(x, t).The drop problem for an inompressible �uid takes the form of system (1.19)�(1.20)with initial onditions (1.4)�(1.5) and boundary onditions (1.8)�(1.9), where
T(v, p) = {Tij}i,j=1,2,3 = {−pδij + 2ν(vixj

+ vjxi
)}i,j=1,2,3.The inompressible surfae waves problem onsists of equations (1.19)�(1.20) togetherwith initial onditions (1.5), (1.12) and with boundary onditions (1.13)�(1.14), (1.16).2. Existene results. Most of existene results are obtained after transforming a freeboundary problem to a problem in a �xed domain. The most frequently used transforma-tion onnets the Eulerian oordinates x with the Lagrangian oordinates ξ, whih arede�ned as initial data for the following Cauhy problem:

dx

dt
= v(x, t), x(0) = ξ, ξ = (ξ1, ξ2, ξ3).Hene, the transformation onneting x and ξ oordinates has the form:

(2.1) x = ξ +

∫ t

0

u(ξ, t′)dt′ ≡ Xu(ξ, t),where u(ξ, t) = v(Xu(ξ, t), t).In oordinates ξ the above problems have the forms of problems with the unknownfuntions u, η(ξ, t) = ρ(Xu(ξ, t), t), ϑ(ξ, t) = θ(Xu(ξ, t), t) (u and q(ξ, t) = p(Xu(ξ, t), t)in the inompressible ase) in a �xed domain ΩT ≡ Ω × (0, T ). The drop problem forequations (1.1)�(1.3) in the Lagrangian oordinates takes the form:
ηut − divu Tu(u, p) = η(g + k∇uUu) in ΩT ,(2.2)

ηt + η∇u · u = 0 in ΩT ,(2.3)

ηcv(η, ϑ)ϑt −∇u · (κ∇uϑ) = −ϑpϑ(η, ϑ)∇u · u(2.4)

+
µ

2

3∑

i,j=1

(ξxi
· ∂ξuj + ξxj

· ∂ξui)
2 − (ν − µ)(∇u · u)2 = ηh in ΩT ,

Tu(u, p)nu − σ∆u(t)Xu = −q0nu on ST ,(2.5)

κ(η, ϑ)nu · ∇uϑ = ϑ on ST(2.6)or
κ(η, ϑ)nu · ∇uϑ = κa(ϑa − ϑ) on ST(2.6′)

u|t=0 = v0, η|t=0 = ρ0, ϑ|t=0 = θ0, in Ω,(2.7)where h(ξ, t) = r(Xu(ξ, t), t), ϑ(ξ, t) = θ(Xu(ξ, t), t),
Tu(u, p) = {−p(η, ϑ)δij + µ(η, ϑ)(∂xi

ξk∂ξk
uj

+ ∂xj
ξk∂ξk

ui) + (ν(η, ϑ) − µ(η, ϑ))δij∇u · u}i,j=1,2,3,

I = {δij}i,j=1,2,3, divu Tu(u, p) = {∂xj
ξk∂ξk

Tuij(u, p)}i=1,2,3; moreover ∇u = ξix∂ξi
=

(ξixj
∂ξi

)j=1,2,3, ξixj
are the elements of the matrix ξx whih is inverse to xξ = I +
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∫ t

0
uξ(ξ, t

′)dt′ = {δij +
∫ t

0
uiξj

(ξ, t′)dt′}i,j=1,2,3 and the summation onvention over re-peated indies is assumed.The surfae waves problem an be transformed analogously.The solvability results for the above free boundary problems are obtained in di�erentfuntion spaes. However, sine the transformation (2.1) is involved in the nonlinearterms, we have always to impose suh a regularity of solutions that
(2.8)

∥∥∥∥
∫ T

0

uξdt′
∥∥∥∥

L∞(Ω)

≤ T 1/2

( ∫ T

0

‖uξ‖
2
L∞(Ω)dt′

)1/2

< ∞.Therefore, for the presented free boundary problems we annot expet the existene ofsolutions as weak as for initial-boundary value problems for the Navier-Stokes system in�xed domains. For this reason we an obtain for the above problems only loal existenetheorems or global existene theorems for initial data su�iently lose to equilibriumstates.Loal existene and uniqueness. The loal existene and uniqueness theorems forboth the drop and surfae waves problems have been proved in all ases, i.e. for in-ompressible, barotropi ompressible and general ompressible motions. The requiredregularity of funtion spaes in whih we an examine the solvability of the above freeboundary problems is implied by ondition (2.8).Below, we present the loal solvability and uniqueness results in spaes of funtionswith the lowest regularity. First, we introdue the notation:
AiT,ΩiT

≡ BiT,ΩiT
∩ L2(iT, (i + 1)T ; W 3

2 (ΩiT )),(2.9)

BiT,ΩiT
≡ {w ∈ C([iT, (i + 1)T ]; W 2

2 (ΩiT )) : wt ∈ C([iT, (i + 1)T ]; W 1
2 (ΩiT ))(2.10)

∩ L2(iT, (i + 1)T ; W 2
2 (ΩiT )), wtt ∈ C([iT, (i + 1)T ]; L2(ΩiT ))

∩ L2(iT, (i + 1)T ; W 1
2 (ΩiT ))} for i ∈ N ∪ {0}and A0T,Ω0T

≡ AT,Ω, B0T,Ω0T
≡ B0T,Ω.Moreover, we denote by W l,m

r (ΩT ) , where l, m ∈ R+∪{0}, 1 ≤ r < ∞, the anisotropiSobolev-Slobodetski�� spae with the following norm
‖u‖r

W l,m
r (ΩT )

=

∫

ΩT

|u(x, t)|rdxdt +
∑

0<|γ|≤[l]

∫

ΩT

|Dγ
xu(x, t)|rdxdt(2.11)

+
∑

0<i≤[m]

∫

ΩT

|Di
tu(x, t)|rdxdt

+
∑

|γ|=[l]

∫ T

0

dt

∫

Ω

∫

Ω

|Dγ
xu(x, t) − Dγ

x′u(x′, t)|r

|x − x′|n+r(l−[l])
dxdx′

+

∫

Ω

dx

∫ T

0

∫ T

0

|D
[m]
t u(x, t) − D

[m]
t′ u(x, t′)|r

|t − t′|1+r(m−[m])
dtdt′.In (2.11) Di

t = ∂i
t, Dγ

x = ∂γ1
x1

. . . ∂γn
xn

and γ = (γ1, . . . , γn). In the ase of integer l thefourth term on the right-hand side of (2.4) is omitted and in the ase of integer m the�fth term is omitted.



284 E. ZADRZYŃSKAIn our presentation of loal existene results we assume for simpliity that f = 0,
r = 0, θ = 0 and we omit ompatibility onditions. We an distinguish the followingases:1 o The inompressible ase with σ = 0 (drop problem with k = 0 [Sol2℄, drop problemwith k > 0 [MZaj℄; surfae waves problem [A℄).Regularity of data: r > 3, v0 ∈ W

2−2/r
r (Ω), S ∈ W

2−1/r
r .Regularity of solution: u ∈ W 2,1

r (ΩT ), q ∈ W 1,0
r (ΩT ), q ∈ W

1−1/r,1/2−1/(2r)
2 (ST ) inthe ase of the drop problem, and q ∈ W

1−1/r,1/2−1/(2r)
2 (S2 × (0, T ))in the ase of thesurfae waves problem (where S2 ≡ S2t|t=0), for some T > 0.2 o The inompressible ase with σ > 0 (drop problem with k = 0 [Sol1℄, drop problemwith k > 0 [Sol4℄; surfae waves problem [T℄).Regularity of data: α ∈ (1/2, 1), v0 ∈ W 1+α

2 (Ω), S ∈ W
5/2+α
2 for the drop problem,and S1 ∈ W

3/2+α
2 , S2 ∈ W

5/2+α
2 for the surfae waves problem.Regularity of solution: u ∈ W

2+α,1+α/2
2 (ΩT ), q ∈ W

α,α/2
2 (ΩT ), ∇q ∈ W

α,α/2
2 (ΩT ) and

q ∈ W 1/2+α,1/4+α/2(S × (0, T )) for the drop problem, q ∈ W 1/2+α,1/4+α/2(S2 × (0, T ))in the ase of the surfae waves problem, for some T > 0.3 o The ompressible barotropi ase with σ > 0 (drop problem [SolT1℄).Regularity of data: α ∈ (1/2, 1), v0 ∈ W 1+α
2 (Ω), ρ0 ∈ W 1+α

2 (Ω), S ∈ W
5/2+α
2 ,

p ∈ C3(R+); µ, ν are onstants.Regularity of solution: u ∈ W
2+α,1+α/2
2 (ΩT ), η ∈ W

1+α,1/2+α/2
2 (ΩT ) for some T > 0.4 o The ompressible heat-onduting ase with σ > 0 (drop problem with k=0 [Z1℄).Regularity of data: α ∈ [3/4, 1), v0 ∈ W 1+α

2 (Ω), ρ0 ∈ W 1+α
2 (Ω), θ0 ∈ W 1+α

2 (Ω),
S ∈ W

5/2+α
2 , p ∈ C3(R2), cv ∈ C2(R2), ν ∈ C3(R2), µ ∈ C3(R2), κ ∈ C3(R2).Regularity of solution: u ∈ W

2+α,1+α/2
2 (ΩT ), ϑ ∈ W

2+α,1+α/2
2 (ΩT ), and η ∈

W
1+α,1/2+α/2
2 (ΩT ) ∩ C([0, T ]; W 1+α

2 (Ω)) for some T > 0.5 o The ompressible barotropi ase with σ = 0 (drop problem with k=0 [ZZaj1, ZZaj2℄).Regularity of data: S ∈ W
5/2
2 , v0 ∈ W 2

2 (Ω), ρ0 ∈ W 2
2 (Ω), ut(0) ∈ W 1

2 (Ω), utt(0) ∈

L2(Ω), (where ut(0), utt(0) are alulated from equation (2.2)), p ∈ C3(R2); µ, ν areonstants.Regularity of solution: u ∈ A0T,Ω, η ∈ B0T,Ω for some T > 0.6 o The ompressible barotropi ase with σ = 0 (drop problem with k > 0 [StZaj℄).Regularity of data: S ∈ W
5/2
2 , v0 ∈ W 2

2 (Ω), ρ0 ∈ W 2
2 (Ω), p ∈ C3(R+); µ, ν areonstants.Regularity of solution: u ∈ L∞(0, T ; W 1

2 (Ω))∩L2(0, T ; W 3
2 (Ω)), ut ∈ L∞(0, T ; L2(Ω))

∩ L2(0, T ; W 1
2 (Ω)), η ∈ L∞(0, T ; W 1

2 (Ω)), ηt ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)), ηtt ∈

L2(Ω
T ), for some T > 0.7 o The ompressible heat-onduting ase with σ = 0 (drop problem [ZZaj1℄).Regularity of data: S ∈ W

5/2
2 , v0 ∈ W 2

2 (Ω), θ0 ∈ W 2
2 (Ω), ρ0 ∈ W 2

2 (Ω), ut(0) ∈

W 1
2 (Ω), ϑt(0) ∈ W 1

2 (Ω), utt(0) ∈ L2(Ω), ϑtt(0) ∈ L2(Ω) (where ut(0), utt(0), ϑt(0),

ϑtt(0) are alulated from equations (2.2) and (2.4)), p ∈ C3(R2), cv ∈ C2(R2); µ, ν, κare onstants.



FREE BOUNDARY PROBLEMS 285Regularity of solution: u ∈ A0T,Ω, ϑ ∈ A0T,Ω, η ∈ B0T,Ω for some T > 0. The fullreview of loal existene results an be found in [Z2℄.Global existene and stability. The global existene theorems for the three-dimen-sional free boundary problems an be proved for initial data lose to equilibrium states.For inompressible motions it means that the initial veloity v0 is assumed to be small.Moreover, for problems with a free boundary governed by surfae tension it is assumedthat a boundary of an initial domain is lose to a sphere of radius R0 =
(

3
4π |Ω|

)1/3 inthe ase of drop problem or to a plane in the ase of surfae waves problem. Under theabove assumptions it is proved that there exists a global solution whih is lose to theequilibrium state. It means that the veloity v of the �uid remains small, the pressure islose to a ertain onstant and the free boundary St remains lose to the same sphere orto the same plane as the initial boundary S for all t > 0.Solonnikov [Sol2℄ proved that in the ase of the inompressible drop problem with
σ = 0 and k = 0, the loal solution (see 1o above) an be extended to a global one if v0is su�iently small in W

2−2/r
r (Ω). For inompressible surfae waves problem with σ = 0the global existene result with a small initial veloity has been obtained by Sylvester[Syl℄ in spaes of more regular funtions.In the inompressible ase with σ > 0 the loal solutions desribed in 2 o above anbe extended to global ones if v0 ∈ W 1+α

2 (Ω) and S ∈ W
5/2+α
2 are su�iently lose to anequilibrium state (see [Sol1℄, [Sol3℄, [TTan℄).Similar results an be proved for ompressible problems. In partiular, an equilibriumstate in the ompressible heat-onduting ase with σ > 0 and k = 0 an be de�ned asfollows.Definition 1. Let f = 0, r = θ = 0. By an equilibrium state we mean a solution

(v, θ, ρ, Ωt) of problem (1.1)�(1.10) suh that v = 0, θ = θe, ρ = ρe, Ωt = Ωe for t ≥ 0,where ρe = (M/(4/3)πR3
e), M =

∫
Ω

ρ0(ξ)dξ, Ωe is a ball of radius Re; Re > 0 and θe > 0satisfy the equation
p

(
M

(4/3)πR2
e

, θe

)
= p0 +

2σ

Re
.In this ase if we assume that α ∈ (3/4, 1), v0 ∈ W 1+α
2 (Ω) is su�iently small,

ρ0 ∈ W 1+α
2 (Ω), θ0 ∈ W 1+α

2 (Ω) are su�iently lose to ρe and θe, respetively, and thefuntion R̃ desribing S (see Setion 3) is su�iently lose to Re, then we an extend theloal solution (desribed in 4 o above) to a global one (see [Z1℄, [Z2℄).The global solvability of the ompressible barotropi drop problem with σ > 0 isproved in [SolT2℄ in the funtion spaes determined by the loal solution de�ned in3 o and in [Zaj℄ in spaes of more regular funtions. A global solvability result for theompressible barotropi surfae waves problem with σ > 0 an be found in [JinPad℄.Moreover, Tani and Tanaka [TanT℄ proved the global existene theorem for the om-pressible heat-onduting surfae waves problem with σ > 0 in a lass of funtions of agreater regularity than the regularity desribed in 4o for the drop problem.Now, onsider the ase of σ = 0 and k = 0. For the ompressible barotropi dropproblem by an equilibrium state we mean a onstant solution (0, ρe, Ωe) of the problem



286 E. ZADRZYŃSKAwith f = 0 suh that p(ρe) = p0 and |Ωe| = M/ρe. In [ZZaj2℄ we prove that if initialdata are lose to the equilibrium solution then the loal solution of the problem (see 5oabove) an be extended to a global one.Introdue the notation:
pσ = p − p0, θσ = θ − θe, ρσ = ρ − ρe,

ϕ(t) = |v(t)|22,0,Ωt
+ |θσ(t)|22,0,Ωt

+ |ρσ(t)|22,0,Ωt
,

Φ(t) = |v(t)|23,1,Ωt
+ |θσ(t)|23,1,Ωt

+ ‖ρσ(t)‖2
W 2

2 (Ωt)
+

+ ‖ρσt(t)‖
2
W 2

2 (Ωt)
+ ‖ρσtt(t)‖

2
W 1

2 (Ωt)
,

M(t) =

{
(v, θσ, ρσ) : sup

0≤t′≤t
ϕ(t′) +

∫ t

0

Φ(t′)dt′ < ∞

}
,where |f(t)|l,k,Ωt

≡
∑

i≤l−k ‖∂
i
tf(t)‖W l−i

2 (Ωt)
, l ∈ N ∪ {0}.From [ZZaj4℄ it follows that the loal solution of problem (1.1)�(1.10) desribed in7o above an be extended to a global one if initial data are su�iently lose to theequlibrium state, i.e. ϕ(0) ≤ ε with ε su�iently small and if the following di�erentialinequality holds:

(2.12)
dϕ

dt
+ c1Φ ≤ c2

[
ϕ(1 + ϕ2) +

∥∥∥∥
∫ t

0

vdt′
∥∥∥∥

2

W 3
2 (Ωt)

]
Φ for t ≤ T ,where c1, c2 are positive onstants depending on ρ1, ρ2, θ1, θ2, ν, µ, κ, cv, p, ‖S‖

W
5/2
2and the onstants from the imbedding theorems and the Korn inequalities (being alsonondereasing ontinuous funtions of ‖ ∫ t

0
vdt′‖W 3

2 (Ωt)). Moreover, ϕ in (2.12) is a ertainfuntion satisfying the estimate
c3ϕ(t) ≤ ϕ(t) ≤ c4ϕ(t) for t ≤ T ,where c3, c4 are positive onstants depending on ρ1, ρ2, θ1, θ2, µ, κ, cv, p, ‖S‖

W
5/2
2

andthe onstants from the imbedding theorems.In [ZZaj3℄ it is proved that inequality (2.12) holds for problem (1.1)�(1.9), (1.10′). Inthis ase we admit the following de�nition of an equilibrium state.Definition 2. An equilibrium state is a solution (v, θ, ρ, Ωt) of (1.1)�(1.9), (1.10′) suhthat v = 0, θ = θe, ρ = ρe, Ωt = Ωe for t ≥ 0, where θe = θa, ρe is a positive onstantsatisfying the state equation
p(ρe, θe) = p0,

Ωe is a domain of volume |Ωe| = M/ρe and M =
∫
Ω

ρ0(ξ)dξ.Using inequality (2.12) we an prove the following global existene theorem.Theorem 1. Let f = 0, r = 0, S ∈ W
5/2
2 , v0 ∈ W 2

2 (Ω), ρ0 ∈ W 2
2 (Ω), θ0 ∈ W 2

2 (Ω),

ut(0) ∈ W 1
2 (Ω), ϑt(0) ∈ W 1

2 (Ω), utt(0) ∈ L2(Ω), ϑtt(0) ∈ L2(Ω) (where ut(0), utt(0),

ϑt(0), ϑtt(0) are alulated from equations (2.2) and (2.4)). Let ν, µ, κ be positive on-stants and ν > (1/3)µ; p ∈ C3(R2); pρ > 0, pθ > 0 for ρ, θ > 0; cv ∈ C2(R2) and assume



FREE BOUNDARY PROBLEMS 287that the following ompatibility onditions are satis�ed:
∂i

t{[Du(u) − (p(η, ϑ) − p0)]nu}|t=0 = 0, i = 0, 1, on S,

∂j
t [κnu · ∇uϑ − κa(θa − ϑ)]|t=0 = 0, i = 0, 1, on S.Moreover, let the following assumptions be satis�ed: ϕ(0) ≤ ε; l > 0 is a onstant suhthat ρe − l > 0, θ0 − l > 0 and

ρ1 < ρ0 < ρ2, θ1 < θ0 < θ2,where ρ1 = ρe − l, ρ2 = ρ + l, θ1 = θa − l, θ2 = θe + l;∫

Ω

ρ0v0 · (a + b × ξ)dξ = 0,where a and b are arbitrary onstant vetors. Then for su�iently small ε there existsa unique global solution of (1.1)�(1.9), (1.10′) suh that (v, θσ, ρσ) ∈ M(t) for t ∈ R+,
St ∈ W

5/2
2 for t ∈ R+ and

ϕ(t) ≤ cε fort ∈ R+,where c > 0 is a onstant depending on Ω, ρ1, ρ2, θ1, θ2, p, cv, ν, µ, κ.Apart from inequality (2.12) we use in the proof of Theorem 1 the following estimatewhih holds for the loal solution of (2.2)�(2.5), (2.6′), (2.7):
(2.13) ‖u‖2

A0T,Ω
+ ‖ϑσ‖

2
A0T,Ω

+ ‖ησ‖
2
B0T,Ω

≤ C1(T )ϕ(0),where T is the time of loal existene; A0T,Ω, B0T,Ω are given by (2.9)�(2.10), and C1 isan inreasing funtion of T . Inequality (2.13) rewritten in the Eulerian oordinates yieldsfor t ≤ T

(2.14) sup
0≤t′≤t

ϕ(t′) +

∫ t

0

Φ(t′)dt′ ≤ C2(T )ϕ(0),where C2 is an inreasing funtion of T .In the proess of extending the solution step by step to all t > 0, estimate (2.14) impliesstep by step that ρ and θ remain in the intervals (ρ1, ρ2) and (θ1, θ2), respetively, forall t.Inequalities (2.13) and (2.14) allow to extend the solution and to ontrol the shape of
Ωt whih will be explained in the next setion.3. Di�erenes in the ways of ontrolling the free boundary in two ases: σ = 0and σ > 0.1 o The ase of σ > 0. Consider a free boundary drop problem with k = 0 and σ > 0. Asusual in the ase of σ > 0 we assume:
(3.1) Ω is lose to a ball and S is desribed by the equation: |ξ| = R̃(ω), ω ∈ S1,where S1 is the unit sphere.Then from the relation (2.1) onneting Lagrangian and Eulerian oordinates it followsthat Ωt is also lose to a ball and St (t ≤ T ) is desribed by
(3.2) |x| = R(ω, t), ω ∈ S1,where R(ω, 0) = R̃(ω), T is the time of loal existene.



288 E. ZADRZYŃSKAThe boundary ondition (1.8) an be presented in the form
(3.3) H +

2

Re
=

1

σ
n · T(v, pσ)n on St,where in the inompressible ase Re = R0 =

(
3
4π |Ω|

)1/3, while in the ompressible ase
Re is given in the de�nition of an equilibrium solution.Using (3.2) we an write ondition (3.3) in the form
(3.4) H[R] +

2

Re
= h(ω),where H[R] is the double mean urvature of St expressed in spherial oordinates, i.e.

H[R] =
1

R sin ϕ2

(
∂

∂ϕ1

Rϕ1

sin ϕ2

√
R2 + |∇R|2

+
∂

∂ϕ2

sin ϕ2Rϕ2√
R2 + |∇R|2

)
−

2√
R2 + |∇R|2

.

Now, following [Sol1℄ over S1 by a �nite number of domains S′ having su�ientlysmall diameters. Take a funtion ζ = ζ(ϕ) suh that ζ = 1 on S′, ζ = 0 on S1 \ S′′,

S
′
⊂ S′′ and 0 ≤ ζ ≤ 1. Next, denote R∗ = R − Re, R̃∗ = ζR∗. Then, by applying theformula

1

Re
−

1√
R2 + |∇R|2

=
(R − Re)(R + Re) + |∇R|2

Re

√
R2 + |∇R|2(Re +

√
R2 + |∇R|2

≡ A,equation (3.4) takes the form of the following ellipti equation:
2∑

γ,δ=1

Aγδ(ϕ)
∂2R̃∗

∂ϕγ∂ϕδ
+

2∑

γ=1

Aγ(ϕ)
∂R̃∗

∂ϕγ
= G,where

G ≡ 2
2∑

γ,δ=1

Aγδ(ϕ)
∂ζ

∂ϕγ

∂R∗

∂ϕδ
+ R∗

2∑

γ,δ=1

Aγδ(ϕ)
∂2ζ

∂ϕγ∂ϕδ
+

2∑

γ=1

Aγ(ϕ)
∂ζ

∂ϕγ
− 2Aζ + hζ.Spherial oordinates have been hosen so that sin ϕ1 ≥ c0 > 0. Therefore Aγδ, Aγ ,

A ∈ W
1/2+l
2 (S1), and these oe�ients do not depend on Rϕϕ, ϕ = (ϕ1, ϕ2).In order to ontrol the free boundary in this ase (and as a onsequnee to extend thesolution for all t) we use the regularity properties of the above ellipti equation. Morepreisely, we use the following theorem.Theorem 2 (see [Sol1, Z2℄). Let R ∈ W

3/2+l
2 (S1), l ∈ (1/2, 1) be a solution of equation

(3.4) satisfying inequality
sup
S1

|R(ω, t) − Re| + sup
S1

|∇R(ω, t)| ≤ δ̂Rewith su�iently small δ̂. If h ∈ W s
2 (S1), s ∈ [0, 1], then

(3.5) ‖R − Re‖W 2+s
2 (S1) ≤ c1‖h‖W s

2 (S1) + c2‖R − Re‖L2(S1),where c1, c2 are onstants and c2 an depend on ‖R‖
W

l+3/2
2 (S1)

. Moreover, if R∈W 2+s
2 (S1)and h ∈ W 1+s

2 (S1), s ∈ (0,∞), then
(3.6) ‖R − Re‖W 3+s

2 (S1) ≤ c3‖h‖W 1+s
2 (S1) + c4‖R − Re‖L2(S1),where c3, c4 are onstants and c4 an depend on ‖R‖W 2+s

2 (S1).



FREE BOUNDARY PROBLEMS 289Theorem 2 is essential to all proofs of global existene and stability theorems fordrop problems. The norm ‖R − Re‖L2(S1) is estimated in eah ase by using onservationlaws of: energy, momentum and mass, and in order to estimate the norms ‖h‖W s
2 (S1) or

‖h‖W 1+s
2 (S1) we need estimates of v and pσ. Suh estimates are derived in di�erent waysin dependene on what motion we onsider. Thus, if we assume that S ∈ W 3+s

2 for some
s > 0, we obtain by Theorem 2 the same regularity of the boundary for all t > 0, i.e.
St ∈ W 3+s

2 . Moreover, for data su�iently lose to an equilibrium state we an usuallyprove that the free boundary St remains lose to a ball of radius Re for all t.For surfae waves problems, a theorem analogous to Theorem 2 an be proved forfuntion F (x′, t) desribing a free boundary in this ase (see [TTan℄).2 o The ase of σ = 0. Now, we onsider a drop problem with σ = 0. Then the Laplae-Beltrami operator ∆St
(t) does not our in boundary ondition (1.8). Therefore, weannot apply Theorem 2 and the way of ontrolling a free boundary is di�erent than for

σ > 0. In this ase we prove the following di�erential inequality
(3.7)

dϕ

dt
+ c1Φ ≤ 0 for t ≤ T ,where T is the time of loal existene; c1 > 0 is a onstant.In the ase of a ompressible heat-onduting �uid, ϕ = ϕ(t) is a funtion equivalentto

(3.8) ϕ(t) =
∑

i∈N1

(‖∂i
tv(t)‖2

Xi(Ωt)
+

∥∥∂i
tθσ(t)

∥∥2

Xi(Ωt)
+ ‖∂i

tρσ(t)‖2
Xi(Ωt)

),where N1 is a subset of N ∪ {0}, and Xi(Ωt), i ∈ N1, is a ertain funtion spae, usuallyof the Sobolev type; θσ = θ − θe, ρσ = ρ − ρe; (v, θ, ρ) is the loal solution of problem(1.1)�(1.9), (1.10′); θe and ρe are the onstants de�ned in De�nition 2. Moreover,
(3.9) Φ(t) =

∑

j∈N2

(‖∂j
t v(t)‖2

Yj(Ωt)
+ ‖∂j

t θσ(t)‖2
Yj(Ωt)

) +
∑

k∈N3

‖∂k
t ∂j

t ρσ(t)‖2
Zk(Ωt)

,where Yj(Ωt), j ∈ N2 and Zk(Ωt), k ∈ N3 (N2, N3 are subsets of N ∪ {0}) are spaessuh that
(3.10) Φ ≥ c2ϕ.In the ompressible barotropi ase we omit in formulas (3.8)�(3.9) the terms∑

i∈N1
‖∂i

tθσ(t)‖2
Xi(Ωt)

and ∑
j∈N2

‖∂j
t θσ(t)‖2

Yj(Ωt)
, respetively.Finally, for an inompressible �uid ϕ is equivalent to ϕ(t) =

∑
i∈N1

‖∂i
tv(t)‖2

Xi(Ωt)
and

Φ(t) =
∑

j∈N2
‖∂j

t v(t)‖2
Yj(Ωt)

, where v is the loal solution of (1.19)�(1.20), (1.4)�(1.5),(1.8)�(1.9).Thus, we have
(3.11) c3ϕ(t) ≤ ϕ(t) ≤ c4ϕ(t) for t ≤ T ,where in the general heat-onduting ase onstants c3, c4 > 0 depend on ρ1, ρ2, θ1, θ2,
µ, ν, κ, cv, p, ‖ ∫ t

0
vdt′‖W 3

2 (Ωt) and ρ1, ρ2, θ1, θ2 are positive onstants suh that
(3.12) ρ1 < ρ(x, t) < ρ2, θ1 < θ(x, t) < θ2 for x ∈ Ωt, t ∈ [0, T ].



290 E. ZADRZYŃSKAThe onstant c1 in (3.7) depends on the same quantities as c3 and c4. It depends alsoon ‖St‖W
5/2
2

and the onstants from the imbedding lemmas and the Korn inequalitieswhih depend on Ωt, t ≤ T .Inequalities (3.7), (3.10), (3.11) imply
(3.13)

dϕ

dt
+ c5ϕ ≤ 0 for t ≤ T .Hene

(3.14) ϕ(t) ≤ ϕ(0)e−c5t for t ≤ Tand
(3.15) ϕ(t) ≤

c4

c3
ϕ(0)e−c5t for t ≤ T .Moreover

(3.16) ϕ(t) + c1

∫ t

0

Φ(t′)dt′ ≤ ϕ(0) for t ≤ T .In the inompressible ase it su�es to take N1 = {0}, N2 = {0} and X0(Ωt) =

L2(Ωt), Y0(Ωt) = W 1
2 (Ωt) (see [Sol2℄). Then ϕ(t) = ϕ(t) = ‖v(t)‖2

L2(Ωt)
and inequalities(3.7) and (3.13) follow from the energy onservation law and the Korn inequality. However,the solvability of problem (1.19)�(1.20), (1.4)�(1.5), (1.8)�(1.9) is proved in [Sol2℄ inspaes of more regular funtions v than L2(Ωt).In the ompressible ase, the funtions ϕ(t) and Φ(t) with the lowest possible regu-larity of funtions v, θσ, ρσ are de�ned as follows

ϕ(t) =
2∑

i=0

(‖∂i
tv(t)‖2

W 2−i
2 (Ωt)

+ ‖∂i
tθσ(t)‖2

W 2−i
2 (Ωt)

+ ‖∂i
tρσ(t)‖2

W 2−i
2 (Ωt)

)(3.17)

Φ(t) =
2∑

j=0

(‖∂j
t v(t)‖2

W 3−j
2 (Ωt)

+ ‖∂j
t θσ(t)‖2

W 3−j
2 (Ωt)

) + ‖ρσ(t)‖2
W 2

2 (Ωt)
(3.18)

+ ‖∂tρσ(t)‖2
W 2

2 (Ωt)
+ ‖∂2

t ρσ(t)‖2
W 1

2 (Ωt)
.In this ase inequality (3.7) follows from (2.12) if we assume that ϕ(0) ≤ ε with εsu�iently small. In fat, then by (2.14) we get

(3.19) sup
0≤t≤T

ϕ(t) ≤ C2(T )εand by (2.13)
∥∥∥∥

∫ t

0

vdt′
∥∥∥∥

W 3
2 (Ωt)

≤ c6

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ c6T
1/2 ‖u‖AT,Ω

(3.20)

≤ c6C1(T )T 1/2ε1/2 ≤ c6ε for t ≤ T ,if ε is su�iently small.Therefore, for ε, ε su�iently small estimates (3.19)�(3.20) and inequality (2.12) yield(3.7).



FREE BOUNDARY PROBLEMS 291Moreover, sine by (3.20)
(3.21) |x − ξ| =

∣∣∣∣
∫ t

0

udt′
∣∣∣∣ ≤ c7

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ c7C1(T )T 1/2ε1/2 ≤ c7ε for t ≤ T ,both the volume and the shape of Ωt (t ≤ T ) do not hange muh if ε is su�iently small.Next, assuming that the initial onditions ρ0, θ0 and the equilibrium solution (ρe, θe)satisfy inequalities (3.12) we prove by using estimate (2.13) that inequalities (3.12) aresatis�ed for x ∈ Ωt, t ∈ [0, T ].Therefore, estimate (3.21) and inequalities (3.12) for x ∈ Ωt, t ∈ [0, T ] imply that ifwe assume (3.11) for ϕ(0) and ϕ(0) with c3, c4 depending on ρ1, ρ2, θ1, θ2, µ, ν, cv, p,
κ, we obtain this estimate satis�ed by ϕ(t) and ϕ(t) for t ≤ T with the same onstants
c3, c4.Hene, by (3.14) we get (3.15). As a onsequene, we have
(3.22) ϕ(t) ≤

c4

c3
ε for t ≤ T .Therefore, for su�iently small ε the solution an be extended to the interval [T, 2T ].This solution satis�es in [T, 2T ] the inequality

(3.23) ‖uT ‖
2
AT,ΩT

+ ‖ϑTσ‖
2
AT,ΩT

+ ‖ηT σ‖
2
BT,ΩT

≤ C1(T )ϕ(T ).where (uT , ϑT σ, ηT σ) denotes (v, θσ, ρσ) written in the Lagrangian oordinates ξT ∈ ΩT ,i.e. ξT = ξ +
∫ T

0
u(ξ, t′)dt′.Moreover, using (3.16), (3.22), (3.23), (3.11) we get for t ≤ 2T

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤

∥∥∥∥
∫ T

0

udt′
∥∥∥∥

W 3
2 (Ω)

+

∥∥∥∥
∫ t

T

udt′
∥∥∥∥

W 3
2 (Ω)

(3.24)

≤ c8T
1/2

[(
c1

∫ T

0

Φ(t′)dt′
)1/2

+ ‖uT ‖AT,ΩT

]

≤ c8c
1/2
4 T 1/2ε1/2[1 + (C1(T )/c3)

1/2] ≤ εand
|x − ξ| =

∣∣∣∣
∫ t

0

udt′
∣∣∣∣ ≤ c7

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

(3.25)

≤ c7c8c
1/2
4 T 1/2ε1/2[1 + (C1(T )/c3)

1/2] ≤ c7εif ε is su�iently small.In view of (3.25) the volume and the shape of Ωt hanges in [0, 2T ] no more than theydo in [0, T ].Inequality (3.24) implies
(3.26)

∥∥∥∥
∫ t

0

vdt′
∥∥∥∥

W 3
2 (Ωt)

≤ c6

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ c6ε for t ≤ 2T .Using (3.23) and (3.15) we also obtain
(3.27) sup

0≤t≤2T
ϕ(t) ≤ max( sup

0≤t≤T
ϕ(t), sup

T≤t≤2T
ϕ(t))leq max

(
c4

c3
ε, C2(T )

c4

c3
ε

)
.



292 E. ZADRZYŃSKANow, sine the solution exists in the interval [0, 2T ] and in view of (3.25) we an deriveinequality (2.12) for t ≤ 2T . Therefore, estimates (3.26)�(3.27) with su�iently small εand ε imply di�erential inequality (3.7) for t ≤ 2T .Hene (3.13)�(3.15) also hold for t ≤ 2T and
ϕ(t) + c1

∫ t

T

Φ(t′)dt′ ≤ ϕ(T ) for T ≤ t ≤ 2T .This way the solution an be extended to the interval [2T, 3T ].Now, assume that there exists a solution in [0, lT ], l ≥ 3, satisfying:
‖ujT ‖

2
AjT,ΩjT

+ ‖ϑjTσ‖
2
AjT,ΩjT

+ ‖ηjTσ‖
2
BjT,ΩjT

≤ C1(T )ϕ(jT ), j = 0, . . . , l − 1,

ϕ(t) ≤ ϕ(0)e−c5t for t ≤ (l − 1)T ,
ϕ(t) ≤

c4

c3
ϕ(0)e−c5t for t ≤ (l − 1)T ,

ϕ(t) + c1

∫ t

jT

Φ(t′)dt′ ≤ ϕ(jT ) for jT ≤ t ≤ (j + 1)T , j = 0, . . . , l − 2,where ujT , ϑjTσ, ηjTσ denote v, θσ, ρσ written in the Lagrangian oordinates ξjT ∈ ΩjT .Assume also that the volume and the shape of Ωt hange in [0, (l−1)T ] no more thanthey do in [0, T ] and that
∥∥∥∥

∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ ε for t ≤ (l − 1)Twith su�iently small ε.Hene, assuming that ε is su�iently small we obtain for 0 ≤ t ≤ lT

|x − ξ| =

∣∣∣∣
∫ t

0

u(ξ, t′)dt′
∣∣∣∣ ≤ c7

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ c7

( l−2∑

j=0

∥∥∥∥
∫ (j+1)T

jT

udt′
∥∥∥∥

W 3
2 (Ω)

+

∥∥∥∥
∫ t

(l−1)T

udt′
∥∥∥∥

W 3
2 (Ω)

)

≤ c7c8T
1/2

[ l−2∑

j=0

( ∫ (j+1)T

jT

c1Φ(t′)dt′
)1/2

+ ‖u(l−1)T ‖AT,Ω(l−1)T

]

≤ c7c8T
1/2

[ l−2∑

j=0

(ϕ(jT ))1/2 + C1(T )

(
c4

c3
ε

)1/2]

≤ c7c8T
1/2

{
[ϕ(0)(1 + e−c5T + e−2c5T + . . . )]1/2 + C1(T )

(
c4

c3
ε

)1/2}

≤ c7c8c
1/2
4 T 1/2ε1/2

[
1

(1 − e−c5T )1/2
+

(
C1(T )

c3

)1/2]
≤ c7ε,if ε is su�iently small in dependene on ε.Thus, the volume and the shape of Ωt hange in [0, lT ] no more than they do in

[0, (l − 1)T ]. These hanges of the volume and the shape are as small as we want if weassume that ε is su�iently small.



FREE BOUNDARY PROBLEMS 293Therefore, we an ontrol the free boundary of Ωt in the ase of σ = 0. At the sametime, this way, we an extend the solution to a global one.The di�ulties onneted with ontrolling the free boundary in the surfae wavesproblems without surfae tension are disussed by Beale [B℄ for inompressible �uids andStröhmer [St℄ for ompressible ones.
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