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1. Introduction and theorem. Let n ∈ N and Lj = L = 2n − 1 if j ∈ N and L0 = 1.

For any r ∈ N there are real compactly supported functions

ψ0(x) ∈ Cr(Rn) and ψl(x) ∈ Cr(Rn); l = 1, . . . , L, (1.1)

with ∫

Rn
xαψl(x) dx = 0, α ∈ Nn0 , |α| ≤ r, (1.2)

such that

{2j n2 ψljm(x) : j ∈ N0, 1 ≤ l ≤ Lj , m ∈ Zn} (1.3)

with

ψljm(x) =

{
ψ0(x−m) if j = 0, m ∈ Zn, l = 1,

ψl(2j−1x−m) if j ∈ N, m ∈ Zn, 1 ≤ l ≤ L,
(1.4)

is an orthonormal basis in L2(Rn).

The best known example of such a system of functions is the (inhomogeneous) Daube-

chies wavelet basis. We refer for details to [19], 3.8, pp. 96/97, formula (8.2), for the

one-dimensional case, including that the father wavelet ψ0 and the mother wavelets ψl

are real, and 3.9, pp. 107/108, formula (9.1), for its n-dimensional extension. The original

version goes back to I. Daubechies, [6] and [7], Chapter 6. We refer also to [42], Chapter 4,

and [16], Chapter 2. It is well known that this system remains an unconditional Schauder

basis in Lp(Rn) with 1 < p < ∞, more generally, in the (inhomogeneous fractional)

Sobolev spaces

Hs
p(Rn) with 1 < p <∞, |s| < r, (1.5)

and in the (inhomogeneous) Besov spaces

Bspq(R
n) with 1 ≤ p <∞, 1 ≤ q <∞, |s| < r. (1.6)
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Details may be found in [19], Chapter 6, but also in the other books and papers mentioned

above. It is the aim of this note to extend this assertion directly from L2(Rn) to all spaces

Bspq(R
n) and F spq(R

n) with

s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, (1.7)

(p <∞ in the F -case) in a comparatively simple way using only a few qualitative asser-

tions of the recent theory of function spaces, such as

• atomic decompositions,

• characterisations by local means,

• duality.

For this purpose we need for s, p, q given by (1.7) the sequence spaces bspq and fspq,

consisting of all sequences

λ = {λljm ∈ C : j ∈ N0; 1 ≤ l ≤ Lj ; m ∈ Zn}
such that the respective quasi-norms

‖λ|bspq‖ =
(∑

l,j

2j(s−
n
p )q
(∑

m

|λljm|p
) q
p
) 1
q

(1.8)

and

‖λ|fspq‖ =
∥∥∥
( ∑

l,j,m

2jsq|λljmχjm(·)|q
) 1
q |Lp(Rn)

∥∥∥, (1.9)

(with the usual modifications if p = ∞ and/or q = ∞) are finite. Sequence spaces of

this type were introduced in [11], [12] in connection with atomic decompositions of the

spaces Bspq(R
n) and F spq(R

n) and have been used afterwards by many authors. Here χjm
is the characteristic function of the cube Qjm in Rn with sides parallel to the axes centred

at 2−jm and with side-length 2−j . As usual nowadays, Aspq(R
n) stands for Bspq(R

n) or

F spq(R
n), and aspq stands for bspq or fspq, respectively.

Theorem. Let s, p, q be given by (1.7) with p < ∞ in the F -case. There are natu-

ral numbers r(s, p) for the B-spaces and r(s, p, q) for the F -spaces with the following

properties.

(i) Let r ∈ N with r > r(s, p) or r > r(s, p, q), respectively. Let f ∈ S ′(Rn). Then

f ∈ Aspq(Rn) if, and only if, it can be represented as

f =
∑

l,j,m

λljmψ
l
jm with ‖λ|aspq‖ <∞, (1.10)

with unconditional convergence in S ′(Rn) and locally in any Aσpu(Rn) with σ < s. Fur-

thermore, the representation (1.10) is unique,

λljm = 2jn(f, ψljm), (1.11)

and

‖f |Aspq(Rn)‖ ∼ ‖λ|aspq‖ (1.12)

(equivalent quasi-norms).
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(ii) In addition, let p <∞ and q <∞. Then (1.10) with (1.11) converges unconditionally

in Aspq(R
n) and {ψljm} is an unconditional Schauder basis in Aspq(R

n).

Remark 1. As already mentioned, it is our aim to extend the L2(Rn)-theory to Aspq(R
n)

using only a few qualitative assertions. This makes it clear that these arguments can also

applied to wider classes of function spaces and to other L2(Rn)-bases, provided that the

ingredients needed are available. This will not be done here (but we add some comments

about this possibility in Subsection 3.4). By (1.5), combined with the Littlewood-Paley

assertion

Hs
p(Rn) = F sp,2(Rn), s ∈ R, 1 < p <∞,

and (1.6) a few cases are known. Furthermore, there are also some extensions to more

general spaces Bspq(R
n) and F spq(R

n) in the literature. Nearest to us is [13], Section 7,

and [17] (Lemarié-Meyer wavelets in homogeneous B-spaces and F -spaces, and pertur-

bations of the related bases, respectively). We refer in this context also to the respective

considerations in [23] and [16].

The plan of this note is the following. In Section 2 we give some definitions (about

function spaces) and we prove the Theorem. In Section 3 we discuss several consequences

and prove some corollaries. In particular we estimate in Corollary 5 the above numbers

r(s, p) and r(s, p, q) and say something about the structure of the spaces Aspq(R
n) in

Corollary 7. It is well known that it may happen that the best possible values of s in

f ∈ Aspq(Rn) are getting larger (even tending to infinity) if p→ 0. As a consequence of the

above Theorem we show in Corollary 9 that this is not the case for full spaces Aspq(R
n).

Finally in Subsection 3.4 we add a few comments on how the techniques presented here

can possibly be used in other cases.

2. Definitions, proof of the theorem

2.1. Basic notation. We use standard notation. Let N be the collection of all natural

numbers and let N0 = N ∪ {0}. Let Rn be euclidean n-space, where n ∈ N; put R = R1,

whereas C is the complex plane. Let S(Rn) be the Schwartz space of all complex-valued

rapidly decreasing, infinitely differentiable functions on Rn. By S′(Rn) we denote its

topological dual, the space of tempered distributions on Rn. Furthermore, Lp(Rn) with

0 < p ≤ ∞, is the standard quasi-Banach space with respect to Lebesgue measure,

quasi-normed by

‖f |Lp(Rn)‖ =

(∫

Rn
|f(x)|p dx

) 1
p

with the obvious modification if p =∞. Let C(Rn) be the Banach space of all complex-

valued uniformly continuous bounded functions in Rn and let for r ∈ N,

Cr(Rn) = {f ∈ C(Rn) : Dαf ∈ C(Rn), |α| ≤ r} ,
obviously normed.

As usual, Z is the collection of all integers; and Zn where n ∈ N, denotes the lattice

of all points m = (m1, . . . ,mn) ∈ Rn with mj ∈ Z. Let Nn0 , where n ∈ N, be the set of
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all multi-indices

α = (α1, . . . , αn) with αj ∈ N0 and |α| =
n∑

j=1

αj .

If x = (x1, . . . , xn) ∈ Rn and α = (α1, . . . , αn) ∈ Nn0 then we put

xα = xα1
1 · · ·xαnn (monomials).

Now all notation used in Section 1 is defined with exception of the spaces Bs
pq(R

n) and

F spq(R
n).

2.2. Function spaces. If ϕ ∈ S(Rn) then

ϕ̂(ξ) = (Fϕ)(ξ) = (2π)−
n
2

∫

Rn
e−iξxϕ(x) dx, ξ ∈ Rn, (2.1)

denotes the Fourier transform of ϕ. Here ξx is the scalar product in Rn. As usual, F−1ϕ

or ϕ∨, stands for the inverse Fourier transform, given by the right-hand side of (2.1) with

i in place of −i. Both F and F−1 are extended to S′(Rn) in the standard way.

Let ϕ ∈ S(Rn) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(y) = 0 if |y| ≥ 3

2
. (2.2)

We put ϕ0 = ϕ. Let ϕ1(x) = ϕ
(
x
2

)
− ϕ(x) and

ϕk(x) = ϕ1(2−k+1x), x ∈ Rn, k ∈ N. (2.3)

Then
∑∞
k=0 ϕk(x) = 1 for all x ∈ Rn is a dyadic resolution of unity. Recall that (ϕkf̂)∨

is an entire analytic function and hence (ϕkf̂)∨(x) makes sense pointwise.

Definition 2. Let ϕ and ϕj be the above functions.

(i) Let s ∈ R, 0 < p ≤ ∞, and 0 < q ≤ ∞. Then Bspq(R
n) is the collection of all

f ∈ S′(Rn) such that

‖f |Bspq(Rn)‖ϕ =
( ∞∑

j=0

2jsq‖(ϕj f̂)∨|Lp(Rn)‖q
) 1
q

(2.4)

(with the usual modification if q =∞) is finite.

(ii) Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then F spq(R
n) is the collection of all

f ∈ S′(Rn) such that

‖f |F spq(Rn)‖ϕ =
∥∥∥
( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
) 1
q |Lp(Rn)

∥∥∥ (2.5)

(with the usual modification if q =∞) is finite.

Remark 3. The theory of these spaces in its full extent has been developed in [36] and

[37]. But they have a long history, including their forerunners and special cases. A few of

them will be mentioned in the next remark. The interested reader may consult Chapter 1

in [37] which is a historically-minded survey from the beginnings up to the early nineties.

The theory of these spaces as it stood in the middle of the nineties may be found in [1],

[8] and [23]. As for some more recent aspects we refer to [38] and [39].
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Remark 4. The spaces Bspq(R
n) and F spq(R

n) are quasi-Banach spaces. They are in-

dependent of ϕ: different choices of admissible functions ϕ result in (2.4) and (2.5) in

equivalent quasi-norms, respectively. This may justify our omission of the subscript ϕ on

the left-hand sides of (2.4) and (2.5) in the sequel. We list a few special cases. Recall that

for any σ ∈ R,

Iσ : f 7→ ((1 + |ξ|2)
σ
2 f̂)∨

is an one-to-one map of S(Rn) onto itself and of S′(Rn) onto itself. Then

Hs
p(Rn) = I−sLp(Rn), s ∈ R, 1 < p <∞, (2.6)

are the (fractional) Sobolev spaces with the classical Sobolev spaces

W k
p (Rn) = Hk

p (Rn), k ∈ N0, 1 < p <∞,
as a subclass, where the latter spaces can be equivalently normed by

‖f |W k
p (Rn)‖ =

∑

|α|≤k
‖Dαf |Lp(Rn)‖.

For these spaces one has the above-mentioned Littlewood-Paley characterisation

Hs
p(Rn) = F sp,2(Rn), s ∈ R, 1 < p <∞.

Furthermore,

Bspq(R
n), s > 0, 1 < p <∞, 1 ≤ q ≤ ∞,

are the classical Besov spaces. Let

Cs(Rn) = Bs∞∞(Rn), s ∈ R. (2.7)

Then Cs(Rn) with s > 0 are the Hölder-Zygmund spaces. If 0 < p ≤ 1 then hp(Rn) =

F 0
p,2(Rn) are the (inhomogeneous) Hardy spaces.

2.3. Duality. The basic ideas of the proof are rather simple. But there are a few tech-

nicalities which must be treated with some care and which originate mainly from the

limited smoothness of the functions ψljm. In particular one has to clarify the meaning of

the right-hand side of (1.11) if

f ∈ Aspq(Rn), s, p, q as in (1.7),

(always with p <∞ for the F -spaces). This is a matter of the duality theory as developed

in [36], 2.11. Let

σp = n

(
1

p
− 1

)

+

, 0 < p ≤ ∞, (2.8)

where a+ = max(0, a) if a ∈ R. Let 1
p + 1

p′ = 1 if 1 ≤ p ≤ ∞ and p′ = ∞ if 0 < p < 1.

According to [36], Theorems 2.11.2 and 2.11.3, one has for the dual spaces of Bs
pp(R

n),

Bspp(R
n)′ = B

−s+σp
p′p′ (Rn), s ∈ R, 0 < p <∞. (2.9)

This assertion can be extended to p = ∞ if one replaces Cs(Rn) = Bs∞∞(Rn) on the

left-hand side of (2.9) by C̊s(Rn), the completion of S(Rn) in Cs(Rn). By elementary
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embeddings, (2.9), and the compactness of the supports of ψljm it follows that the right-

hand side of (1.11) is well defined if

r > −s+ σp, s ∈ R, 0 < p ≤ ∞. (2.10)

Hence for fixed s, minimal numbers r(s, p) and r(s, p, q) in the theorem have to tend to

infinity as n
p if p→ 0.

2.4. Proof of the theorem

Step 1. Let f ∈ S′(Rn) be given by (1.10) and let

r > max(s, σp − s− 1) (2.11)

in the B-case and

r > max(s, σpq − s− 1) (2.12)

in the F -case, where σp is given by (2.8) and

σpq = n

(
1

min(p, q)
− 1

)

+

, 0 < p <∞, 0 < q ≤ ∞. (2.13)

Then 2−j(s−
n
p )ψljm are normalised atoms in Aspq(R

n). We refer to [38], Theorem 13.8,

pp. 75/76. But as mentioned above the theory of atomic decompositions in Aspq(R
n) goes

back to [11], [12]. We refer also to [13], [33]. Hence, f ∈ Aspq(Rn) and

‖f |Aspq(Rn)‖ ≤ c‖λ|aspq‖ (2.14)

where c is independent of λ ∈ aspq.
Step 2. Conversely let f ∈ Aspq(Rn) and let λljm be given by (1.11). We start with some

preparations. If (2.11), (2.12) are slightly strengthened by (2.10) then at least (1.11)

makes sense within the dual pairing (S(Rn), S′(Rn)). But we claim that (1.11) are even

local means in the F -spaces and in the B-spaces according to [37], 2.4.6, p. 122, and

2.5.3, p. 138, respectively, extended to non-C∞ kernels if r is chosen sufficiently large.

All what one needs is covered by [37], 2.4 (F -spaces) and 2.5 (B-spaces). But we give

a detailed description indicating the needed ingredients. We deal with the F -case (the

B-case is similar, but technically simpler). Let r ∈ N and

ψ ∈ Cr(Rn) real with suppψ compact.

Then for t > 0 and with the usual interpretation,

ψ(t, f)(x) =

∫

Rn
ψ(y)f(x+ ty) dy = t−n

∫

Rn
ψ

(
y − x
t

)
f(y) dy (2.15)

are the local means. In particular, with ψ = ψl according to (1.1), x = 2−jm and t = 2−j

one gets

ψl(2−j , f)(2−jm) = 2jn
∫

Rn
ψl(2jy −m)f(y) dy = 2jn

∫

Rn
ψljm(y)f(y) dy

= λljm(f), (2.16)

where we used (1.4) and (1.11), now indicating the (linear) dependence of λljm on f .

Similarly for ψ0 in (1.1) in place of ψl. Because of the lack of the C∞-smoothness of

ψ0 and ψl in (1.1) and also because we wish to end up with (1.12) we must say how
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the technicalities in [37], 2.4, have to be adapted. We rely on a modified version of the

equivalent quasi-norm in F spq(R
n) according to [37], Corollary 2, pp. 108/109, in terms

of maximal functions. We put ψ = ψl according to (1.1) and identify the function ϕ in

[37], p. 109, formula (55), with the entire analytic function ψ∨. Then an easy calculation

gives

ψ∨j (D)f(x− y) = 2jn
∫

Rn
ψ(2jz + 2jy − 2jx)f(z) dz = ψ(2−j , f)(x− y),

where x ∈ Rn, y ∈ Rn and j ∈ N, connecting the notation used in [37] and in (2.15). The

modified maximal function in [37], p. 109, formula (55), is given by

ψ(2−j , f)+(x) = sup
|y|≤√n2−j

|ψ(2−j , f)(x− y)|, x ∈ Rn. (2.17)

One must check whether the hypotheses of [37], Corollary 2, pp. 108/109, are satisfied.

As for the Tauberian condition we refer to [37], 2.4.4, p. 120, Proposition 2, making it

clear (after a dilation) that it is sufficient to know that the entire analytic functions ψ∨0 on

the one hand, and (ψl)∨, l = 1, . . . , L, together on the other hand, satisfy this condition

for some ε > 0 in a ball {x : |x| ≤ 2ε} as far as ψ∨0 is concerned and in an annulus

{x : ε ≤ |x| ≤ 4ε} as far as the (ψl)∨’s are concerned. But this is the case. Concerning

the cancellation conditions, expressed by formula (50) and s1 > σp in formula (54) on

p. 108 in [37] we refer to the improved version in [24] saying that r > s− 1 is sufficient.

But this is covered by (2.12). It remains to check the following condition. Let H ∈ S(Rn)

with

H(x) = 1 if
1

2
≤ |x| ≤ 2 and H(y) = 0 if |y| ≤ 1

4
or |y| ≥ 4

and let s0 ∈ R be a number with

s0 + σpq < s, (2.18)

where σpq is given by (2.13). Let

sup
k∈N

2−ks0‖ψ∨(2k·)H(·)|Hσ
2 (Rn)‖ <∞, (2.19)

where Hσ
2 (Rn) is the special Sobolev space according to (2.6) with σ > n

2 + n
min(p,q) . Then

we claim that, in obvious notation, adapted to (1.9),

‖f |F spq(Rn)‖ ∼
∥∥∥
( ∑

l,j,m

2jsqψl,+j (·)q
) 1
q |Lp(Rn)

∥∥∥ (2.20)

where ψl,+j are the maximal functions according to (2.17) with ψl and ψ0 in place of ψ.

The estimates of the left-hand side of (2.20) from below and from above by the right-hand

side follow from the two corollaries in [37], pp. 108/109. But it is quite clear that (2.19)

with (2.18) is satisfied if r in (1.1) is large. In Corollary 5 we return to this point and

give an explicit estimate for r.

Step 3. Again let f ∈ Aspq(Rn) and as in the previous step we assume A = F (the case

A = B is similar and simpler). By (2.20) with (2.17), and (1.9) with (2.16) we have

‖λ(f)|fspq‖ ≤ c‖f |F spq(Rn)‖ <∞. (2.21)
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Then by Step 1

g =
∑

l,j,m

λljm(f)ψljm ∈ F spq(Rn). (2.22)

Using that (1.3) is an orthonormal system and the duality according to Subsection 2.3 it

follows

(g, ψl
′
j′m′) =

∑

l,j,m

2jn(f, ψljm)(ψljm, ψ
l′
j′m′) = (f, ψl

′
j′m′). (2.23)

This can be extended to finite linear combinations of ψl
′
j′m′ . If ϕ ∈ S(Rn) then we have

the unique L2(Rn)-representation. By the above considerations it is also a representation

in the spaces described in (2.9) with (2.10). Now it follows from (2.23) that

(g, ϕ) = (f, ϕ) for all ϕ ∈ S(Rn)

and hence g = f .

Step 4. So far we proved that f belongs to Aspq(R
n) if, and only if, it can be represented by

(1.10) and that this representation is unique with the coefficients in (1.11), now denoted

by λljm(f). Again let A = F . We have (2.21). The converse follows from (2.14) and (2.22)

with g = f . This proves (1.12). The unconditional convergence of f given by (1.10) in

Aσpu(Rn) with σ < s, and hence in S′(Rn), follows from the structure of the sequence

spaces in (1.8), (1.9) and σ < s. This proves part (i) of the theorem. If p <∞ and q <∞
then one has even unconditional convergence in Aspq(R

n). This proves part (ii) of the

theorem.

3. Complements

3.1. Smoothness of wavelets. At several occasions during the proof of the theorem we

used that r ∈ N in (1.1) must be sufficiently large. The restrictions in (1.5) and (1.6) are

optimal. But something like this cannot be expected in general. By (2.10) with (2.8) one

has necessarily that

r(s, p, q) ≥ r(s, p) ≥ −s+ σp.

The first inequality is reasonable. One can prove it by interpolation. In other words, if

p→ 0 then r(s, p) tends to infinity as n
p .

Corollary 5. Let s, p, q be given by (1.7) with p < ∞ in the F -case. Then one can

choose in the Theorem

r(s, p) = max

(
s,

2n

p
+
n

2
− s
)

in the B-case (3.1)

and

r(s, p, q) = max

(
s,

2n

min(p, q)
+
n

2
− s
)

in the F -case. (3.2)

Proof. Step 1. First we remark that these numbers cover (2.10) and (2.11), (2.12), hence

duality and atomic representations. In other words, by Step 2 of the proof of the theorem

we have to show that (2.19) with

s0 + σpq < s and σ >
n

2
+

n

min(p, q)
in the F -case (3.3)
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and

s0 + σp < s and σ >
n

2
+
n

p
in the B-case

is satisfied. These requirements for the F -spaces are covered by Step 2 of the above proof

of the theorem. The counterparts for the simpler B-spaces are given by the two corollaries

in [37], p. 134.

Step 2. We prove that (3.2) is sufficient in the F -case. The proof for the B-case resulting

in (3.1) is the same. Let ψ be either ψ0 or ψl according to (1.1). Recall that ψ has a

compact support. By (2.1) we have

xαψ∨(x) = c

∫

Rn
eixξDαψ(ξ) dξ, |α| ≤ r,

a corresponding estimate for Dβψ∨, and hence

|Dβψ∨(x)| ≤ c2−kr if |x| ∼ 2k, k ∈ N, |β| ≤ σ.
Inserting this estimate in (2.19) one gets

2−ks0
∥∥ψ∨(2k·)H(·)|Hσ

2 (Rn)
∥∥ ≤ c2−k(s0−σ+r).

This is clear if σ ∈ N0, otherwise it follows by interpolation of the Hσ
2 (Rn)-spaces. Now

(3.2) is a consequence of r ≥ σ − s0 and (3.3).

Remark 6. Obviously, the estimates (3.1), (3.2) are not optimal. They are spoilt by the

use of maximal functions as in (2.20). They can surely be improved by avoiding maximal

functions (if possible), especially in the B-case, duality

r(s, p) = r(−s, p′), 1 ≤ p ≤ ∞, 1

p
+

1

p′
= 1,

and interpolation. But this will not be done here.

3.2. The structure of function spaces. The sequence spaces bspq, f
s
pq, and aspq have the

same meaning as in Section 1. We have bspp = fspp
∼= `p (where ∼= means isomorphic)

for 0 < p ≤ ∞. Of course, `p is the usual sequence spaces of p-summable sequences of

complex numbers.

Corollary 7. (i) Under the hypotheses of the Theorem,

I : f 7→ {2jn(f, ψljm) : l, j, m as there}
is an isomorphic map of Aspq(R

n) onto aspq.

(ii) Let 0 < p ≤ ∞ and s ∈ R. Then Bspp(R
n) is isomorphic to `p.

Proof. By the Theorem I is a one-to-one map of Aspq(R
n) onto a (sub)space of aspq. Let

λ ∈ aspq. Then by (2.22),

g =
∑

l,j,m

λljmψ
l
jm ∈ Aspq(Rn)

and as in (2.23),

(g, ψljm) = 2−jnλljm.

Hence the range of I is aspq. This proves (i) and also (ii).
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Remark 8. Assertions of this type have some history. One has

Cs(Rn) = Bs∞∞(Rn) ∼= `∞, s ∈ R,
for the Hölder-Zygmund spaces according to (2.7). We refer to [4] for a corresponding

assertion on intervals. Part (i) for the B-spaces and in particular part (ii) with 1 < p <∞
goes back to [34], [35], 2.11.2, and [21], pp. 180/190. The corresponding assertion for

0 < p ≤ 1 looks like mathematical folklore. It seems to be known since some time, but

we could not find a reference. The structure of F spq(R
n) is more complicated. According

to [18] the homogeneous Hardy spaces H1(Rn) and then also the inhomogeneous Hardy

spaces h1(Rn) = F 0
1,2(Rn) are not isomorphic to each other for different values of n ∈ N

(and hence it would be better to denote them by f spq(R
n) instead of fspq).

3.3. There is no reverse Sobolev lemma. Let

−∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, s0 −
n

p0
= s1 −

n

p1
,

and 0 < q ≤ ∞. Then

Bs0p0q(R
n) ↪→ Bs1p1q(R

n) (3.4)

is a sharp embedding of Sobolev type: One loses smoothness (s1 is smaller than s0) and

gains integrability (p1 is larger than p0). It is well known that for f ∈ S ′(Rn), say, with

compact support, there is a converse effect. Let

sf (t) = sup
{
s : f ∈ Bsp∞(Rn)

}
where 0 < t =

1

p
≤ ∞.

Then sf (t) is a non-decreasing concave curve in an (t, s)-diagram with slope at most

n which may tend to infinity if t → ∞. Problems of this type attracted some attention

recently in connection with continuous functions but also with (multi)fractal Radon mea-

sures. One may consult our recent contributions [41] and [40] and the references given

there. But nothing like this can be expected for full spaces reversing (3.4). There are

functions f for which sf (t) is constant. Using the above theorem one can even prove a

sharper assertion.

Corollary 9. Let s ∈ R and let

fs =
∑

j.l,m

λljmψ
l
jm

with

λljm =

{
2−js if |m| ≤ 2j,

0 otherwise,

and r > max(s, n2 − s) according to the Theorem. Let 0 < p ≤ ∞ (with p < ∞ in the

F -case). Then

fs ∈ Aspq(Rn) if, and only if, q =∞. (3.5)

Proof. Step 1. By Corollary 5 we can apply the Theorem if p, and in case the F -spaces

also q, are sufficiently large. For fixed j (and l) we have that

2j(s−
n
p )
(∑

m

|λljm|p
) 1
p ∼ 1.
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Hence for large p it follows that

fs ∈ Bsp∞(Rn) and fs 6∈ Bspq(Rn) if 0 < q <∞. (3.6)

Furthermore by (1.9) and the compactness of the support of fs we get for large p,

fs ∈ F sp∞(Rn).

For bounded domains Ω and given s and q one has

Asp0q(Ω) ↪→ Asp1q(Ω) where 0 < p1 ≤ p0 ≤ ∞,
(p0 <∞ in the F -case). This proves the if part in (3.5) for all admitted p.

Step 2. By (3.6) we have for large p also the only-if part for the B-spaces. Assuming

fs ∈ Bsp1q1(Rn) for some 0 < p1 <∞, 0 < q1 <∞.

We have also fs ∈ Bs∞∞(Rn). Then it follows by (2.4) and Hölder’s inequality that

fs ∈ Bspθqθ(R
n) if 0 < θ < 1 and pθ =

p1

θ
, qθ =

q1

θ
.

For small values of θ one gets a contradiction to (3.6). The remaining assertion for the

F -spaces follows from

F spq(R
n) ↪→ Bsp,max(p,q)(R

n) where p <∞ and q <∞.

3.4. Comments. The proof of the Theorem is qualitative: It is based on the one hand

on atomic decompositions and local means in the function spaces considered, and on

the other hand on the fact that the functions of the chosen L2(Rn)-wavelet basis are

simultaneously atoms and kernels of those local means. In addition duality and occasion-

ally (maybe even avoidable) some maximal functions are used. In other words, if other

L2(Rn)-wavelet bases than the ones considered (Daubechies wavelet bases) fulfil these

qualitative requirements then the Theorem can be extended to these wavelet bases (for

example to the Lemarié-Meyer wavelets). Of at least equal interest is the question to

extend the Theorem to other scales of function spaces. As already mentioned, what one

mainly needs are

• atomic decompositions and

• characterisations by local means,

in these function spaces. By the recent theory of function spaces there are several can-

didates which may fit in this scheme. We describe a few examples, restricting ourselves

mainly to references.

Example 10. Let w(x) be a weight function in Rn with

0 < w(x) ≤ cw(y)(1 + |x− y|α), x ∈ Rn, y ∈ Rn,
for some c > 0 and α ≥ 0, and

|Dγw(x)| ≤ cγw(x), x ∈ Rn,
for γ ∈ Nn0 and cγ > 0. Then Aspq(R

n, w) are defined as in Definition 2 replacing

‖g|Lp(Rn)‖ by ‖wg|Lp(Rn)‖.
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Then

‖f |Aspq(Rn, w)‖ ∼ ‖wf |Aspq(Rn)‖
is a crucial observation of the theory of these spaces. We refer to [8], Chapter 4, which, in

turn, is based on [14], [15]. All one needs can be carried over from Aspq(R
n) to Aspq(R

n, w).

One arrives at a counterpart of the Theorem with sequence spaces obviously modified.

Example 11. There are atomic decompositions and local means for other types of

weights in Rn, including w(x) ∼ ec|x|
β

, c ∈ R, 0 < β < 1, based on ultra-distributions,

and ec|x|, c ∈ R. In the latter case even the definitions of corresponding spaces Aspq(R
n, w)

rely on local means. One may consult [27], [28], [29] and the references given there. There

is a question to find L2(Rn)-wavelet bases which fit in this scheme. In case of Mucken-

houpt weights we refer to [22]. The combination of Muckenhoupt weights and weights

which even may grow exponentially has been given in [25].

Example 12. In recent times spaces of generalised smoothness in Rn attracted some

attention. The interest comes from the spectral theory of fractal drums where it is rea-

sonable to study spaces A
(s,Ψ)
pq (Rn) of perturbed smoothness s. One may think about

2js(j + 1)b with b ∈ R in (2.4), (2.5) in place of 2js. We refer to [39], Section 22. A

detailed account of these spaces has been given in [20], including atoms and local means.

One may extend these considerations replacing 2js in (2.4), (2.5) by more general se-

quences σj and generalising also the underlying resolutions of unity based on (2.2), (2.3).

The most recent and also most advanced paper in this direction is [10], where one finds

also atomic decompositions and local means. There seems to be a good chance to extend

the Theorem to these spaces.

Example 13. All the above (unweighted and weighted) spaces are (inhomogeneous)

isotropic spaces. Especially the Russian school dealt from the very beginning of the the-

ory of function spaces with anisotropic generalisations of isotropic Sobolev and Besov

spaces. This results nowadays in anisotropic spaces As,apq (Rn) of type (2.4), (2.5) with the

anisotropy

a = (a1, . . . , an), a1 ≥ · · · ≥ an > 0,

n∑

j=1

aj = n,

and an anisotropic conterpart of (2.2), (2.3). Basic assertions and references may be found

in [26], Chapter 4. The recent theory of these spaces is now in many respects at the same

level as the theory of the isotropic spaces, including atomic decompositions and repre-

sentations in terms of local means. We refer to [9] and [5] and the literature mentioned

there. Starting from an anisotropic version of an L2(Rn)-wavelet basis (1.1) - (1.4) (if

exists) then one has a good chance to extend the above Theorem to anisotropic spaces

of this type. In case of related anisotropic Lemarié-Meyer wavelets we refer to [2], [3].

Example 14. Let M be a compact or non-compact C∞ Riemannian manifold (with

positive injectivity radius and bounded geometry). The theory of the spaces Aspq(M) has

been developed in [37], Chapter 7, based on the papers mentioned there. The recent

theory may be found in [30], [31], [32] and the references given there, including atomic
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decompositions. If there are L2(M)-wavelet bases of the above type on M then it might

be possible to extend the Theorem to the spaces Aspq(M).
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