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Abstract. In a recent paper of the first author and Kashyap, a new class of Banach modules
over dual operator algebras is introduced. These generalize the W ∗-modules (that is, Hilbert
C∗-modules over a von Neumann algebra which satisfy an analogue of the Riesz representation
theorem for Hilbert spaces), which in turn generalize Hilbert spaces. In the present paper, we
describe these modules, giving some motivation, and we prove several new results about them.

1. Introduction and notation. We begin with two definitions of great importance in
C∗-algebra theory, which may be found in more detail in [14] for example. A (Hilbert)
C∗-module is a right module over a C∗-algebra A with an A-valued inner product sat-
isfying a variant of the usual axioms for a Hilbert space inner product. A W ∗-module
is a C∗-module over a von Neumann algebra which satisfies the analogue of the Riesz
representation theorem for Hilbert spaces. Such spaces are far reaching and profound
generalizations of Hilbert space, having orthonormal bases, etc. An earlier work [3] at-
tempted to treat W ∗-modules in the framework of dual Banach modules where this is
possible, and where not possible then using the ‘operator space’ variant of dual Banach
modules. Recently, the first author and Kashyap [6] generalized the notion, and a large
part of the theory, of W ∗-modules to the setting of ‘dual operator algebras’ more general
than von Neumann algebras. The modules introduced there are called w∗-rigged modules.
The present paper continues this work. In Section 2, which is pedagogical in nature in
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keeping with the nature of this volume, we motivate the definition of w∗-rigged modules
by sketching a proof that w∗-rigged modules over von Neumann algebras are precisely
the W ∗-modules. Indeed we give a simplification of the main part of the proof from [6].

In Section 3, we prove that tensoring with a w∗-rigged module is bifunctorial in a
certain sense. As an application, we complete the functorial characterization of Morita
equivalence, sometimes called ‘Morita’s fundamental theorem’, in our setting of dual oper-
ator algebras. One direction of this characterization is the main theorem in [12], the other
direction, from [5], was incomplete. In Section 4 we initiate the study of an interesting
class of w∗-rigged modules, and prove an analogue of Paschke’s powerful characteriza-
tion of W ∗-modules as complemented submodules of ‘free’ modules [14]. We also give
a short proof of a variant of the main theorem from [10], the stable isomorphism theo-
rem. Finally, Section 5 characterizes the structure of surjective weak* continuous linear
complete isometries between bimodules, generalizing the well known ‘noncommutative
Banach-Stone’ theorem for complete isometries between operator algebras. At first sight,
it is not clear what a structure theorem for linear isomorphisms T between bimodules
might look like. Some thought and experience reveals that the theorem one wants is
precisely, or may be summarized succinctly by saying, that T is the ‘restriction to the
1-2 corner’ of a surjective (completely isometric in our case) homomorphism between the
‘linking algebras’, which maps each of the 4 corners to the matching corner. We recall
that the linking algebra of a bimodule Y is an (operator) algebra which consists of 2× 2
matrices whose four entries (‘corners’) are Y , its ‘dual module’ X = Ỹ , and the two
algebras acting on the left and the right of Y (see [5, Section 4] and 3.2 in [6] for more
details in our setting). These linking algebras are a fundamental tool, being an operator
algebra whose product encapsulates all the ‘data’ of the module. This ‘lifting of T to the
linking algebra’ is in the spirit of Solel’s theorem from [17] concerning isometries between
C∗-modules.

We will assume from Section 3 onwards that the reader has looked at the papers
[5, 6], in which also further background and information may be found. We also assume
that the reader is familiar with a few basic definitions from operator space theory, as
may be found in e.g. [7, 15]. In particular, we assume that the reader knows what a dual
operator space is, and is familiar with basic Banach space and operator space duality
principles (as may be found for example within [7, Section 1.4, 1.6, Appendix A.2]). We
will often abbreviate ‘weak*’ to ‘w∗’. Unless indicated otherwise, throughout the paper
M denotes a dual operator algebra, by which we mean a weak* closed subalgebra of
B(H), the bounded operators on a Hilbert space H. We take all dual operator algebras
M to be unital, that is we assume they possess an identity of norm 1. Dual operator
algebras may also be characterized abstractly (see e.g. [7, Section 2.7]). For the purposes
of this paper, a (right) dual operator module over M is an (operator space and right M -
module completely isometrically, weak* homeomorphically, andM -module isomorphic to
a) weak* closed subspace Y ⊂ B(K,H), for Hilbert spacesH,K, with Y π(M) ⊂ Y , where
π : M → B(H) is a weak* continuous completely contractive unital homomorphism.
Similarly for left modules. Dual operator modules may also be characterized abstractly
(see e.g. [7, Section 3.8]). For right dual operator M -modules, the ‘space of morphisms’
for us will be w∗CB(Y,Z)M , the weak* continuous completely bounded right M -module
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maps. We write Ỹ = w∗CB(Y,M)M , this is a left M -module, and plays the role in our
theory of the ‘module dual’ of Y .

If n ∈ N and M is a dual operator algebra, then we write Cn(M) for the first column
of the space Mn(M) of n × n matrices with entries in M . This is a right M -module,
indeed is a dual operator M -module. As one expects, Ỹ is the ‘row space’ Rn(M) in this
case. Similarly if n is replaced by an arbitrary cardinal I: CwI (M) may be viewed as one
‘column’ of the ‘infinite matrix algebra’ MI(M) = M⊗̄B(`2I) (see [7, 2.7.5 (5)]). This is
also a dual operator M -module (e.g. see 2.7.5 (5) and p. 140 in [7]). These modules are
the ‘basic building blocks’ of w∗-rigged modules.

2. W ∗-rigged modules. Although C∗-modules were generalized to the setting of non-
selfadjoint operator algebras in the 1990s, for more than a decade after that it was not
clear how generalize W ∗-modules and their theory. In [6] we found the correct general-
ization, namely the w∗-rigged modules. There are now several equivalent definitions of
these objects (see [6, Section 4]), of which the following is the most elementary.

Definition 2.1. Suppose that Y is a dual operator space and a right module over a
dual operator algebra M . Suppose that there exists a net of positive integers (n(α)),
and w∗-continuous completely contractive M -module maps φα : Y → Cn(α)(M) and
ψα : Cn(α)(M) → Y , with ψα(φα(y)) → y in the w∗-topology on Y , for all y ∈ Y . Then
we say that Y is a right w∗-rigged module over M .

Our intention in this section is pedagogical. We will give some motivation for this
definition, and use it to introduce some ideas in the theory. Suppose that M is a von
Neumann algebra, acting on a Hilbert space H. Henceforth in this section, let Y be a
right BanachM -module satisfying the Banach module variant of Definition 2.1, replacing
‘operator space’ by ‘Banach space’ and ‘completely contractive’ by ‘contractive’. That
every right W ∗-module over M is of this form follows exactly as in the Hilbert space case
(whereM = C), since there always exists an ‘orthonormal basis’ (ei)i∈I (see [14]). In this
case the net is indexed by the finite subsets of I, and it is an easy exercise to write down
the maps φα, ψα in terms of the ei. We wish to show the nontrivial converse, that any
such Banach M -module Y is a W ∗-module. The bulk of this amounts to showing that
the weak∗ limit w∗limα φα(y)∗φα(z) exists in M , for all y, z ∈ Y : this expression then
defines the W ∗-module inner product. However the existence of this weak∗ limit seems
to be surprisingly difficult. We will sketch a proof, giving full details of a new proof of
the main part of the argument.

It is a pleasant exercise for the reader (see the first lemma in [6] for a solution), to
check the case that M = C, that in this case Y is a Hilbert space with inner product
limα 〈φα(z), φα(y)〉. In fact, this works with the same proof if the spaces Cn(α)(C) are
replaced by arbitrary Hilbert spaces Hα. This case will be used later in the proof. The
next thing to note is that ‖y‖ = supα ‖φα(y)‖. Indeed, if supα ‖φα(y)‖ ≤ t < ‖y‖, then
‖ψα(φα(y))‖ ≤ t for all α, and we obtain the contradiction ‖y‖ ≤ t < ‖y‖ from Alaoglu’s
theorem. We remark in passing that a similar argument shows that for any operator space
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Y satisfying Definition 2.1, we have

‖[yij ]‖Mn(Y ) = sup
α
‖[φα(yij)]‖, [yij ] ∈Mn(Y ). (1)

Note that equation (1) implies that such a Y is a dual operator module (Y is identified
with a submodule of a direct sum of the operator modules Cn(α)(M)). In our (Banach
module) case, we use (1) as a definition of matrix norms. This makes Y an operator
space, a dual operator module, and it is easy to check that Y is now a w∗-rigged module.

We now mention that the kind of tensor product that appears in our theory is called
the module σ-Haagerup tensor product Y ⊗σhM Z (see [10] and [5, Section 2]). We will not
take time to properly introduce this here, suffice it to say that this tensor product is a dual
operator space which is defined to have the universal property that it linearizes completely
bounded separately weak* continuous bilinear maps satisfying T (ym, z) = T (y,mz) for
y ∈ Y, z ∈ Z,m ∈ M . If Y is a w∗-rigged M -module, and if H is the Hilbert space that
M acts on, define K = Y ⊗σhM H. By tensoring φα and ψα on the right with the identity
map on H, and using the simple fact that Cn(M)⊗σhM H = H(n) unitarily via the obvious
map, one can show that K satisfies the conditions of the case discussed at the start of
the last paragraph (beginning with “It is a pleasant exercise...”). The hard part of this is
that ((ψα ◦ φα)⊗ IH)(u)→ u weak*, for any u ∈ K. We know no easy proof of this, and
so will not discuss this detail here. Hence K is a Hilbert space with inner product

〈y ⊗ ζ, z ⊗ η〉 = lim
α
〈(φα ⊗ 1)(y ⊗ ζ), (φα ⊗ 1)(z ⊗ η)〉 = lim

α
〈φα(z)∗φα(y)ζ, η〉,

for y, z ∈ Y and ζ, η ∈ H. This computation again uses the fact that Cn(M)⊗σhM H = H(n)

unitarily. Thus limα φα(z)∗φα(y) exists in the weak* topology of M as desired. Define
〈z, y〉 to be this weak* limit in M . It needs to be checked that this matches the original
norm. This again uses the fact that this holds in the case M = C (the exercise for the
reader above), and the just mentioned ‘simple fact’, as follows: If ζ ∈ Ball(H) then

‖φα(y)ζ‖2 = ‖(φα ⊗ 1)(y ⊗ ζ)‖2 ≤ ‖y ⊗ ζ‖2 = 〈〈y, y〉ζ, ζ〉 ≤ ‖y‖2.

Taking a supremum over such ζ and α, and using (1) we obtain

‖〈y, y〉‖ = sup
α
‖φα(y)‖2 = ‖y‖2, y ∈ Y.

Now it is clear that Y with its original norm is a C∗-module over M . That Y is a W ∗-
module will now be clear to experts; but in any case it is an easy fact that W ∗-modules
are the C∗-modules whose inner product is separately weak* continuous (see e.g. Lemma
8.5.4 in [7]). The latter is clear in our case using a basic fact about Y ⊗σhM Z: the map ⊗
is separately weak* continuous (see [10] and [5, Section 2]). For example, if yt → y weak*
in Y then yt ⊗ ζ → y ⊗ ζ weakly in K, hence

〈〈z, yt〉ζ, η〉 = 〈yt ⊗ ζ, z ⊗ η〉 → 〈y ⊗ ζ, z ⊗ η〉 = 〈〈z, y〉ζ, η〉.

Remark. It is tempting to try to simplify the proof further by using ultrapowers. We
thank Marius Junge for discussions on this; it seems that such a proof, while very inter-
esting, may be more complicated.
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3. Bifunctoriality of the tensor product, and an application. The reader is di-
rected to [6] for the basic theory of w∗-rigged modules. Turning to new results, we first
prove the important but nontrivial fact that the module σ-Haagerup tensor product in-
troduced in the last section is ‘bifunctorial’ in the following sense:

Theorem 3.1. Suppose that Y is a right w∗-rigged M -module, and that Z,W are left
dual operator M -modules. If (St) is a net in w∗CBM (Z,W ) with weak* limit S ∈
w∗CBM (Z,W ), then IY ⊗ St → IY ⊗ S weak* in CB(Y ⊗σhM Z, Y ⊗σhM W ). Similarly, if
Tt → T weak* in w∗CB(Y )M then Tt ⊗ IZ → T ⊗ IZ weak*.

Proof. The key new idea is to employ an isomorphism found in Theorem 3.5 of [6]: if
Ỹ = w∗CB(Y,M)M , then the following map is an isometric weak* homeomorphism:
θZ : Y ⊗σhM Z → w∗CBM (Ỹ , Z), taking y ⊗ z, for y ∈ Y, z ∈ Z, to the operator mapping
an x ∈ Ỹ to (x, y)z ∈ Z. If u = y ⊗ z, for y, z as above, and x ∈ Ỹ , then

(S ◦ θZ)(u)(x) = S((x, y)z) = (x, y)Sz = θW ((I ⊗ S)(u)).

Thus S ◦ θZ(u) = θW ((I ⊗ S)(u)) for u = y ⊗ z. By w∗-continuity and the density of
elementary tensors, it follows that S ◦ θZ(u) = θW ((I ⊗ S)(u)), for all u ∈ Y ⊗σhM Z and
S ∈ w∗CBM (Z,W ). If St → S weak* in w∗CBM (Z,W ), then St ◦ θZ(u) → S ◦ θZ(u)
weak*, and hence θW ((I⊗St)(u))→ θW ((I⊗S)(u)) weak*. Thus (I⊗St)(u)→ (I⊗S)(u)
weak*.

That Tt ⊗ IZ → T ⊗ IZ weak* is much shorter, following from facts about operator
space multipliers, as in the proof of Theorem 2.4 in [6].

Remark. The variant of the last statement of the last theorem for a net (Tt) in
w∗CB(Y, Y ′), where Y ′ is a second w∗-rigged M -module, is also valid. This may be
seen via the trick of viewing (Tt) in w∗CBM (Y ⊕c Y ′, Y ⊕c Y ′).

In [12], Kashyap proved the ‘difficult direction’ of the analogue of one of Morita’s
famous theorems: dual operator algebras are weak* Morita equivalent (which means that
there exists a bimodule of the type mentioned just above Theorem 4.3 below) iff they are
left dual Morita equivalent in the sense of [12, Definition 4.1] (that is, their categories of
dual operator modules are equivalent via functors that are weak* continuous on morphism
spaces). Some of the ‘easy direction’ of the theorem was observed in [5]. However one
aspect of this, namely the weak* continuity of the functors implementing the categorial
equivalence, stumped us until we were able in the present work to prove Theorem 3.1.

Corollary 3.2. If M and N are weak* Morita equivalent in the sense of [5], then their
categories of dual operator modules are equivalent via functors that are weak* continuous
on morphism spaces. That is, they are left dual Morita equivalent in the sense of [12,
Definition 4.1].

Proof. Let Y be the equivalence N -M -bimodule, with dual bimodule X. Then Y is a
w∗-rigged M -module, and so the functor Y ⊗σhM − is weak* continuous on spaces of
morphisms, by Theorem 3.1. Similarly, G = X ⊗σhN − is weak* continuous. That is, the
functors implementing the categorial equivalence are weak* continuous, which was the
missing detail from our paper [5].
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4. A variant of Paschke’s ‘free module’ characterization. In the last section of
[6], we gave several examples of w∗-rigged modules, including the following two. First, if
P is a weak*-continuous completely contractive idempotent M -module map on CwI (M),
for a cardinal/set I, then Ran(P ) is a w∗-rigged module. Second, suppose that Z is any
WTRO (that is, a weak* closed subspace of B(K,H) satisfying ZZ∗Z ⊂ Z), and suppose
that Z∗Z is contained in a dual operator algebra M . Then Y = ZM

w∗

is a w∗-rigged
M -module, and such modules Y may be viewed as a one-sided generalization of the
bimodules studied in [9, 10]. The following is the analogue of a famous theorem due to
Paschke (see [14] or [7, Corollary 8.5.25]). We identify two w∗-rigged modules as dual
operator M -modules, if there is a surjective weak* homeomorphic completely isometric
M -module map between them.

Theorem 4.1. As dual operator M -modules, the above two classes of w∗-rigged modules
over M coincide, and coincide with the class of w∗-rigged module direct sums ⊕wci∈I piM ,
for sets of projections {pi : i ∈ I} in M (this sum coincides with the weak* closure in
CwI (M) of the algebraic module direct sum ⊕i∈I piM).

Proof. Suppose that we have a projection P ∈ w∗CB(CwI (M))M ∼= MI(M) (see Corollary
3.6 in [6]). If P = [aij ] then [aij ] = [a∗ji], and so P ∈ MI(N) where N = M ∩M∗. Let
Z = PCwI (N), a WTRO. Then ZM ⊂ PCwI (M). On the other hand, if {ei} is the
usual ‘basis’ for CwI (N) then Pei ∈ Z, and so Peim ∈ ZM for all m ∈ M . Hence
PCwI (M) ⊂ ZMw∗

, and so PCwI (M) = ZM
w∗

.

Conversely, suppose that Y = ZM
w∗

as above. Set R = Z∗Z
w∗

. By the theorem of
Paschke that we are modifying [14], there exist mutually orthogonal partial isometries
(zi)i∈I ⊂ Z with

∑
i ziz

∗
i z = z for all z ∈ Z, and if P = [z∗i zj ] then Z ∼= PCwI (R). The

map θ : Y → CwI (M) : x 7→ [z∗i x] is a weak* continuous complete isometry with left
inverse [mi] 7→

∑
i zimi. It is easy to see that θ(Y ) ⊂ PCwI (M). Also, θ(zj) = Pei for

ei as above, and so as at the end of the last paragraph we have PCwI (M) ⊂ θ(Y ). Hence
Y ∼= PCwI (M) via θ.

Finally, suppose that pi = z∗i zi. We may view ⊕wci piM as a submodule of CwI (M).
Clearly, ⊕wci piM ⊂ PCwI (M), and the reverse inclusion follows as in the first paragraph,
since Pei ∈ ⊕wci piM .

The modules considered in the last theorem form a very interesting subclass of the
w∗-rigged modules, and we propose a study of this subclass. We shall call them projectively
w∗-rigged modules.

Proposition 4.2. Let Y be a w∗-rigged right module over M , and let X = Ỹ . Then
Y is projectively w∗-rigged iff there exists a pair x = (xi) ∈ Ball(CwI (X)), y = (yi) ∈
Ball(RwI (Y )), for a cardinal I, such that xi(yj) = δij pj for an orthogonal projection
pj ∈M , for all i, j ∈ I, and

∑
i∈I yi ⊗ xi = 1 weak* in w∗CB(Y )M .

Proof. If Y is projectively w∗-rigged, then we set yi = zi, xi = z∗i in the notation above.
Conversely, if such x, y exist, then a slight variant of the second paragraph of the proof
of the last theorem shows that Y may be identified with PCwI (M), where P = [δij pj ], as
dual operator M -modules.



A GENERALIZATION OF W∗-MODULES 83

The following is a variant of the stable isomorphism theorem from [10]. The nota-
tion MI(M) is defined in the introduction. A weak* Morita equivalence bimodule is a
bimodule that is both a left and a right w∗-rigged module, and which satisfies a natural
compatibility condition between the left and right actions (spelled out in [6, Section 5
(3)]).

Theorem 4.3. Suppose that Y is a weak* Morita equivalence M -N -bimodule, over dual
operator algebras M and N , and suppose that Y is both left and right projectively w∗-
rigged. Then M and N are stably isomorphic (that is, MI(M) ∼= MI(N) completely
isometrically and weak* homeomorphically, for some cardinal I).

Proof. We will be brief, since this is well-trodden ground (see Theorem 8.5.28 and The-
orem 8.5.31 in [7]). Since Y is projectively w∗-rigged over N , we have Y ∼= PCwI (N) for
a cardinal I. If Z = (I − P )CwI (N) then Y ⊕c Z ∼= CwI (N) as dual operator N -modules.
Since Y is projectively w∗-rigged on the left over M , by the other-handed version of
Proposition 4.2 there exists a pair x = (xi) ∈ Ball(RwJ (X)), y = (yi) ∈ Ball(CwJ (Y )), for
a cardinal J , such that yj ⊗ xi = [yj , xi] = δijpj for an orthogonal projection pj ∈ M ,
for all i, j ∈ J , and

∑
j∈J xj(yj) = 1 weak* in M . Define maps µ : N → CwJ (Y ) and

ρ : CwJ (Y ) → N by µ(n) = [yjn], and ρ([zj ]) =
∑
j∈J xj(zj), respectively. We obtain

N ∼= QCwJ (Y ), where Q = µ ◦ ρ. We may identify Q with a diagonal matrix with projec-
tions qj as the diagonal entries. If L = (I − Q)CwJ (Y ), then N ⊕c L ∼= CwJ (Y ) as dual
operator N -modules. The Eilenberg swindle, as used in the proof of [7, Theorem 8.5.28],
then yields Cws (Y ) ∼= Cws (N), and Ms(Y ) ∼= Ms(N), as dual operator N -modules, for
some cardinal s. By symmetry, Mt(Y ) ∼= Mt(M), for some cardinal t which we can take
to be equal to s. Thus M and N are stably isomorphic as in [7].

Proposition 4.4. Not every w∗-rigged module is projectively w∗-rigged.

Proof. Suppose by way of contradiction that every right w∗-rigged module Y is a projec-
tively w∗-rigged module. Then every left w∗-rigged module is projectively w∗-rigged, by
passing to the adjoint (or conjugate) Ȳ . Let Y be the M -N -bimodule in Example (10)
in [5, Section 3]. This is an example due to Eleftherakis, who showed that Y does not
implement what he calls a ∆-equivalence [9, 10]. We observed in [5] that Y is a weak*
Morita equivalence M -N -bimodule. Hence it is both left and right w∗-rigged over M and
N respectively. Thus Y is both left and right projectively w∗-rigged. By the last theo-
rem, M and N are stably isomorphic, hence ∆-equivalent in Eleftherakis’ sense. This is
a contradiction.

5. Structure of isometries between bimodules. A question of perennial interest is
the structure of surjective linear isometries between various algebras. For C∗-algebras
the appropriate theorem is Kadison’s noncommutative Banach-Stone theorem. For non-
selfadjoint algebras, the most general results on surjective isometries are due to Arazy
and Solel [1], using deep techniques. One gets a much simpler structure, with a consider-
ably easier proof, if one restricts attention to surjective complete isometries T : A → B

between unital operator algebras: the theorem here is that T is the product of a unitary
in B ∩B∗ and a surjective completely isometric homomorphism from A onto B (see e.g.
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[7, Theorem 4.5.13]). In this section, we are interested in generalizing such results to maps
between bimodules. Our bimodules will be w∗-rigged both as left and as right modules,
that is they will be weak* Morita equivalence bimodules, which were defined above Theo-
rem 4.3. By considering 2 dimensional examples it seems that there is no characterization
theorem in the case of general one-sided w∗-rigged modules. For C∗-modules (and hence
W ∗-modules), the structure of surjective complete isometries follows immediately from
a theorem attributable to Hamana, Kirchberg, and Ruan, independently [7, Corollary
4.4.6]. The isometric case is due to Solel [17], who also shows that such isometries lift to
the ‘linking C∗-algebras’. In [4], the first author characterized the structure of complete
isometries between the strong Morita equivalence bimodules of [8]. Unfortunately the
latter class of bimodules does not contain ours, and the proof technique used there fails
in the ‘dual’ setting, for example it employs the noncommutative Shilov boundary, which
has no weak* topology variant to date. We show here how this can be circumvented. See
the introduction for a discussion of the linking algebra (see [5, Section 4] for more details
if desired).

Theorem 5.1. Let T : Y1 → Y2 be a surjective linear complete isometry between weak*
Morita equivalence bimodules (these were defined above Theorem 4.3). Suppose that Yk
is a weak* equivalence Mk-Nk-bimodule, for k = 1, 2. Then there exist unique surjective
completely isometric homomorphisms θ : M1 →M2 and π : N1 → N2 such that T (ayb) =
θ(a)T (y)π(b) for all a ∈ M1, b ∈ N1, y ∈ Y1. If T is weak* continuous then so are θ
and π, and moreover T is the 1-2-corner of a weak* continuous surjective completely
isometric homomorphism ρ : Lw(Y1) → Lw(Y2) between the weak linking algebras which
maps corners to the matching corner.

Proof. We will use the machinery of ‘multipliers’ of operator spaces (see e.g. [4]), which
hitherto has been the deepest tool in the theory of w∗-rigged modules [6]. From [6, Theo-
rem 2.3], and [5, Theorem 3.6], we have thatM`(Yk) = w∗CB(Yk)Nk

∼= Mk, and similarly
Mr(Yk) ∼= Nk, for k = 1, 2. By [7, Proposition 4.5.12], the map M`(Y1) → M`(Y2) :
u 7→ TuT−1 is a completely isometric isomomorphism. It is also weak* continuous if T is,
using [7, Theorem 4.7.4]. Putting these maps together, we obtain surjective completely
isometric homomorphisms θ : M1 → M2 and π : N1 → N2, which are weak* continuous
if T is. We have θ(a)T (y) = T (aT−1(T (y))) = T (ay) for a ∈M1, y ∈ Y as desired, and a
similar formula holds for π. The uniqueness of θ and π are obvious.

Assuming T weak* continuous, and with Xk = Ỹk = w∗CB(Yk, Nk)Nk
, define S :

X1 → X2 by S(x)(z) = π(x(T−1(z))), for x ∈ X1, z ∈ Y2. It is routine to argue that S is
a complete isometry, since T and π are. Clearly S(x)(T (y)) = π(x(y)) for x ∈ X1, y ∈ Y1.
It is simple algebra to check that S(bxa) = π(b)S(x)θ(a), and [T (y), S(x)] = θ([y, x]). To
see the latter, for example, note that for y′ ∈ Y ,

[T (y), S(x)]T (y′) = T (y)(S(x), T (y′)) = T (y)π((x, y′)) = T (y(x, y′)) = T ([y, x]y′),

which is just θ([y, x])T (y′). Thus in a standard way, the maps under discussion become
the four corners of a surjective homomorphism ρ between the weak linking algebras. It
is easy to see that ρ is weak* continuous, since each of its four corners is. That ρ is
completely isometric follows by pulling back the operator space structure from Lw(Y2)
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via ρ, and using the fact that there is a unique operator space structure on the weak
linking algebra making it a dual operator algebra, such that the matrix norms on each of
the four corners are just the original norms of the four spaces appearing in those corners
(see the third paragraph of [5, Section 4], which appeals to the idea in [7, p. 50–51]).
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