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Abstract. Weighted convolution algebras L1(ω) on R+ = [0,∞) have been studied for many
years. At first results were proved for continuous weights; and then it was shown that all such re-
sults would also hold for properly normalized right continuous weights. For measurable weights,
it was shown that one could construct a properly normalized right continuous weight ω′ with
L1(ω′) = L1(ω) with an equivalent norm. Thus all algebraic and norm-topology results remained
true for measurable weights. We now show that, with careful definitions, the same is true for
the weak∗ topology on the space of measures that is the dual of the space of continuous func-
tions C0(1/ω). We give the new result and a survey of the older results, with several improved
statements and/or proofs of theorems.

1. Introduction. Our goal is to show that all weighted convolution algebras on R+ =
[0,∞) have essentially the same tools available that are used to study L1(R+). For us,
a weight is a positive Borel function ω on R+ which is bounded and bounded away
from 0 on all intervals [0, b]. L1(ω) is the Banach space of (equivalence classes of) locally
integrable functions on R+ for which the norm ||f || = ||f ||ω =

∫
|f(t)|ω(t) is finite. In

a similar way, M(ω) is the Banach space of locally finite complex Borel measures µ for
which the norm ||µ|| =

∫
ω(t)d|µ| is finite. We are mainly interested in the case that

L1(ω) is an algebra under the usual convolution product f ∗ g(x) =
∫
R+ f(x − t)g(t)dt.

The modern study of these algebras began with the fundamental paper of Graham Allan
[A], which circulated as a preprint for several years before it was published.

By now much is known about such algebras. Many of the earlier results can be found
in [D, section 4.7]. At first the results were proven for continuous weights, but this seems
to be too strong a restriction since many important weights, like the norms of strongly
continuous groups of linear operators, need not be continuous. We want to look at the
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following question: For which weights ω are the results proved for special weights still
valid? Essentially, we need to show that the same tools, such as weak∗ topologies, approx-
imate identities, multiplier algebras, etc., available for the unweighted case of L1(R+) are
available for more general L1(ω). We will largely survey results beginning with those in
[Gr1], but we will give some new proofs and will also discuss some new results.

We will concentrate on three general questions. In Section 2 we will describe precisely
for which weights ω we have that L1(ω) is an algebra, and therefore a Banach algebra un-
der an equivalent norm. In section 3 we will describe a class of weights, which we will call
algebra weights, that have the same tools available isometrically as does L1(R+). In sec-
tion 4 we will see that whenever L1(ω) is an algebra there is an algebra weight ω′ for which
L1(ω) = L1(ω′) with an equivalent norm and that, with careful definitions, we can adapt
the same tools, but not necessarily isometrically, from L1(ω) to L1(ω′). We will also often
need to prove analogous results for translation invariance that we do for algebra structure
and to study the relation between the algebra structure and translation invariance.

2. L1(ω) as an algebra. In this section we describe exactly which weights ω make
L1(ω) an algebra. We also discuss the analogous simpler problem for the right translation
operators Saf(x) = f(x− a) = δa ∗ f(x), where δa is the point mass at a. Since L1(ω) is
continuously embedded in L1

loc(R
+), the Fréchet algebra of locally integrable functions

on R+, it follows that linear and bilinear operators continuous on L1
loc(R

+), such as
convolution and translations, are continuous when defined on any L1(ω). In particular,
whenever L1(ω) is an algebra, then convolution is a bounded bilinear operator so that
L1(ω) is a Banach algebra under an equivalent norm. The results in this section are
adapted from [Gr1, section 2], so we will refer to this paper for the details of some proofs.

A standard argument shows that L1(ω) is an algebra if there is a positive constant K
for which ω(x+ y) ≤ Kω(x)ω(y) for almost every (x, y) in the first quadrant. Moreover,
||f ∗ g|| ≤ K||f || ||g|| for the same constant K. Our main result is that the converse is
also true. The following definitions provide the key techniques of the proof.

Definition 2.1. The number a ≥ 0 is a right Lebesgue point of the locally integrable
function f if

lim
h→0+

1
h

∫ a+h

a

|f(x)− f(a)|dx = 0.

It follows from the Lebesgue differentiation theorem that almost every number is a
right Lebesgue point. It is also easy to see that if a is a right Lebesgue point of f , then
(1/h)

∫ h

0
f(a+ x) dx has limit f(a) as h→ 0+.

Definition 2.2. The function eh, for h > 0, is defined to be 1/h times the characteristic
function of the interval [0, h).

Theorem 2.3 ([Gr1, Lem. (2.4), p. 534]). Suppose that ω is a weight and that K is a
positive number. Then the following are equivalent:

(a) ||f ∗ g||ω ≤ K||f ||ω||g||ω for all f and g in L1(ω).
(b) ω(x+ y) ≤ Kω(x)ω(y) for almost every (x, y).
(c) ω(x+ y) ≤ Kω(x)ω(y) whenever x, y, and x+ y are all right Lebesgue points of ω.
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The crux of the proof is to show that (a) implies (c). One considers the functions
fh = δa ∗ eh and gh = δb ∗ eh, where a, b, and a + b are all right Lebesgue points of ω.
It follows from the comments after definition 2.1 that ||fh|| → ω(a) as h → 0+, and
similarly for gh. With more work one can also show that ||fh ∗ gh|| goes to ω(a+ b). This
shows that (a) implies (c).

As we pointed out above, if L1(ω) is an algebra then there is a constant K > 0 for
which ||f ∗ g||ω ≤ K||f ||ω||g||ω for all f and g in L1(ω). In other words, L1(Kω) is a
Banach algebra with the same elements as L1(ω). Hence we have the following corollary
of Theorem 2.3.

Corollary 2.4. For any weight ω, the following are equivalent.

(a) L1(ω) is an algebra.
(b) L1(ω) is a Banach algebra under an equivalent norm.
(c) There is a K ≥ 0 for which ω(x+ y) ≤ Kω(x)ω(y) for almost every (x, y).

The analogue of Corollary 2.4 for the right translation operator Saf(x) = δa ∗ f(x) is
much more elementary.

Theorem 2.5. The Banach space L1(ω) is invariant under right translation by a if and
only if ω(x + a)/ω(x) is essentially bounded. Moreover when these conditions hold the
right translation operator is a bounded linear operator with norm

||Sa|| = ess.supω(x+ a)/ω(x).

Any almost everywhere inequality between locally integrable functions is easily seen
to hold wherever all the functions have right Lebesgue points. Thus we obtain from the
above theorem that:

ω(x+ a) ≤ ||Sa||ω(x), (2.1)

whenever both x and x+a are right Lebesgue points of ω [Gr1, Lemma (2.8) (D), p. 537].

Proof of Theorem 2.5. For each f in L1(ω), that is for each f(x)ω(x) in L1(R+), we have
that the quantity

||Saf ||ω =
∫ ∞

a

|Saf(x)|ω(x)dx =
∫ ∞

0

|f(x)|ω(x+ a)dx

=
∫ ∞

0

|f(x)ω(x)|(ω(x+ a)/ω(x))dx

is finite for all such f if and only if ω(x + a)/ω(x) is essentially bounded. Moreover the
sup of the integrals over all fω of norm 1 in L1(R+) is the essential supremum, that is
the L∞ norm, of ω(x+ a)/ω(x). This completes the proof of the theorem.

We want to extend important known results from L1(R+) to more general L1(ω).
The following definition gives us a useful tool for this purpose.

Definition 2.6. We let L0 be the vector space of (equivalence classes of) integrable
functions with bounded support on R+. We let L0(ω) be this space with the norm
inherited from L1(ω).

The space L0 is a dense subspace of each L1(ω), but the norms on different L0(ω) need
not be equivalent. On the other hand, since we require both ω and 1/ω to be bounded on
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finite intervals, any sequence in L1(ω) whose elements all have support in a fixed bounded
interval will converge in L1(ω) if and only if the sequence converges in L1(R+). We will
need the following well-known elementary result on extending pointwise convergence of
operators from a dense subspace of a Banach space to the whole space.

Theorem 2.7. Suppose that V is a dense subspace of the Banach space X and that {Sn}
is a norm bounded sequence of linear operators from X to the Banach space Y .

(a) If T is a bounded linear operator from X to Y and Snx converges to Tx for all x
in V , then Snx converges to Tx for all x in X.

(b) If Snx converges for all x in V, then it converges for all x in X and the limit is a
bounded linear operator.

We now apply L0 and Theorem 2.7 to right translations on L1(ω).

Theorem 2.8. If L1(ω) is invariant under right translations, then the right-translation
semigroup is strongly continuous on L1(ω) on (0,∞). It is strongly continuous at 0 if and
only if ||St|| is bounded for t near 0.

Proof. Suppose that the sequence {an} in R+ has limit a. Fix a function f in L0.

Since the right-translation semigroup is strongly continuous on L1(R+), the sequence
Sanf converges to Saf in the usual L1 norm. Since f has bounded support, there is a
fixed interval [0, b] which contains the support of all the San

f. Hence San
f converges to

Saf in the norm of L1(ω).
We just need to check that the sequence {San

} is bounded in norm. If we let W (t) =
||St||, then the weight is submultiplicative. Hence W (t) is locally bounded on (0,∞) (see
[D, Lemma 4.7.4, p. 521]) and is locally bounded on all of R+ if it is bounded near 0.
The theorem now follows from Theorem 2.7(a) above.

For other proofs of the above theorem, see the references in the proof of [Gr1, Lemma
(2.8)(C), p. 537]. We close this section by relating translation invariance to L1(ω) being
an algebra.

Theorem 2.9. If L1(ω) is an algebra, then it is invariant under right translations. More-
over the right-translation semigroup is strongly continuous on L1(ω).

Proof. We start by choosing K as in Theorem 2.3, so that ω(x + y) ≤ Kω(x)ω(y)
for almost every (x, y). We now first show that L1(ω) is invariant under translation by
a when a is a fixed right Lebesgue point of ω(x). For this fixed a, we have for almost
every x that both x and a+ x are right Lebesgue points. Since a is also a right Lebesgue
point, it follows from Theorems 2.3(c) and 2.5 that Sa is bounded with ||Sa|| ≤ Kω(a).
Since ω(x) is bounded on all intervals [0, b], there is an M , which depends on b, for which
||Sx|| ≤M for all right Lebesgue points x in [0, b].

Now suppose that a is an arbitrary nonnegative number. Since almost every number
is a right Lebesgue point of ω, the right Lebesgue points form a dense subset of R+.
Hence we can find a sequence {an} of right Lebesgue points with limit a. Let f be a
function in L0. Since the right-translation semigroup is strongly continuous on L1(R+),
Sanf converges to Saf in the norm of L1(R). Since f has bounded support, it follows,
just as in the previous proof, that the sequence {San

f} converges in the norm of L1(ω) for
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all f in L0. It now follows from Theorem 2.7(b) that there is a bounded linear operator
T on L1(ω) for which the sequence {San

f} converges strongly to Tf in L1(ω). Since
L1(ω) is continuously imbedded in the algebra of locally integrable functions on R+, the
sequence {San

f} converges to Tf in L1
loc(R

+) for all f in L1(ω). But San
f converges

to Saf in L1
loc(R

+). Hence Sa = T , which is a bounded operator on L1(ω). This proves
right-translation invariance.

We showed above that on any interval [0, b], the norms of all right translations with
respect to a right Lebesgue point are bounded by some constant M. Since every right
translation Sa is a strong limit of right translations by right Lebesgue points, it follows
that these too are bounded by M. So ||Sa|| ≤ M for all a in [0, b]. It now follows from
Theorem 2.8 that the right-translation semigroup is strongly continuous on L1(ω).

For a different proof of right-translation invariance, see the paragraph after the proof
of [Gr1, Lemma (3.3), p. 539].

3. Isometrically good weights. In this section, we will describe a class of weights
for which L1(ω) is an algebra for which we have isometrically the same basic harmonic
analysis tools that we have for L1(R+). This was done for continuous weights by Ghahra-
mani [Gh, section 1] (see also [D, section 4.7]). We will describe results from [Gr2] and
[W] that replace continuity by right continuity. In the next section we will show how to
extend these results, but not isometrically, to the case that L1(ω) is an algebra. This will
be done by first showing that there is a good weight ω′, of the type we consider in this
section, for which L1(ω′) = L1(ω). Continuity is too restrictive precisely because there
need not be a continuous weight ω′ with L1(ω′) = L1(ω).

One of the main tools in harmonic analysis is the measure algebra and its relation to
the L1 algebra. So we will need to know that M(ω) is an algebra. Since M(ω) is continu-
ously imbedded in the convolution algebra of locally finite measures on R+, convolution
multiplication on M(ω) will be a bounded bilinear operator whenever M(ω) is an alge-
bra. For M(ω), unlike L1(ω), we will need our inequalities to hold everywhere instead
of just almost everywhere, because the formula ||δa+b|| ≤ K||δa|| ||δb|| translates to the
inequality ω(a+ b) ≤ Kω(a)ω(b). We then obtain the following analogue of Theorem 2.3
and Corollary 2.4. The result is essentially [Gr4, Theorem 2.5 (i)(ii), p. 412].

Theorem 3.1. For any weight ω and any positive number K, the following conditions
are equivalent. Moreover there is a positive K for which the conditions hold, if and only
if M(ω) is an algebra.

(a) ω(x+ y) ≤ Kω(x)ω(y) for all nonnegative x and y.
(b) ||µ ∗ ν||ω ≤ K||µ||ω||ν||ω for all µ and ν in M(ω).
(c) M(Kω) is a Banach algebra.

Of course M(Kω) is the same space as M(ω) but with the equivalent norm ||µ||Kω
=

K||µ||ω. Any inequality for functions that holds almost everywhere will hold in particular
at all points of right continuity. Thus when the weight ω is right continuous, condition
(a) in the above theorem is equivalent to condition (b) in Theorem 2.3 above. Thus for
right continuous weights, L1(ω) is an algebra if and only if M(ω) is an algebra. Moreover
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they are Banach algebras if and only if the constant K = 1, that is if and only if the
weight ω is submultiplicative. If we want isometric results, we will need that the identity
δ0 has norm 1, that is we must have ω(0) = 1. These conditions are enough to give us
the class of weights we want [Gr2, Def. 1.1, p.590].

Definition 3.2. The weight ω(x) on R+ is an algebra weight if ω is submultiplicative,
right continuous, and has ω(0) = 1.

In order to be able to give M(ω) a weak∗ topology, we need a predual. When ω

is continuous this is easily done [Gh] using the Riesz representation theorem. For right
continuous weights Willis [W, p. 303] uses the following space.

Definition 3.3. When ω(x) is right continuous, we let C0(1/ω) be the space of contin-
uous functions f(x) on R+ for which f(x)/ω(x) is bounded and has limit 0 as x goes
to ∞. We give C0(1/ω) the weighted sup norm ||f || = sup |f(x)/ω(x)|.

We are now ready to state our major result about algebra norms. The theorem below
is essentially [Gr2, Th. 2.2, p. 592]. Much of the result is adapted from [W], particularly
by adding isometric results. The functions eh in the theorem are defined in definition 2.2
above.

Theorem 3.4. Suppose that ω is an algebra weight. Then both L1(ω) and M(ω) are
Banach algebras for which the following properties hold.

(a) The functions {eh} are a bounded approximate identity as h goes to 0, with
lim

h→0+
||eh|| = 1.

(b) The right translation operator Saf(x) = δa ∗ f(x) has operator norm ω(a).
(c) The Banach space M(ω) is isometrically isomorphic to the dual space of C0(1/ω)

when we identify the measure µ with the linear functional 〈µ, f〉 =
∫
R+ f(x)dµ.

(d) The algebra M(ω) is isometrically isomorphic to the multiplier algebra of L1(ω)
when we identify the measure µ with the operation of convolution by µ on L1(ω).

We only give proofs of those parts that are different from the proofs, or omitted from
the proofs, in [Gr2, Th. 2.2, p. 592] and the references there. In particular we omit the
proof of (c) which adds the isometric result to Willis’s proof of [W, Lem. 1.2, p. 303].

Proof. Since ω is right continuous it follows from the elementary fundamental theorem of
calculus that ||eh||ω goes to ω(0) = 1 as h goes to 0+. In particular ||eh||ω is bounded for
h near 0. Since {eh} is a bounded approximate identity in L1(R+) we have, for all f in
L0, that eh ∗ f goes to f in the L1 norm. But the supports of the eh ∗ f for small h all lie
in a single bounded interval. Hence eh ∗ f goes to f as h goes to 0 in the norm of L1(ω)
as well. Since the norms of the eh are bounded and L0 is a dense subspace of L1(ω), this
tells us that {eh} is a bounded approximate identity for L1(ω). This proves (a).

Since ω is submultiplicative, it follows from Theorem 2.5 that ||Sa|| ≤ ω(a). On the
other hand it follows from the fundamental theorem of calculus that ||Sa(eh)||ω goes to
ω(a) as h goes to 0, and we have already observed that ||eh||ω goes to 1. Hence we also
have ||Sa|| ≥ ω(a). This completes the proof of (b).
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We will not repeat either the proof of (c) or the calculation of the norm of convolution
with µ that is given in [Gr2, Th. 2.2, p. 592]. Every proof we have seen in print, even
for the case of continuous weights, of the fact that all multipliers of L1(ω) are given
by convolution with a measure in M(ω), simply points out that the analogous proof
for locally compact groups or for some other analogue of M(ω) carries through without
change. We will therefore provide the details here.

Suppose that T is a multiplier of L1(ω). Let {hn} be a bounded approximate identity
of L1(ω). Then {Thn} is a bounded sequence in L1(ω) ⊆M(ω). Since M(ω) is the dual
space of a separable Banach space, bounded subsets are precompact and metrizable in
the weak∗ topology and therefore the sequence {hn} has a subsequence {h′n} for which
the sequence {Th′n} has a weak∗ limit µ in M(ω). We will show that Tf = µ ∗ f for all
f in L1(ω). Since T is a multiplier, all (Th′n) ∗ f = T (h′n ∗ f). Convolution with a fixed
element f in M(ω) is weak∗ continuous [Gr2, p. 595] so Th′n ∗ f has weak∗ limit µ ∗ f.
On the other hand, {h′n} is a bounded approximate identity, so T (h′n ∗ f) has norm limit
T (f) and therefore also has weak∗ limit T (f). Thus we have that the multiplier T of
L1(ω) is convolution with the measure µ in M(ω).

4. Equivalent weights. In this section we show how to extend the good properties
we described in the previous section for L1(ω) when ω is an algebra weight to the more
general case, described in Theorem 2.3 above, where we just know that L1(ω) is an
algebra. The fundamental result, Theorem 4.2 below, says that if L1(ω) is an algebra
then we can always find an algebra weight ω′ with L1(ω′) = L1(ω). Recall that whenever
L1(ω′) = L1(ω), these two Banach spaces have equivalent norms. This tells us that any
result proved in the case of algebra weights remains true whenever L1(ω) is an algebra,
provided that the result just involves the norm topology or is just algebraic. We can lose
isometric results, and we can have M(ω′) 6= M(ω) when L1(ω′) = L1(ω). These results
are adapted from [Gr1] and [Gr2]. Later in this section we will describe newer results
that let us adapt weak∗ results from the case of algebra weights to the general case where
L1(ω) is an algebra. We first need to describe the equality of two weighted spaces in
terms of the weights involved.

Definition 4.1. Two weights ω1 and ω2 are said to be essentially equivalent if both
ω1/ω2 and ω2/ω1 are essentially bounded. The weights are equivalent if these two ratios
are bounded, not just essentially bounded.

Thus ω1 and ω2 are essentially equivalent if and only if L1(ω1) = L1(ω2) and are
equivalent if and only if M(ω1) = M(ω2). If ω1 and ω2 are both right continuous, they
are equivalent if and only if they are essentially equivalent. We are now ready for our
major result on equivalence of weights.

Theorem 4.2 ([Gr2, Theorem 2.1, p. 591]). If L1(ω) is an algebra, then there is an
algebra weight ω′ which is essentially equivalent to ω. That is, L1(ω′) = L1(ω) with
equivalent norms.

We know from Theorem 2.9 that when L1(ω) is an algebra, then it is right-translation
invariant and the right-translation semigroup is strongly continuous. The most substantial
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part of the proof of Theorem 4.2 is the case where we just assume L1(ω) has a strongly
continuous right-translation semigroup.

Theorem 4.3 ([Gr1, Th. (3.1) (A)(B), pp. 537–538]). Suppose that L1(ω) is invariant
under right translations. If the right-translation semigroup is strongly continuous, then
there is a right continuous weight ω1 which is essentially equivalent to ω (so L1(ω1) =
L1(ω) with equivalent norms). Moreover we can choose ω1 so that there is a real number
r for which ω1(x)/erx is weakly decreasing.

We start with the proof of Theorem 4.2, adapted from [Gr4, Lem. 2.7, p. 413], assum-
ing Theorem 4.3.

Proof of Theorem 4.2. Since nothing essential is changed by multiplying or dividing by
erx we can assume that ω1 is weakly decreasing. Since L1(ω1) is an algebra and ω1 is
right continuous the condition ω1(x+y) ≤ Kω1(x)ω1(y) of Corollary 2.4(c) holds for all x
and y. Then the weight Kω1(x) is a weakly decreasing right continuous submultiplicative
weight equivalent to ω1 and therefore essentially equivalent to ω. Since Kω1(x) is sub-
multiplicative, it is easy to see that Kω1(0) ≥ 1. Finally, we let ω′(x) = min(1,Kω1(x)).
It is now easy to check that ω′(x) is an algebra weight equivalent to Kω1(x) and therefore
essentially equivalent to ω(x).

Proof of Theorem 4.3. LetW (x) = ||Sx||. Since Sx is a semigroup, it follows thatW (x) is
submultiplicative. HenceW (x)1/x has a finite limit as x goes to infinity. Hence there is an
r for which W (x)/erx is bounded. Since ω1(x)/erx is essentially equivalent to ω(x)/erx if
and only if ω1(x) is essentially equivalent to ω(x), we can assume without loss of generality
that W (x) is bounded, say W (x) ≤ M for all x. It then follows from formula (2.1) that
if b is a right Lebesgue point of ω, then ω(x) ≤M . Therefore ω(x) ≤M for almost every
x ≥ b. Hence the weight ω(x) will be essentially bounded under our assumption that
W (x) is bounded.

We now define ω1(x) = ess.sup.{ω(t) : t ≥ x}. It is clear that ω1(x) is weakly de-
creasing and right continuous and that ω(x) ≤ ω1(x) at every right Lebesgue point of ω,
and therefore almost everywhere. Conversely, if x is a right Lebesgue point of ω then it
follows from formula (2.1) again that ω(t) ≤ Mω(x) for almost every t greater than x.
Thus ω1(x) ≤Mω(x) for almost every x. Hence ω1 is essentially equivalent to ω and the
proof is complete.

For many years, it appeared that Theorems 3.4 and 4.2 together (which are adapted
from [Gr1] and [Gr2]) were adequate to prove results valid for the general case where
L1(ω) is just assumed to be an algebra. One could even use the weak∗ topology and
other tools for algebra weights from Theorem 3.4, as long as the final result involved only
the norm topology. More recently, some of the most striking results involve the weak∗

topology directly (see for instance [Gr3] and [Gr5]). The problem is that we do not have
M(ω′) = M(ω) unless ω and ω′ are equivalent and not just essentially equivalent. We
will now describe results, adapted from [Gr6], which describe a measure algebra which is
both a dual space containing L1(ω) and the multiplier algebra of the algebra L1(ω). This
will require us to first adapt Definition 3.3 to weights that need not be right continuous.
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Definition 4.4. If ω(x) is a weight, we let C0(1/ω) be the space of continuous functions
f(x) on R+ for which f(x)/ω(x) is essentially bounded and has essential limit 0 as x
goes to infinity. We give C0(1/ω) the norm it inherits as a subspace of L∞(1/ω). That
is, ||f || = ess.sup|f(x)/ω(x)|.

When ω is right continuous, the above definition agrees with Definition 3.3. If ω′ is
any weight essentially equivalent to ω, then C0(1/ω′)= C0(1/ω) with the same norm.

Theorem 4.5 ([Gr6, Th. 4.1]). Suppose that L1(ω) is an algebra and let ω′ be an algebra
weight essentially equivalent to ω. Then we have the following:

(a) M(ω′) is the dual space of C0(1/ω), with an equivalent norm, when we identify the
measure µ in M(ω′) with the linear functional 〈µ, f〉 =

∫
R+ f(x)dµ on C0(1/ω).

(b) M(ω′) is the multiplier algebra of L1(ω), with an equivalent norm, when we identify
the measure µ with the operation of convolution by µ on L1(ω).

Proof. Since ω′ is essentially equivalent to ω, we have that L1(ω′) = L1(ω) with equivalent
norms and C0(1/ω′) = C0(1/ω) with the same norm. But we know from Theorem 3.4 that
M(ω′) is the dual space of C0(1/ω′) = C0(1/ω) and the multiplier algebra of L1(ω′) =
L1(ω). This completes the proof.

Since right continuous weights that are essentially equivalent to each other are actually
equivalent to each other, the algebraM(ω′) is unchanged if ω′ is replaced by another right
continuous weight essentially equivalent to ω, and hence equivalent to ω′. Since M(ω′)
is the multiplier algebra of L1(ω), it is clear that L1(ω) ⊆ M(ω′), but not isometrically.
WhenM(ω) is an algebra it contains L1(ω) as a closed ideal, so we have L1(ω) ⊆M(ω) ⊆
M(ω′). If M(ω) is not an algebra, then M(ω) must be different from the algebra M(ω′).
I had originally thought [Gr4, Th. 2.5 (iii), p. 412] that whenever M(ω) was an algebra,
then there was an algebra weight ω′ equivalent to ω so that M(ω′) = M(ω). But this
result is false; there is an example in [Gr6] of a weight ω for which M(ω) is an algebra
but ω is not equivalent to any right continuous weight. For this example M(ω′) 6= M(ω).

I do not know which submultiplicative weights are equivalent, and not just essentially
equivalent, to what we have called algebra weights in Definition 3.2. Fortunately the most
important algebra weights, those that come from semigroups, are equivalent to algebra
weights. This was proved on an ad hoc basis, whenever it was needed, in several papers.
We give the details below.

We say that ω(t) is a semigroup weight if there is a strongly continuous semigroup Tt

on some Banach space E with ω(t) = ||Tt||.

Theorem 4.6. If ω(t) is a semigroup weight, then there is an algebra weight ω′ with
M(ω′) = M(ω).

Proof. Suppose that ω(t) is the semigroup weight given by the semigroup Tt on the
Banach space E. By replacing Tt with an appropriate Tt/e

rt we can assume without loss
of generality that Tt is a bounded semigroup. When Tt is a bounded semigroup on a
Banach space E, it is a standard result that one can find an equivalent norm on E under
which Tt becomes a contraction semigroup (See for instance [BD, Lem. 3, pp. 90-91]).
When the norm on E is replaced by an equivalent norm, the new operator norm on B(E)
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is also equivalent to the old operator norm. So if we let ω′(t) = ||Tt||′, where the prime
designates the new equivalent operator norm, we have that ω′ is equivalent to ω. Since
the semigroup Tt is strongly continuous, the semigroup norm ω′(t) is a supremum of
continuous functions and is therefore lower semicontinuous. Since the semigroup Tt is a
contraction semigroup under the new norm, we also have that ω′(t) is weakly decreasing.
Since ω′(t) is both lower semicontinuous and weakly decreasing, it is also right continuous.
Hence ω′(t) is an algebra norm equivalent to our original semigroup norm ω(t). This
completes the proof.

Now we know that if ω is a semigroup weight, then there is an algebra weight ω′ for
which we not only have L1(ω′) = L1(ω) and C0(1/ω′) = C0(1/ω) but alsoM(ω′) = M(ω).
Thus we have the following useful result.

Corollary 4.7. If ω(t) is a semigroup weight, then all the results given for algebra
weights in Theorem 3.4 remain true, but not necessarily isometrically, for ω(t).

Actually, the condition in Theorem 4.6 characterizes weights equivalent to algebra
weights.

Corollary 4.8. The weight ω(t) is equivalent to an algebra weight ω′(t) if and only if
ω(t) is a semigroup weight.

Proof. We still need to show that if a weight is equivalent to an algebra weight, then the
original weight is a semigroup weight. It will be enough to show that every algebra weight
is a semigroup weight. But Theorem 3.4(b) shows that an algebra weight is a semigroup
norm for the semigroup of right translations. This completes the proof.

In a technical sense, Corollary 4.8 answers the question of which weights are equiv-
alent, and not just essentially equivalent, to an algebra weight. This answer really is
not adequate, because I know of no direct way to determine if a given weight ω(t) is a
semigroup weight.
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