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Abstract. In 1972, the late B. E. Johnson introduced the notion of an amenable Banach algebra
and asked whether the Banach algebra B(E) of all bounded linear operators on a Banach space
E could ever be amenable if dim E = ∞. Somewhat surprisingly, this question was answered
positively only very recently as a by-product of the Argyros–Haydon result that solves the “scalar
plus compact problem”: there is an infinite-dimensional Banach space E, the dual of which is
`1, such that B(E) = K(E) + C idE . Still, B(`2) is not amenable, and in the past decade, B(`p)

was found to be non-amenable for p = 1, 2,∞ thanks to the work of C. J. Read, G. Pisier, and
N. Ozawa. We survey those results, and then—based on joint work with M. Daws—outline a
proof that establishes the non-amenability of B(`p) for all p ∈ [1,∞].

1. Amenable Banach algebras. The phenomenon of amenability manifests itself in
many areas of mathematics. Originally, amenability was a property of groups and semi-
groups ([Pat]), but nowadays there are amenable representations, Banach algebras, von
Neumann algebras, etc.

The notion of an amenable Banach algebra originates in B. E. Johnson’s memoir
[Joh 1]. The link between amenable locally compact groups and amenable Banach alge-
bras is [Joh 1, Theorem 2.5]: a locally compact group G is amenable if and only if its
group algebra L1(G) is an amenable Banach algebra.

We briefly recall, not the original definition from [Joh 1], but an equivalent charac-
terization from [Joh 2]. Given a Banach algebra A, the projective tensor product A ⊗̂ A

is a Banach A-bimodule via
a · (x⊗ y) := ax⊗ y and (x⊗ y) · a := x⊗ ya (a, x, y ∈ A),

so that the linear map ∆: A ⊗̂A→ A induced by multiplication becomes an A-bimodule
homomorphism.
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Definition 1.1. A Banach algebra A is called amenable if there is an approximate di-
agonal for A, i.e., a bounded net (dα)α in A ⊗̂ A such that

a · dα − dα · a→ 0 (a ∈ A)

and
a∆dα → a (a ∈ A).

For a modern account of the theory of amenable Banach algebras, see [Run 1], for
instance.

Example 1.2. Let E be a finite-dimensional Banach space. Then B(E), the algebra of
all bounded linear operators on E is isomorphic to the full matrix algebra Mn, where
n = dimE. Let G be a finite group of invertible matrices in Mn such that Mn = spanG.
Then

d :=
1
|G|

∑
g∈G

g ⊗ g−1

satisfies
a · d = d · a (a ∈Mn) and ∆d = In,

where In is the identity matrix inMn. We call d a diagonal forMn
∼= B(E). In particular,

B(E) is amenable.

The memoir [Joh 1] concludes with 13 suggestions for further research, in particular
([Joh 1, 10.4])

Is K(E)—the Banach algebra of all compact operators—amenable for all Banach
spaces E? Is B(E) ever amenable for any infinite-dimensional E?

and ([Joh 2, 10.2])

[. . . ] Do there exist non-amenable C∗-algebras, in particular is B(H)—where H is
a Hilbert space—amenable?

From a philosophical point of view, the answer to the question whether B(E) can
be amenable for any infinite-dimensional E ought to be a clear “no”: a common feature
of all the various manifestations of amenability is that amenable objects tend to be
“small”—whatever that may mean precisely—and B(E) simply feels too “large” to be
amenable.

2. Amenability of K(E) and the “scalar plus compact problem”. If E is a Ba-
nach space with the approximation property, then K(E) is the closure of the finite rank
operators in the operator norm and thus appears to be “small” enough to be amenable, at
least for certain E. Indeed, already Johnson showed in [Joh 1] that K(`p) is amenable for
p ∈ (1,∞) ([Joh 1, Proposition 6.1]) and that K(C(T)), with T denoting the unit circle,
is amenable ([Joh 1, Proposition 6.3]).

The amenability of K(E) was further investigated in [G–J–W].
Recall that a finite bi-orthogonal system over a Banach space E is a set {(xj , x∗k) :

j, k = 1, . . . , n} ⊂ E × E∗ such that 〈xj , x∗k〉 = δj,k for j, k = 1, . . . , n. For a matrix
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a = [αj,k]nj,k=1 ∈Mn define

θ(a) :=
n∑

j,k=1

αj,kxj ⊗ x∗k ∈ B(E).

Then θ : Mn → B(E) is an algebra homomorphism with range in the finite rank operators
F(E).

The following is [G–J–W, Definition 4.1]:

Definition 2.1. A Banach space E has property (A) if there is a net ({(xj,nλ , x∗k,nλ) :
j, k = 1, . . . , nλ})λ∈Λ of finite bi-orthogonal systems over E and a corresponding net of
algebra homomorphism θλ : Mnλ → F(E) with the following properties:

A(i) θλ(Inλ)→ idE uniformly on compact subsets of E;
A(ii) θλ(Inλ)∗ → idE∗ uniformly on compact subsets of E∗;
A(iii) for each λ ∈ Λ, there is a finite group Gλ of invertible elements of Mnλ with

Mnλ = spanGλ such that

sup
λ∈Λ

sup
x∈Gλ

‖θλ(x)‖ <∞.

Example 2.2. For every compact Hausdorff space K, the Banach space C(K) has prop-
erty (A); also, all Lp-spaces with p ∈ [1,∞] have property (A) ([G–J–W, Theorem 4.7]).

The definition of property (A) may appear overly technical at the first glance, but the
simple idea behind it is to build an approximate diagonal for K(E) out of diagonals for
the full matrix algebras Mnλ . This means ([G–J–W, Theorem 4.2]):

Theorem 2.3. Let E be a Banach space with property (A). Then K(E) is amenable.

This establishes, in particular, the amenability for K(E) for every Lp-space E with
p ∈ [1,∞]. For further results on the amenability (and non-amenability) of K(E)—or
rather: F(E)—, we refer to [G–J–W] and [B–G].

For many Banach spaces E, it is easy to come up with many bounded, non-compact
operators: for example, if E has an unconditional basis—so that we can think of operators
on E as matrices—, then diagonal matrices and permutation matrices provide examples
of operators in B(E) \ K(E) if dimE = ∞. Still, for a general Banach space E, it can
be difficult to find operators that aren’t compact (besides the identity and its scalar
multiples).

The following problem has been known as the “scalar plus compact problem”:

Is there an infinite-dimensional Banach space E such that B(E) = K(E) +
C idE?

Somewhat surprisingly, this problem was recently solved affirmatively by S. A. Argyros
and R. G. Haydon ([A–H]):

Theorem 2.4. There is a Banach space E with E∗ = `1 such that B(E) = K(E)+C idE.

As H. G. Dales pointed out, this also settles affirmatively the question of whether
B(E) can be amenable for an infinite-dimensional Banach space:
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Corollary 2.5. There is an infinite-dimensional Banach space E such that B(E) is
amenable.

Proof. Let E be an infinite-dimensional Banach space with E∗ = `1 and B(E) = K(E) +
C idE . By [G–J–W, Theorem 4,7], `1 has property (A) and so has its predual E by
[G–J–W, Theorem 4.3]. Consequently, K(E) is amenable as is its unitization B(E).

The crucial feature in the proof of Corollary 2.5 is, of course, that B(E)—contrary to
intuition—can be very “small” relative to K(E).

3. The Hilbert space case. The question of whether B(H) was amenable for an
infinite-dimensional Hilbert space H was settled relatively soon after it had been posed,
as a by-product of some penetrating research on C∗-algebras and their enveloping von
Neumann algebras.

If A is a C∗-algebra, then so is the algebraMn(A) for each n ∈ N. We call a linear map
T : A → B between two C∗-algebras completely positive if idMn ⊗ T : Mn(A) → Mn(B)
is positive for each n ∈ N.

Definition 3.1. A C∗-algebra is called nuclear if there are nets (nλ)λ of positive integers
and of completely positive contractions Sλ : A → Mnλ and Tλ : Mnλ → A such that
Tλ ◦ Sλ → idA pointwise on A.

This is not the original definition ([Tak, Definition XV.1.4]) of nuclearity, but it’s
equivalent to it ([Tak, Theorem XV.1.7]). Loosely speaking, nuclearity means that the
identity factors approximately through full matrix algebras. This suggests that nuclear
C∗-algebras shouldn’t be too “large”, which puts nuclearity close to amenability, and
indeed:

Theorem 3.2. The following are equivalent for a C∗-algebra A:

(i) A is nuclear;
(ii) A is amenable.

Theorem 3.2 is usually attributed to A. Connes—for (ii)⇒ (i)—and U. Haagerup—for
(i) ⇒ (ii). However, Connes proved (ii) ⇒ (i) only for the case where A∗ is separable,
and it took the work of several other mathematicians to establish this implication in the
general case. For a self-contained proof of Theorem 3.2 and references to the original
literature, see [Run 1, Chapter 6]. It appears that Theorem 3.2 was known in its full
generality by the early 1980s.

Already in 1976, S. Wassermann had proven ([Was]):

Theorem 3.3. The following are equivalent for a von Neumann algebra M:

(i) M is nuclear;
(ii) M is subhomogeneous, i.e., there are n1, . . . , nk ∈ N and commutative von Neu-

mann algebras M1, . . . ,Mk such that

M ∼= Mn1(M1)⊕ · · · ⊕Mnk(Mk)

Of course, this means:
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Corollary 3.4. Let H be a Hilbert space. Then B(H) is amenable if and only if dim H

<∞.

In particular, B(`2) is not amenable. Since `2 is certainly the “best behaved” of all
`p-spaces, one is led to believe that B(`p) is not amenable for any p ∈ [1,∞]. However,
there is no hope to adapt the argument we just outlined to any B(`p) with p 6= 2: both
Theorems 3.2 and 3.3 rely heavily on the powerful tools provided by the theory of von
Neumann algebras, which are not available if p 6= 2.

4. The `p ⊕ `q case for p 6= q. Before we start discussing the non-amenability of B(`p)
for various values of p, let’s have a look at B(`p ⊕ `q) for p 6= q. On might expect that
dealing with B(`p ⊕ `q) instead of B(`p) makes things more complicated. The Banach
algebra B(`p ⊕ `q) is a much more complex object than B(`p): for instance, the closed
ideal structure of B(`p) is as simple as it can get ([G–M–F]) whereas the situation is
considerably more subtle for B(`p ⊕ `q) ([Sar et al.]).

Still, the non-amenability of B(`p ⊕ `q) for p 6= q is surprisingly easy to obtain.

Theorem 4.1. Let p, q ∈ [1,∞) such that p 6= q. Then B(`p ⊕ `q) is not amenable.

We present the proof—which is attributed to G. A. Willis in [Grø]—because it is both
short and elegant and because it can be adapted to other Banach algebras with a block
matrix structure (see [D–R], for instance). The proof uses four ingredients, the first three
of which are elementary properties of amenable Banach algebras:

• Every quotient of an amenable Banach algebra is again amenable.
• A closed ideal of an amenable Banach algebra is amenable if and only if it is weakly

complemented; in particular, complemented closed ideals of amenable Banach al-
gebras are amenable.
• Amenable Banach algebras have bounded approximate identities.
• Pitt’s Theorem. Let 1 ≤ q < p <∞. Then B(`p, `q) = K(`p, `q) ([L–T, Proposi-

tion 2.c.3]).

Proof. The Banach algebra B(`p ⊕ `q) has a block matrix structure

B(`p ⊕ `q) =
[
B(`p) B(`q, `p)
B(`p, `q) B(`q)

]
as has its closed ideal

K(`p ⊕ `q) =
[
K(`p) K(`q, `p)
K(`p, `q) K(`q)

]
.

Without loss of generality, suppose that p > q. Then Pitt’s Theorem yields

B(`p ⊕ `q) =
[
B(`p) B(`q, `p)
K(`p, `q) B(`q)

]
.

For any Banach space E, we write C(E) to denote its Calkin algebra, i.e., the quotient
B(E)/K(E). In view of the foregoing, C(`p ⊕ `q) has an upper diagonal block matrix
structure, namely

C(`p ⊕ `q) =
[
C(`p) ∗

0 C(`q)

]
.
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Assume now that B(`p⊕`q) is amenable. Then its quotient C(`p⊕`q) is also amenable.
Set

I :=
[
0 ∗
0 0

]
.

Then I is a non-zero ideal of C(`p⊕ `q)—because K(`q, `p) ( B(`q, `p)—which is trivially
complemented. Consequently, I is an amenable Banach algebra in its own right and thus
has a bounded approximate identity. Since I2 = {0}, however, this is impossible.

We note that Theorem 4.1 remains true if `p is replaced by c0.

5. Non-amenability of B(`p) for p = 1, 2,∞ and Ozawa’s Lemma. The first to
prove that B(`p) was not amenable for any p other than 2 was C. J. Read in [Rea]. His
proof relied on the theory of random hypergraphs. Even though the publication year of
[Rea] is 2006, Read had obtained his proof years earlier and, for instance, had presented
it at a conference in Canberra as early as January 2001.

While Read’s proof was awaiting publication, other mathematicians studied his proof,
and in [Pis], G. Pisier presented a simplification of Read’s argument—published before
Read’s original proof—by replacing the random hypergraphs with expanders. Eventually,
N. Ozawa simplified Pisier’s argument even further ([Oza]). Expanders still play a pivotal
rôle, but they do so in the background: one can fully understand the proof of [Oza,
Theorem 1.1] without knowing what an expander is.

Ozawa’s approach is remarkable because it not only gives a surprisingly simple proof
for the non-amenability of B(`1): it provides a unified argument for the non-amenability
of several Banach algebras ([Oza, Theorem 1.1]):

Theorem 5.1. The following Banach algebras are not amenable:

• B(`p) for p ∈ {1, 2,∞};
• `∞-

⊕∞
n=1 B(`pn) for p ∈ [1,∞];

• the Banach algebras of all regular operators on `p for p ∈ [1,∞].

We note that, even though it is not explicitly stated in [Oza], the proof of [Oza,
Theorem 1.1] also establishes the non-amenability of B(c0) as well as of `∞-

⊕∞
n=1 B(`pnn )

where (pn)∞n=1 is any sequence in [1,∞].
The proof of [Oza, Theorem 1.1] is rather monolithic, but still, it has a “front end”

and a “back end”, which can be separated from each other, and we would like to take a
closer look at the back end.

Let P denote the set of all prime numbers, and, for each p ∈ P, write Λp for the
projective plane over the finite field Z/pZ. The group SL(3,Z) has Kazhdan’s property (T )
([B–dlH–V, Theorem 4.2.5])—and thus, in particular, is finitely generated, by g1, . . . , gm,
say—and acts on Λp through matrix multiplication. This group action, in turn, induces
a unitary representation πp : SL(3,Z) → B(`2(Λp)). We choose a subset Sp of Λp with
|Sp| = |Λp|−1

2 and define a unitary πp(gm+1) ∈ B(`2(Λp)) via

πp(gm+1)eλ =
{

eλ, λ ∈ Sp,
−eλ, λ /∈ Sp.
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(We would like to stress that the notation πp(gm+1) is purely symbolic and mainly for
our convenience: πp(gm+1) does not lie in πp(SL(3,Z)).)

With this setup in place, we can formulate the following:

Ozawa’s Lemma. It is impossible to find, for each ε > 0, a number r ∈ N with the
following property: for each p ∈ P, there are ξ1,p, η1,p, . . . , ξr,p, ηr,p ∈ `2(Λp) such that∑r
k=1 ξk,p ⊗ ηk,p 6= 0 and∥∥∥ r∑
k=1

ξj,p ⊗ ηk,p − (πp(gj)⊗ πp(gj))(ξk,p ⊗ ηk,p)
∥∥∥
`2(Λp)⊗̂`2(Λp)

≤ ε
∥∥∥ r∑
k=1

ξk,p ⊗ ηk,p
∥∥∥
`2(Λp)⊗̂`2(Λp)

(j = 1, . . . ,m+ 1).

Ozawa’s Lemma is not implicitly formulated in [Oza], but is proven there as part of
[Oza, Theorem 1.1]. Its proof relies mainly on two ingredients:

• SL(3,Z) has Kazhdan’s property (T ), and
• the so-called non-commutative Mazur map is uniformly continuous ([Oza, Theorem

4.1]).

It is remarkable that the statement of Ozawa’s Lemma doesn’t make any explicit
reference to Banach algebras at all. In [Oza], the connection with the various Banach
algebras mentioned in Theorem 5.1 is established through the inequalities of [Oza, Lemma
2.1], in particular by

∞∑
n=1

‖Sen‖`2N ‖Te
∗
n‖`2N ≤ N‖S‖‖T‖ (N ∈ N, S ∈ B(`p, `pN ), T ∈ B(`p

′
, `p
′

N ))

for p = 1, 2,∞, which is no longer true for general p ∈ [1,∞] ([Oza, Remark 2.2]).

6. Partial results for p ∈ (1,∞) \ {2}. In [D–R], M. Daws and the author studied the
amenability problem for B(`p) for p ∈ (1,∞) \ {2} with the goal of proving that these
algebras were not amenable.

The starting point of their investigation was [D–R, Theorem 4.1]:

Theorem 6.1. Let E be a Banach space, and let p ∈ [1,∞). Then the following are
equivalent:

(i) B(`p(E)) is amenable;
(ii) `∞(B(`p(E))) is amenable.

The idea of the proof of (i) ⇒ (ii) is to view `∞(B(`p(E))) as block diagonal matri-
ces on `p(`p(E)) ∼= `p(E) and then construct an approximate diagonal for these block
diagonal matrices from an approximate diagonal for B(`p(E)).

For E = C, Theorem 6.1 means that B(`p) is amenable if and only if `∞(B(`p))
is amenable, which is comforting from a philosophical point of view if one believes that
B(`p) is not amenable: amenable Banach algebras ought to be “small” and `∞(B(`p)) feels
even “larger” than `∞-

⊕∞
n=1 B(`pn), which is known to be not amenable. But of course,

that’s no proof.
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A different angle, however, turns out to be more promising. Since `∞(K(`p)) is a closed
ideal in `∞(B(`p)) with a bounded approximate identity, Theorem 6.1 yields immediately:

Corollary 6.2. Let p ∈ [1,∞) be such that B(`p) is amenable. Then `∞(K(`p)) is
amenable.

In [G–J–W], Grønbæk, Johnson, and Willis showed that K(E) is amenable whenever
E is an Lp-space: these spaces, which were introduced in [L–P] and further studied in
[L–R], are those that “look locally like `p”. The precise definition is as follows:

Definition 6.3. Let p ∈ [1,∞] and let λ ≥ 1. A Banach space E is called an Lpλ-space
if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace Y
of E containing X with d(Y, `pdimY ) ≤ λ, were d is the Banach–Mazur distance of Banach
spaces. We call E an Lp-space if it is an Lpλ-space for some λ ≥ 1.

Example 6.4. Every Banach space isomorphic to an Lp-space—in the measure theoretic
sense—is an Lp-space. However, if p ∈ (1,∞)\{2}, then `p(`2) and `2⊕ `p are Lp-spaces,
but not isomorphic to Lp-spaces ([L–P, Example 8.2]).

Since all Lp-spaces “look locally like `p”, all Lp-spaces “look locally alike”. This has as
a consequence that, whenever we have two infinite-dimensional Lp-spaces E and F , then
every finite rank operator on F factors through E such that we can keep the norms of
the factors under control. To be precise ([D–R, Lemma 4.2]):

Lemma 6.5. Let p ∈ [1,∞], and let E and F be Lp-spaces with dimE =∞. Then there
is C ≥ 0 such that, for each T ∈ F(F ), there are S ∈ F(F,E) and R ∈ F(E,F ) with
‖R‖‖S‖ ≤ C‖T‖ and RS = T .

Using Lemma 6.5 and [G–J–W, Theorem 6.2] as in the proof of [G–J–W, Theorem
6.4], we obtain ([D–R, Theorem 4.3]):

Theorem 6.6. Let p ∈ [1,∞]. Then one of the following assertions is true:

(i) `∞(K(E)) is amenable for every infinite-dimensional Lp-space E;
(ii) `∞(K(E)) is not amenable for any infinite-dimensional Lp-space E.

In view of Corollary 6.2 and Example 6.4, this yields:

Corollary 6.7. Let p ∈ (1,∞) \ {2} such that B(`p) is amenable. Then `∞(K(`2⊕ `p))
is amenable.

In [D–R], it was shown that `∞(K(`2 ⊕ `p)) is indeed not amenable if p = 1,∞
([D–R, Theorem 5.3]). The proof of [D–R, Theorem 5.3] involves a matrix block argument
like the proof of Theorem 4.1. This matrix block argument, however, breaks down if
p ∈ (1,∞) \ {2} ([D–R, Proposition 5.4]). Still, `∞(K(`2 ⊕ `p)) is not amenable for any
p ∈ [1,∞]: for p = 2, this has long been known, and for p ∈ (1,∞), this was shown only
very recently by the author ([Run 2]). We shall outline the argument from [Run 2] in the
two sections below.

Remark 6.8. There is a gap in the proof of [D–R, Lemma 3.3]: implication (i) ⇒ (ii)—
claimed to be routine in [D–R]—is, in fact, unproven. Consequently, (iii) ⇒ (i) of [D–R,
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Theorem 3.2] lacks proof as well. None of this, however, affects the results from [D–R]
discussed in this section.

7. Non-amenability of `∞(K(`2 ⊕ E)) for certain E. Let E be a Banach space. A
basis for E is a sequence (xn)∞n=1 in E such that, for every x ∈ E, there is a sequence
(λn)∞n=1 such that

x =
∞∑
n=1

λnxn.

For each n ∈ N, we obtain a linear functional x∗n on E that assigns to each x ∈ E the
coefficient λn of xn in the above expansion of x; it is easy to see that each x∗n is continuous.

In this section, we indicate a proof of the following ([Run 2, Theorem 3.2]):

Theorem 7.1. Let E be a Banach space with a basis (xn)∞n=1 such that there is C > 0
with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖ (N ∈ N, S ∈ B(E, `2N ), T ∈ B(E∗, `2N )). (∗)

Then `∞(K(`2 ⊕ E)) is not amenable.

As the proof of this theorem is rather technical, we shall only sketch it; for the details
see [Run 2].

We first record a lemma, which is easy to prove ([Run 2, Lemma 1.2]; compare [Oza,
Definition 1.2]):

Lemma 7.2. Let A be an amenable Banach algebra, and let e ∈ A be an idempotent.
Then, for any ε > 0 and any finite subset F of eAe, there are a1, b1, . . . , ar, br ∈ A such
that

r∑
k=1

akbk = e

and ∥∥∥ r∑
k=1

xak ⊗ bk − ak ⊗ bkx
∥∥∥

A⊗̂A
< ε (x ∈ F ).

We now identify `∞(K(`2⊕E)) with `∞(P,K(`2⊕E)) and denote it by A for simplicity.
Each summand of A has a canonical block matrix structure

K(`2 ⊕ E) =
[
K(`2) K(E, `2)
K(`2, E) K(E)

]
.

For each p ∈ P, we embed B(`2(Λp)) into K(`2⊕E) as upper left corner of the correspond-
ing block matrix. This allows us to embed `∞-

⊕
p∈P B(`2(Λp)) into A, and in particular,

we can consider
F := {(πp(gj))p∈P : j = 1, . . . ,m+ 1}

as a finite subset of A. Furthermore, we let A act (as block diagonal matrices) on the
space

`2(P, `2 ⊕ E) ∼= `2(P, `2)⊕ `2(P, E)
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For any p ∈ P, let Pp ∈ B(`2) be the canonical projection onto the first |Λp| coordinates of
the pth `2-summand of `2(P, `2)⊕ `2(P, E), and let e = (Pp)p∈P. Then e is an idempotent
in A with

eAe = `∞-
⊕
p∈P
B(`2(Λp)).

The rest of the proof resembles that of [Oza, Theorem 1.1], with Lemma 7.2 replacing
[Oza, Definition 1.2] and (∗) providing the required estimates similar to [Oza, Lemma
2.1]: if A is amenable, then Lemma 7.2 is true, which eventually contradicts Ozawa’s
Lemma.

8. Non-amenability of B(`p) for p ∈ (1,∞). With Theorem 7.1 proven, we shall now
see that its hypotheses are indeed satisfied if E = `p with p ∈ (1,∞).

Let N ∈ N, let S ∈ B(`p, `2N ), and let T ∈ B(`p
′
, `2N ). We can identify

B(`p, `2N ) = `p
′
⊗̌ `2N = `p

′
⊗ `2N and B(`p

′
, `2N ) = `p ⊗̌ `2N = `p ⊗ `2N ,

where ⊗̌ is the injective tensor product. On the other hand, we can also—algebraically—
identify

`p
′
(`2N ) = `p

′
⊗ `2N and `p(`2N ) = `p ⊗ `2N

and thus view S and T as elements of `p
′
(`2N ) and `p(`2N ), respectively. Hölder’s inequality

then yields immediately that
∞∑
n=1

‖Sen‖‖Te∗n‖ ≤ ‖S‖`p′ (`2N )‖T‖`p(`2N ) (∗∗)

where (en)∞n=1 is the canonical basis of `p.
In order to prove (∗) for E = `p, we thus need to relate the norms on `p

′ ⊗̌ `2N and
`p
′
(`2N ) and on `p ⊗̌ `2N and `p(`2N ), respectively. This relation is provided by the notion

of a p-summing operator (see [D–J–T], for instance).
For convenience, we recall:

Definition 8.1. Let p ∈ [1,∞), and E and F be Banach spaces. A linear map T : E → F

is called p-summing if the amplification id`p ⊗ T : `p⊗E → `p⊗F extends to a bounded
map from `p ⊗̌ E to `p(F ). The operator norm of id`p⊗T : `p⊗̌E → `p(F ) is called the
p-summing norm of T and denoted by πp(T ).

Every finite rank operator is p-summing ([D–J–T, Proposition 2.3]), but the identity
on a Banach space E is p-summing if and only if dimE <∞ ([D–J–T, Weak Dvoretzky–
Rogers Theorem 2.18]).

The p-summing norm of id`2N was computed by Y. Gordon in [Gor] for any p ∈ [1,∞).
For our purpose, his exact formula is not important, but rather a consequence of it ([Gor,
Theorem 5]), namely the asymptotic estimate

πp(id`2N ) ∼
√
N.

This means, in particular, that there is Cp > 0 such that

πp(id`2N ) ≤ Cp
√
N.
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If p ∈ (1,∞), we apply the same asymptotic estimate to πp′(id`2N ) and obtain Cp′ > 0
such that

πp′(id`2N ) ≤ Cp′
√
N.

Together with (∗∗) and Definition 8.1, these estimates yield:

Lemma 8.2. Let p ∈ (1,∞). Then there is C > 0 such that
∞∑
n=1

‖Sen‖`2N ‖Te
∗
n‖`2N ≤ C N‖S‖‖T‖ (N ∈ N, S ∈ B(`p, `2N ), T ∈ B(`p

′
, `2N )).

Hence, `p with p ∈ (1,∞) satisfies the hypothesis of Theorem 7.1, so `∞(K(`2 ⊕ `p))
is not amenable. By Corollary 6.2, this means that B(`p) is not amenable either.

With a little more effort, we obtain:

Theorem 8.3. Let p ∈ (1,∞), and let E be an Lp-space. Then B(`p(E)) is not amenable.

Of course, E ∼= `p(E) for E = `p or E = Lp[0, 1], so that B(E) cannot be amenable
for those E as a consequence of Theorem 8.3.

Let E be an infinite-dimensional, separable Lp-space. Then measure theoretic argu-
ments yield that E must be isometrically isomorphic to one of the following: `p, Lp[0, 1],
Lp[0, 1] ⊕ `p, and Lp[0, 1] ⊕ `pN for with N ∈ N ([Woj, Proposition III.A.1]). In the first
three cases, we have `p(E) ∼= E, so that B(E) is not amenable. For the third case, note
that the canonical map B(`pN , L

p[0, 1]) ⊗̂ B(Lp[0, 1], `pN ) into B(`pN ) is onto. Making using
of the non-amenability of B(Lp[0, 1]) and [G–J–W, Theorem 6.2], we conclude that B(E)
is non-amenable in this case, too.

Hence, we obtain:

Corollary 8.4. Let E be an infinite-dimensional, separable Lp-space. Then B(E) is not
amenable.

Alternatively, we could have used Banach space theoretic methods to prove that
up to—not necessarily isometric—isomorphism `p and Lp[0, 1] are the only infinite-
dimensional, separable Lp-spaces (see [Woj, p. 83]).

9. Questions. As a consequence of the solution to the “scalar plus compact” problem,
there is an infinite-dimensional Banach space E such that B(E) is amenable, while B(E)
is not amenable for E = `p with p ∈ [1,∞] or for E = c0. If E is such that E∗ has the ap-
proximation property, then K(E) is an ideal in B(E) with a bounded approximate identity
([Run 1, Corollary 3.1.5]) and thus, provided that B(E) is amenable, must be amenable,
too. The negative results from [G–J–W] and [B–G] about the (non-)amenability of K(E)
will therefore, in all likelihood, lead to further examples of non-amenable B(E).

The obvious big open problem has now become:

Question 1. Which are the Banach spaces E for which B(E) is amenable?

There is very little hope that this problem will ever be answered in its entirety, but
maybe restricting to certain classes of well behaved Banach spaces will lead to results.

The space E constructed in [A–H] is a predual of `1 and thus, in particular, is not
reflexive. This prompts:



350 V. RUNDE

Question 2. Is there a reflexive, infinite-dimensional Banach space E such that B(E)
is amenable?

If B(E) is amenable, then so is the Calkin algebra C(E). If E is an `p-space, then
C(E) is not separable and not amenable, i.e., it is “huge”. If E is the space from [A–H],
however, then C(E) is “tiny”, namely one-dimensional. The one-dimensional case is not
the only situation in which an amenable Calkin algebra can occur: let E be the space
from [A–H], and let n ∈ N. Then B(En) ∼= Mn(B(E)) is amenable with C(En) ∼= Mn.
But still, we don’t have examples where C(E) is amenable and infinite-dimensional.

So, we ask:

Question 3. Is there a Banach space E such that C(E) is amenable and infinite-
dimensional?

In [D–L–W], a Banach space E is constructed with the property that there is a
closed ideal J (E) of B(E) with B(E)/J (E) ∼= `∞. Could this construction possibly be
modified in such a way that B(E)/K(E) ∼= `∞? If so, it would provide a positive answer
to Question 3.
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