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Abstract. For a function algebra A let ∂A be the Shilov boundary, δA the Choquet boundary,
p(A) the set of p-points, and |A| = {|f | : f ∈ A}. Let X and Y be locally compact Hausdorff
spaces and A ⊂ C(X) and B ⊂ C(Y ) be dense subalgebras of function algebras without units,
such that X = ∂A, Y = ∂B and p(A) = δA, p(B) = δB. We show that if Φ : |A| → |B| is
an increasing bijection which is sup-norm-multiplicative, i.e. ‖Φ(|f |)Φ(|g|)‖ = ‖fg‖, f, g ∈ A,
then there is a homeomorphism ψ : p(B) → p(A) with respect to which Φ is a ψ-composition
operator on p(B), i.e. (Φ(|f |))(y) = |f(ψ(y))|, f ∈ A, y ∈ p(B). We show also that if A ⊂ C(X)

and B ⊂ C(Y ) are dense subalgebras of function algebras without units, such that X = ∂A,
Y = ∂B and p(A) = δA, p(B) = δB, and T : A → B is a sup-norm-multiplicative surjection,
namely, ‖Tf Tg‖ = ‖fg‖, f, g ∈ A, then T is a ψ-composition operator in modulus on p(B) for
a homeomorphism ψ : p(B) → p(A), i.e. |(Tf)(y)| = |f(ψ(y))|, f ∈ A, y ∈ p(B). In particular,
T is multiplicative in modulus on p(B), i.e. |T (fg)| = |Tf Tg|, f, g ∈ A. We prove also that
if A ⊂ C(X) is a dense subalgebra of a function algebra without unit, such that X = ∂A

and p(A) = δA, and if T : A → B is a weakly peripherally-multiplicative surjection onto a
function algebra B without unit, i.e. σπ(Tf Tg) ∩ σπ(fg) 6= ∅, f, g ∈ A, and preserves the
peripheral spectra of algebra elements, i.e. σπ(Tf) = σπ(f), f ∈ A, then T is a bijective
ψ-composition operator on p(B), i.e. (Tf)(y) = f(ψ(y)), f ∈ A, y ∈ p(B), for a homeomorphism
ψ : p(B)→ p(A). In this case A is necessarily a function algebra and T is an algebra isomorphism.
As a consequence, a multiplicative operator T from a dense subalgebra A ⊂ C(X) of a function
algebra B without unit, such that X = ∂A and p(A) = δA, onto a function algebra without
unit B is a sup-norm isometric algebra isomorphism if and only if T is weakly peripherally-
multiplicative and preserves the peripheral spectra of algebra elements. The results extend to
function algebras without units a series of previous results for algebra isomorphisms.
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1. Introduction. The search for universal criteria for operators between two Banach
algebras to be linear and multiplicative, i.e. algebra isomorphisms, has been intensive
for years. The initial findings were related to operators a priori known to be linear. In
2001 Molnár [9, 10] introduced spectral multiplicative operators, for which σ(Tf Tg) =
σ(fg), f, g ∈ C(X), where σ(f) is the spectrum of f , and found sufficient conditions
for a spectrally-multiplicative self-map of C(X) on a first-countable compact space X to
be an algebra isomorphism. In [11] Rao and Roy extended this result for a self-map of
a uniform algebra, and in [12] for a self-map of a function algebra without unit. In [2]
it was proven for surjections between distinct uniform algebras, in [3] for surjections be-
tween semisimple commutative Banach algebras with units, and in [4] between completely
regular commutative Banach algebras without units. Norm-multiplicative operators, for
which ‖Tf Tg‖ = ‖fg‖, f, g ∈ A, were introduced in [7], where sufficient conditions
for a norm-multiplicative operator between uniform algebras to be a composition oper-
ator in modulus were obtained. The peripheral spectrum σπ(f) = {f(x) : |f(x)| = ‖f‖},
peripherally-multiplicative operators, for which σπ(Tf Tg) = σπ(fg), f, g ∈ A, and weakly
peripherally-multiplicative operators, for which σπ(Tf Tg)∩σπ(fg) 6= ∅, were introduced
in [1], [8] and [7] respectively, where sufficient conditions for such operators to be algebra
isomorphisms were established. In the case of non-unital Lipschitz algebras similar results
were obtained in [6].

In this paper we extend the above results to sup-norm-multiplicative and weakly
peripherally-multiplicative operators between algebras of functions without units, the
uniform closures of which are function algebras. For a function algebra A denote by ∂A
the Shilov boundary, by δA the Choquet boundary, by p(A) the set of p-points, and
by |A| = {|f | : f ∈ A} the modulus of A. Let X and Y be locally compact Hausdorff
spaces and A ⊂ C(X) and B ⊂ C(Y ) be algebras of functions without units, the uniform
closures of which are function algebras without units, such that X = ∂A, Y = ∂B and
p(A) = δA, p(B) = δB.

The structure of the paper is as follows. In Section 2 we show that if Φ : |A| → |B|
is an increasing bijection which is sup-norm-multiplicative, i.e. ‖Φ(|f |)Φ(|g|)‖ = ‖fg‖
for all f, g ∈ A, then there exists a homeomorphism ψ : p(B) → p(A) such that Φ is a
ψ-composition operator on p(B), i.e. (Φ(|f |))(y) = |f(ψ(y))| for all f ∈ A and y ∈ p(B).
In particular, Φ is multiplicative, i.e. (Φ(|fg|) = Φ(|f |)Φ(|g|) for all f, g ∈ A. As a
consequence, if T : A → B is a sup-norm-multiplicative surjection, namely, ‖Tf Tg‖ =
‖fg‖ (or, r(Tf Tg) = r(fg), where r( · ) is the spectral radius), for all f, g ∈ A, then T
is a ψ-composition operator in modulus on p(B) for a homeomorphism ψ : p(B)→ p(A),
i.e. |(Tf)(y)| = |f(ψ(y))| for all f ∈ A and y ∈ p(B). In particular, T is multiplicative in
modulus on p(B), i.e. |T (fg)| = |Tf Tg| for all f, g ∈ A. In Section 3 we prove a strong
version of the classical Bishop’s Lemma for function algebras without units, and show
that if A ⊂ C(X) is a dense subalgebra of a function algebra without unit, such that
X = ∂A and p(A) = δA, and T : A→ B is a weakly peripherally-multiplicative surjection
onto a function algebra B without unit, i.e. σπ(Tf Tg)∩ σπ(fg) 6= ∅ for all f, g ∈ A, and
preserves the peripheral spectra of algebra elements, i.e. σπ(Tf) = σπ(f), f ∈ A, then
T is a bijective ψ-composition operator on p(B), i.e. (Tf)(y) = f(ψ(y)) for all f ∈ A

and y ∈ p(B), with respect to a homeomorphism ψ : p(B) → p(A). In this case A is
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necessarily a function algebra and T is an algebra isomorphism. As a consequence, an
operator T from a dense subalgebra A ⊂ C(X) of a function algebra without unit, such
that X = ∂A and p(A) = δA onto a function algebra B without unit is a sup-norm
isometric algebra isomorphism if and only if T is weakly peripherally-multiplicative and
preserves the peripheral spectra of algebra elements. In particular, any multiplicative
surjection T from a dense subalgebra A ⊂ C(X) of a function algebra B without unit,
such that X = ∂A and p(A) = δA, onto a function algebra without unit B is a sup-norm
isometric algebra isomorphism if and only if T preserves the peripheral spectra of algebra
elements.

The results extend for function algebras without units the main results in a series of
recent papers (e.g. [1, 2, 7, 8, 10, 11, 12]) for algebra isomorphisms.

2. Norm-multiplicative operators on the modulus of an algebra. Let A be
a semisimple commutative Banach algebra, not necessarily unital, with maximal ideal
spaceMA, and Shilov boundary ∂A. We identify A with Â and a ∈ A with â, the corre-
sponding Gelfand transforms. Under this agreement, A ∼= A|∂A. By ‖f‖ we will denote
the spectral norm r(f) of f ∈ A. We assume that any algebra A in this paper is without
unit and is supported on its Shilov boundary ∂A, i.e. A ⊂ C(∂A). Let X be a locally
compact Hausdorff space. A function algebra on X is a semisimple commutative Banach
algebra A ⊂ C(X) which is closed under the sup-norm ‖f‖ = supx∈X |f(x)|. Denote
by δA the Choquet boundary of A. Note that the uniform closure A of any semisimple
commutative Banach algebra A ⊂ C(X) is a function algebra. If A is unital, then its
Shilov boundary ∂A and maximal ideal spaceMA are compact spaces. If A is not unital,
then ∂A andMA are locally compact spaces and Â ⊂ C0(MA), the space of continuous
functions onMA that vanish at infinity. Note that if V is an open set of X = ∂A, then
supx∈X\V |f(x)| is attained in X \ V for any f ∈ A.

Let X be a locally compact Hausdorff space and B is a subset of a function algebra
A ⊂ C(X) with ∂A = X. For a f ∈ B denote by E(f) = E(|f |) = {x ∈ X : |f(x)| = ‖f‖}
the maximum modulus set of f . Note that for every f ∈ B and 0 < c < ‖f‖ the set
{x ∈ X : |f(x)| ≥ c} is compact, and so is the set E(f). An h ∈ B with ‖h‖ = 1 and
|h(x)| < 1 whenever h(x) 6= 1 is called a peaking function of B. If h is a peaking function
of B and E ⊂ E(h) we say that h peaks on E. The set of all peaking functions of B will
be denoted by P(B). Denote S(B) = {f ∈ B : ‖f‖ = 1} and, given an E ⊂ X, FE(B) =
{f ∈ S(B) : |f(x)| = 1 for all x ∈ E}. The set of all peaking functions of B that peak on
E will be denoted by PE(B). If h ∈ PE(B), then, clearly, E is in the maximum modulus
set E(h) of h, so h ∈ FE(B), thus PE(B) ⊂ FE(B). A set E ⊂ X is called a peak set
for B if E is the maximum modulus set E(h) = E(|h|) = {x ∈ X : |h(x)| = 1} = h−1{1}
of a peaking function h ∈ B. A non-empty subset E of X is called a p-set for B if for
every open set V ⊃ E there is a peaking function h ∈ PE(B) so that E(h) ⊂ V . One
can readily see that E is a p-set for B if and only if E is an intersection of a family of
peak sets. A point x ∈ X is called a p-point, or a strong boundary point for B if {x} is
a p-set, i.e. if for every neighborhood V of x there is a peaking function h of B so that
h(x) = 1 and E(h) ⊂ V . The set of all p-points for B will be denoted by p(B). If A
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is a function algebra then the set p(A) of peak points of A is a boundary, namely, the
Choquet boundary δA (see e.g. [12]). Note that if A is a dense subalgebra of a function
algebra equipped with the sup-norm, then δA = δA. Clearly, for every neighborhood U
of a peak set E ⊂ X for B there is an h ∈ FE(B) such that E(h) ⊂ U .

Every p-point of a semisimple commutative Banach algebra A belongs to the Choquet
boundary δA. It may happen that A does not have p-points at all. The opposite case,
when p(A) = δA happens, for instance, if A is a uniform algebra, or, a function algebra,
or, a completely regular, not necessarily unital, Banach function algebra onMA, in which
case p(A) =MA. In what follows, X denotes a locally compact Hausdorff space.

Lemma 2.1. Let A ⊂ C(X) be a subalgebra of a function algebra without unit, such that
X = ∂A. If h ∈ P(A) and V ⊂ X is an open set containing E(h), then supX\V |h(x)| < 1.

Proof. Suppose on the contrary that supX\V |h(x)| = 1. Since h is continuous and
limx→∞ĥ(x) = 0, by the remark from the above there is an x0 ∈ X \ V with |h(x0)| =
supX\V |h(x)| = 1, i.e. x0 ∈ E(h), which is impossible.

Lemma 2.2. Let A ⊂ C(X) be a subalgebra of a function algebra without unit, such that
X=∂A, and let E⊂X be a nonempty p-set for A. Then maxx∈E |f(x)| = infh∈FE(A) ‖fh‖
for any f ∈ A. In particular, if x0 is a p-point for A then |f(x0)| = infh∈Fx0 (A) ‖fh‖.

Proof. Let f ∈A and ε>0. Consider the open set V = {x∈X : |f(x)|<maxξ∈E |f(ξ)|+ε},
which clearly contains E. Let k ∈ PE(A) be such that E(k) ⊂ V . By Lemma 2.1,
supX\V |k(x)| < 1. Hence there is a large enough power h of k such that |f(x)h(x)| ≤
maxξ∈E |f(ξ)|+ ε for all x ∈ X \V . Since |f(x)h(x)| ≤ |f(x)| < maxξ∈E |f(ξ)|+ ε for all
x ∈ V , we deduce that ‖fh‖ ≤ maxξ∈E |f(ξ)|+ ε. Therefore,

max
ξ∈E
|f(ξ)| = max

ξ∈E
|f(ξ)h(ξ)| ≤ ‖fh‖ < max

ξ∈E
|f(ξ)|+ ε.

It follows that maxξ∈E |f(ξ)| = infh∈FE(B) ‖fh‖, as claimed.

Lemma 2.3. Let A ⊂ C(X) be a dense subalgebra of a function algebra without unit, such
that X = ∂A and p(A) = δA. Then

(a) For any f ∈ A the set E(f) is a disjoint union of peak sets for A.
(b) Every set of type E =

⋂
αE(fα), fα ∈ S(B), meets p(A), i.e E ∩ p(A) 6= ∅.

Proof. If f ∈ S(A) then, clearly, E(f) =
⋃
{f−1{λ} : |λ| = 1, λ ∈ Ran (f)}. Fix a λ ∈

Ran (f) with |λ| = 1. Consider the function

g =
1
2λ
·
(
f2

λ
+ f

)
∈ A.

For any x ∈ f−1{λ} we have g(x) = 1, while

|g(x)| = |f(x)|
2

∣∣∣∣f(x)
λ

+ 1
∣∣∣∣ ≤ 1

2

∣∣∣∣f(x)
λ

+ 1
∣∣∣∣ < 1 whenever x /∈ f−1{λ}.

Therefore, g ∈ P(A) and E(g) = f−1(λ). Consequently, f−1(λ) is a peak set for A. This
proves (a).
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Let E =
⋂
αE(fα) 6= ∅, fα ∈ S(B), and let x ∈ E. Then x belongs to a peak set

Pα ⊂ Eα of A for every α. Consequently,
⋂
α Pα ⊂ E is a p-set for A and also for A.

Therefore, the set
⋂
α Pα meets δA = δA = p(A) (cf. [12]), and so does E.

Let X and Y be locally compact Hausdorff spaces, A ⊂ C(X) and B ⊂ C(Y ) are
dense subalgebras of function algebras on X = ∂A and Y = ∂B with p(A) = δA and
p(B) = δB. For a set S ⊂ C(X) denote by |S| = {|f | : f ∈ S} the modulus of S. An
operator Φ : |A| → |B| is increasing if for every f, g ∈ A the inequality |f | ≤ |g| holds on
X if and only if the inequality Φ(|f |) ≤ Φ(|g|) holds on Y and a ψ-composition operator
on p(B), if there is a map ψ : p(B) → X such that (Φ(|f |))(y) = |f(ψ(y))| for all f ∈ A
and y ∈ p(B).

Proposition 2.4. Let X and Y be locally compact Hausdorff spaces, A ⊂ C(X) and
B ⊂ C(Y ) be dense subalgebras of function algebras without units, such that X = ∂A,
Y = ∂B and p(A) = δA, p(B) = δB, and let Φ : |A| → |B| be an increasing bijection. If
Φ is sup-norm-multiplicative, i.e.

‖Φ(|f |)Φ(|g|)‖ = ‖fg‖ (1)

for all f, g ∈ A, then there exists a homeomorphism ψ : p(B)→ p(A) with respect to which
Φ is a ψ-composition operator on p(B), i.e. (Φ(|f |))(y) = |f(ψ(y))| for all f ∈ A and
y ∈ p(B). In particular, Φ is multiplicative, i.e. Φ(|fg|) = Φ(|f |)Φ(|g|) for all f, g ∈ A.

Proposition 2.4 holds, say, for semisimple commutative Banach algebras A,B on X =
∂A and Y = ∂B with p(A) = δA and p(B) = δB. Note that equality (1) implies
automatically that ‖Φ(|f |)‖ = ‖f‖ for all f ∈ A.

For the proof we will use, with necessary adjustments, the technique developed in [11]
and widely used later in [2, 4, 6, 8, 7, 12]. First we establish several preliminary lemmas,
in all of which A,B and Φ are as in Proposition 2.4.

Lemma 2.5. For any y ∈ p(B) the set

Ey =
⋂
f∈A

Φ(|f |)∈|Fy(B)|

E(f) (2)

is nonempty and Ey ∩ p(A) 6= ∅.

Proof. We claim that the family {E(f) : f ∈ A, Φ(|f |) ∈ |Fy(B)|} has the finite intersec-
tion property. Let f1, f2, . . . , fn ∈ A be such that Φ(|fk|) ∈ |Fy(B)| for k = 1, 2, . . . , n.
Then there is an f ∈ A so that Φ(|f |) = Φ(|f1|)Φ(|f2|) · · ·Φ(|fn|) ∈ |Fy(B)|. Since
Φ(|f |) ≤ Φ(|fk|) on Y and Φ is increasing, |f(ξ)| ≤ |fk(ξ)| for all ξ ∈ X and k = 1, 2, . . . , n.
Note that ‖f‖ = ‖Φ(|f |)‖ = 1 and also ‖fk‖ = ‖Φ(|fk|)‖ = 1. Hence for every x ∈ X
with |f(x)| = 1 we must have |fk(x)| = 1 for all k = 1, 2, . . . , n. Thus E(f) ⊂ E(fk)
for every k = 1, . . . , n, and therefore, E(f) ⊂

⋂n
k=1E(fk). Consequently, the family

{E(f) : f ∈ A, Φ(|f |) ∈ |Fy(B)|} has the finite intersection property, as claimed. Since
its elements, E(f), are compact subsets of X, it must have nonempty intersection. Ac-
cording to Lemma 2.3 (b), Ey ∩ p(A) 6= ∅.
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Lemma 2.6. If y ∈ p(B) and x ∈ Ey ∩ p(A), then

Φ(|Fx(A)|) ⊂ |Fy(B)|. (3)

Proof. Fix an h ∈ |Fx(A)| and let k = Φ(h). To prove that Φ(h) ∈ |Fy(B)|, it suffices
to show that k(y) = 1. Take an open neighborhood V of y in Y and a q ∈ Fy(B)
with E(q) ⊂ V . If p = Φ−1(|q|) then ‖p‖ = ‖q‖ = 1, thus

Ey ∩ p(A) ⊂ Ey =
⋂
f∈A

Φ(|f |)∈|Fy(B)|

E(f) ⊂ E(p),

since Φ(p) = |q| ∈ |Fy(B)|. Therefore, p ∈ |Fx(A)|, since, by the hypotheses, x ∈ Ey ∩
p(A). Equality (1) implies 1 = h(x) p(x) = ‖hp‖ = ‖kq‖ ≤ ‖k‖‖q‖ = 1. Consequently,
‖kq‖ = 1 and there must be a yV ∈ p(B) such that k(yV ) = |q(yV )| = 1. Therefore,
yV ∈ E(q) ⊂ V . Since any neighborhood V of y contains a point yV with k(yV ) = 1, the
continuity of k implies that k(y) = 1. Hence, k ∈ |Fy(B)| and therefore, Φ(|Fx(A)|) ⊂
|Fy(B)|, as claimed.

Lemma 2.7. For any y ∈ p(B) the set Ey ∩ p(A) is a singleton.

Proof. Let y ∈ p(B), x ∈ Ey ∩ p(A) and z ∈ (Ey ∩ p(A)) \ {x}. Since |A| separates the
points of p(A), there is a function h ∈ Fx(A) such that |h(z)| < |h(x)| = 1. Lemma 2.6
implies that Φ(|h|) ∈ |Fy(B)|, and therefore, Ey ∩ p(A) ⊂ E(h), by (2). Hence, |h| ≡ 1
on Ey ∩ p(A), which is impossible since |h(z)| < 1. Therefore, the set Ey ∩ p(A) contains
no points other than x.

Given an y ∈ p(B) we denote the single element of the set Ey ∩ p(A) by ψ(y), i.e.,
{ψ(y)} = Ey ∩ p(A). Hence there arises a map ψ : y ; ψ(y) from p(B) to p(A), and (3)
can be rewritten as

Φ(|Fψ(y)(A)|) ⊂ |Fy(B)|. (4)

If h ∈ Fψ(y)(A) then k = Φ(|h|) ∈ |Fy(B)| by (4). Therefore, |h(ψ(y))| = 1 = (Φ(|h|))(y),
and hence

(Φ(|h|))(y) = |h(ψ(y))| (5)

for any h ∈ Fψ(y)(A).

Corollary 2.8. For any y ∈ p(B), Φ−1(|Fy(B)|) = |Fψ(y)(A)|.

Proof. Let y ∈ p(B), k ∈ Fy(B) and h = Φ−1(|k|). Then Φ(h) = |k| ∈ |Fy(B)|, and
therefore, ψ(y) ∈ E(h) by (2). Hence, h(ψ(y)) = 1 = |k(y)|. Since h(ψ(y)) = ‖h‖, we
have that h ∈ |Fψ(y)(A)|. Therefore, Φ−1(|Fy(B)|) ⊂ |Fψ(y)(A)|. The opposite inclusion
follows from (4).

What Proposition 2.4 claims is that the equality (5) holds actually for every h ∈ A
and all y ∈ p(B).

Proof of Proposition 2.4. Let f ∈ A and y ∈ p(B). Lemma 2.2, Corollary 2.8, and (1)
imply
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|(Φ(|f |))(y)| = inf
k∈Fy(B)

‖(Φ(|f |)) · |k|‖ = inf
h∈Fψ(y)(A)

‖Φ(|f |)Φ(|h|)‖

= inf
h∈Fψ(y)(A)

‖fh‖ = |f(ψ(y))|.

Therefore, Φ is a ψ-composition operator on p(B). Let y ∈ p(B) and 0 < c < 1. Choose
an open set U of ψ(y) in X and a function h ∈ Pψ(y)(A) such that E(h) ⊂ U and
|h(x)| < c for all x ∈ X \ U . Then k = Φ(|h|) ∈ |Fy(B)| and, according to (5), k(y) =
|h(ψ(y))| = 1 > c. Therefore, the open set W = {η ∈ p(B) : k(η) > c} contains y.
The first part of the proof shows that |h(ψ(η))| = k(η) > c for every η ∈ W , which
implies ψ(η) ∈ U , since |h(ξ)| < c on X \ U . Hence ψ(W ) ⊂ U . Consequently, ψ is
continuous. Since Φ is bijective, then its inverse, Φ−1 : |B| → |A|, is surjective and, by
symmetry, satisfies the hypotheses of Proposition 2.4. By the first two parts of the proof
there is a continuous mapping φ : p(A) → p(B) so that (Φ−1(|g|))(x) = |g(φ(x))| for
every g ∈ B and all x ∈ p(A). It is easy to see that the mappings φ and ψ are inverses
to each other, and therefore are homeomorphisms. For any f, g ∈ A and y ∈ p(B) we
have (Φ(|fg|))(y) = |(fg)(ψ(y))| = |f(ψ(y))| |g(ψ(y))| = (Φ(|f |))(y) (Φ(|g|))(y), i.e. Φ is
multiplicative.

Norm-multiplicative operators were introduced in [7], where a preliminary version
of the next theorem was proven for a priory non-surjective operators between uniform
algebras, that preserve the peaking functions. For surjective operators between uniform
algebras its version was proven in [2], and between completely regular Banach function
algebras – in [4].

Theorem 2.9. Let X and Y be locally compact Hausdorff spaces and A ⊂ C(X) and
B ⊂ C(Y ) be dense subalgebras of function algebras without units, such that X = ∂A, Y =
∂B and p(A) = δA, p(B) = δB. If a surjection T : A → B is sup-norm-multiplicative,
namely, ‖Tf Tg‖ = ‖fg‖ for all f, g ∈ A (or, r(Tf Tg) = r(fg), where r( · ) is the spec-
tral radius), then T is a ψ-composition operator in modulus on p(B) for a homeomorphism
ψ : p(B)→ p(A), i.e.

|(Tf)(y)| = |f(ψ(y))| (6)

for all f ∈ A and y ∈ p(B). In particular, T is multiplicative in modulus on p(B), i.e.
|T (fg)| = |Tf Tg| for all f, g ∈ A.

Proof. The sup-norm-multiplicativity of T implies that T preserves the sup-norms. Let
f, g ∈ A be such that |Tf | ≤ |Tg| on Y . For any h ∈ A we have ‖fh‖ = ‖Tf Th‖ ≤
‖Tg Th‖ = ‖gh‖ by the sup-norm-multiplicativity. Lemma 2.2 implies that |f | ≤ |g| on
X. If |f | ≤ |g| on X, then for every k ∈ B we have ‖Tf ·k‖ = ‖Tf Th‖ = ‖fh‖ ≤ ‖gh‖ =
‖Tg Th‖ = ‖Tg · k‖, where h ∈ T−1(k). Therefore, |Tf | ≤ |Tg| on Y by Lemma 2.2.
Consequently, |f | ≤ |g| holds on X if and only if |Tf | ≤ |Tg| holds on Y . Therefore,
|Tf | ≡ |Tg| on Y if and only if |f | ≡ |g| onX. Hence the operator Φ : |A| → |B| defined by
Φ(|f |) = |(Tf)|, f ∈ A, is well defined. If Φ(|f |) = Φ(|g|), then |Tf | = |Tg| and therefore,
|f | = |g|. Hence, Φ is injective and therefore, bijective, and also increasing. Consequently,
Φ satisfies the hypotheses of Proposition 2.4, and therefore, it is a ψ-composition operator
on p(B) with respect to a homeomorphism ψ : p(B)→ p(A), i.e. (Φ(|f |))(y) = |f(ψ(y))|
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for all f ∈ A and y ∈ p(B). Therefore, |(Tf)(y)| = (Φ(|f |))(y) = |f(ψ(y))|, i.e. T is a
ψ-composition operator in modulus on p(B). The multiplicativity in modulus of T follows
from the multiplicativity of Φ.

In particular, Theorem 2.9 holds for function algebras without units and, more gen-
erally, for semisimple commutative Banach algebras A,B on X = ∂A and Y = ∂B with
p(A) = δA and p(B) = δB. A similar result is obtained in [5].

3. Weakly peripherally-multiplicative operators. The following proposition is a
strong version for function algebras without units of the classical lemma of E. Bishop.

Proposition 3.1 (Strong Multiplicative Bishop’s Lemma). Let X be a locally compact
Hausdorff space and A ⊂ C(X) be a function algebra without unit on X = ∂A. If f ∈ A
and x0 ∈ X is a p-point of A with f(x0) 6= 0, then there exists a peaking function
h0 ∈ Px0(A) such that

σπ(fh0) = {f(x0)}. (7)

If, moreover, E is a peak set of A which contains x0, then h0 can be chosen so that
E(fh0) = E(h0) ⊂ E.

We prove Proposition 3.1 by a technique similar to the one in [13].

Proof. Without loss of generality we can assume that f(x0) = 1. For every n ∈ N define
the open set Un = {x ∈ X : |f(x)− 1| < 1/2n+1}. Clearly, x0 ∈ Un ⊂ Un−1 and Un is
open in X for all n > 1. For every n ∈ N we choose a peaking function kn ∈ Px0(A) such
that E(kn) ⊂ Un. Let hn be a large enough power of kn such that |hn(x)| < 1/(2n‖f‖) on
X \ Un. We claim that σπ(fh0) = {1} holds for the function h0 =

∑∞
n=1 hn/2

n. Clearly,
h0 ∈ Px0(A). Note that E(h0) ⊂

⋂∞
n=1E(hn) ⊂

⋂∞
n=1 Un. In fact,

⋂∞
n=1 Un = f−1{1}.

Indeed, if x ∈ f−1{1} then, clearly, x ∈
⋂∞
n=1 Un; if x ∈

⋂∞
n=1 Un, then |f(x)−1| < 1/2n+1

for every n ∈ N, so f(x) = 1, i.e. x ∈ f−1{1}. Consequently, E(h0) ⊂
⋂∞
n=1 Un = f−1{1}.

If x ∈ E(h0), then f(x)h0(x) = 1, while |f(x)h0(x)| < 1 when x ∈ f−1{1} \ E(h). Let
x /∈ f−1{1}. If also x ∈ X \ U1, then x ∈ X \ Un for all n, and therefore, |hn(x)| <
1/(2n‖f‖) for all n. Thus,

|h0(x)| <
∞∑
n=1

1
4n‖f‖

<
1
‖f‖

,

and therefore, |f(x)h0(x)| < |f(x)|/‖f‖ ≤ 1. If x ∈ Un−1 \ Un for some n > 1, then
x ∈ U1, U2, . . . , Un−1 and x ∈ X \ Ui for all i ≥ n. Consequently, |hi(x)| < 1/(2i‖f‖) for
all i ≥ n. Since x ∈ Un−1, |f(x)− 1| < 1/2n, and hence

|f(x)h0(x)| ≤ (1 + |f(x)− 1|)|h0(x)| <
(

1 +
1
2n

)( n−1∑
i=1

|hi(x)|
2i

+
∞∑
i=n

|hi(x)|
2i

)

=
(

1 +
1
2n

)( n−1∑
i=1

1
2i

+
∞∑
i=n

1
4i‖f‖

)
≤
(

1 +
1
2n

)( n−1∑
i=1

1
2i

+
∞∑
i=n

1
4i

)
≤
(

1 +
1
2n

)(
1− 1

2n−1
+

1
3 · 4n−1

)
<

(
1 +

1
2n

)(
1− 1

2n

)
< 1.

Consequently, |f(x)h0(x)| < 1 for every x /∈ E(h0), as claimed.
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To prove the “moreover” part, let E be a peak set for A containing x0, and let h∗ ∈ A
be such that E = E(h∗). Then (7) holds for the function h0h∗, and E(h0h∗) ⊂ E since
|h∗(x)| < 1 on X \ E.

Corollary 3.2. Let A be as in Proposition 3.1, x0 ∈ P(A) and f(x0) 6= 0 for some
f ∈ A. If h0 ∈ Px0(A) satisfies equality (7), then infh∈Fx0 (A) ‖fh‖ = ‖fh0‖ = |f(x0)|.

Proof. Let x0 ∈ p(A). Proposition 3.1 (The Strong Multiplicative Bishop’s Lemma) yields

‖fh‖ = sup
ξ∈X
|f(ξ)h(ξ)| ≥ |f(x0)h(x0)| = |f(x0)h0(x0)| = max

ξ∈X
|f(ξ)h0(ξ)| =‖fh0‖

for any h ∈ Fx0(A). According to Lemma 2.2, ‖fh0‖ = infh∈Fx0 (A) ‖fh‖ = |f(x0)|.

The next theorem extends the main results of [1, 2, 7, 8, 10, 11, 12] on algebra
isomorphisms.

Theorem 3.3. Let X be a locally compact Hausdorff space and A ⊂ C(X) be a dense
subalgebra of a function algebra without unit, such that X = ∂A and p(A) = δA. If
a surjection T : A → B onto a function algebra B without unit is weakly peripherally-
multiplicative, i.e. σπ(Tf Tg) ∩ σπ(fg) 6= ∅ for all f, g ∈ A, and preserves the periph-
eral spectra of algebra elements, i.e. σπ(Tf) = σπ(f), f ∈ A, then T is a bijective
ψ-composition operator on p(B), i.e. (Tf)(y) = f(ψ(y)) for all f ∈ A and y ∈ p(B), with
respect to a homeomorphism ψ : p(B) → p(A). In particular, A is necessarily a function
algebra and T is an algebra isomorphism.

Proof. Let y0 ∈ p(B) = δB. The condition σπ(Tf Tg) ∩ σπ(fg) 6= ∅ implies that T is
sup-norm-multiplicative. i.e. ‖Tf Tg‖ = ‖fg‖ for every f, g ∈ A. If ψ : p(B) → p(A)
is the homeomorphism from Theorem 2.9, then |(Tf)(y)| = |f(ψ(y))| for all y ∈ p(B)
and f ∈ A. Clearly, (Tf)(y) = f(ψ(y)) whenever (Tf)(y) = 0. If (Tf)(y0) 6= 0, let
V ⊂ Y be an open neighborhood of y0. By Proposition 3.1 (The Strong Multiplicative
Bishop’s Lemma) there exists a k ∈ Py0(B) such that E(Tf · k) = E(k) ⊂ V and
σπ(Tf · k) = {(Tf)(y0)}. Note that if h ∈ T−1(k) then (Tf)(y0) ∈ σπ(fh) since, by
the hypotheses, σπ(Tf · k) ∩ σπ(fh) 6= ∅. Therefore, there is a point x1 ∈ p(A) so that
(Tf · k)(y0) = (fh)(x1). Since ψ is surjective, there is an y1 ∈ p(B) so that x1 = ψ(y1).
Hence,

(Tf)(y0) = (Tf)(y0) · k(y0) = f(ψ(y1)) · h(ψ(y1)), (8)

and |(Tf)(y0)| = |(Tf)(y0)||k(y0)| = |f(ψ(y1))||h(ψ(y1))| = |(Tf)(y1)||k(y1)|, by The-
orem 2.9 and since {(Tf)(y0)} = σπ(Tf · k). Hence y1 ∈ E(Tf · k) = E(k) ⊂ V by
the choice of k. Thus k ∈ Fy1(B), and therefore, |h(ψ(y1))| = |k(y1)| = 1, by Theorem
2.9. Since, by the hypotheses, σπ(h) = σπ(k) = {1}, it follows that h(ψ(y1)) = 1. Now
equality (8) becomes (Tf)(y0) = f(ψ(y1)). Hence any neighborhood V of y0 contains a
point y1 ∈ p(B) such that (Tf)(y0) = f(ψ(y1)). The continuity of f , Tf and ψ implies
that (Tf)(y0) = f(ψ(y0)).

In particular, Theorem 3.3 holds for operators between two function algebras without
units. Since, as a ψ-composition operator on p(B), T is a sup-norm isometric algebra
isomorphism, Theorem 3.3 implies the following necessary and sufficient conditions for
operators between two algebras of functions to be linear and multiplicative:
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Theorem 3.4. Let X be a locally compact Hausdorff space and A ⊂ C(X) be a dense
subalgebra of a function algebra without unit, such that X = ∂A and p(A) = δA. A
surjection T : A → B onto a function algebra B without unit is a sup-norm isometric
algebra isomorphism if and only if T is weakly peripherally-multiplicative and preserves
the peripheral spectra of algebra elements.

Note that the operator T in Theorem 3.4 is not assumed a priori to be linear, mul-
tiplicative, or continuous. Since a multiplicative operator that preserves the peripheral
spectra is automatically weakly peripherally-multiplicative, Theorem 3.4 implies:

Corollary 3.5. Let X be a locally compact Hausdorff space and A ⊂ C(X) is a dense
subalgebra of a function algebra without unit, such that X = ∂A and p(A) = δA. A
multiplicative surjection T : A→ B onto a function algebra B without unit is a sup-norm
isometric algebra isomorphism if and only if T preserves the peripheral spectra of algebra
elements.

If the algebras have units, then, similarly to [8, Corollary 3], we obtain:

Corollary 3.6. Let X be a locally compact Hausdorff space, A ⊂ C(X) be a unital
dense subalgebra of a uniform algebra such that X = ∂A and p(A) = δA, and let B be a
uniform algebra. If T : A→ B is a peripherally-multiplicative surjection, i.e.

σπ(Tf Tg) = σπ(fg) (9)

for all f, g ∈ A, such that T1 ∈ B−1, then there is a homeomorphism ψ : p(B) → p(A)
and a κ ∈ B with κ(y) = ±1 for all y ∈ p(B), so that T is a κ-weighted ψ-composition
operator on p(B), i.e. (Tf)(y) = κ(y) f(ψ(y)) for all f ∈ A and y ∈ p(B). In particular,
T is linear and A is a uniform algebra.

Proof. Equality (9) implies that T is norm-multiplicative and σπ((T1 )2) = σπ(1 ) = {1}.
Since, by Theorem 2.9, |T1 | = 1 we deduce that (T1 )2 = 1 , and therefore, (T1 )(y) = ±1
for all y ∈ p(B). The operator S : A → B defined as Sf = T1 Tf is surjective, and
σπ(Sf Sg) = σπ((T1 )2 Tf Tg) = σπ(Tf Tg) = σπ(fg). Therefore, S satisfies the hy-
potheses of Theorem 3.4 and hence (T1 Tf)(y) = (Sf)(y) = f(ψ(y)) for some homeo-
morphism ψ : δB → p(A). Therefore, (Tf)(y) = (T1 )−1(y) f(ψ(y)) = κ(y) f(ψ(y)) for
all f ∈ A and y ∈ p(B), where κ = (T1 )−1.
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