
NONLOCAL ELLIPTIC AND PARABOLIC PROBLEMS
BANACH CENTER PUBLICATIONS, VOLUME 66

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2004

ON STATIONARY KINETIC SYSTEMS
OF BOLTZMANN TYPE AND THEIR FLUID LIMITS

LEIF ARKERYD

Department of Mathematics, Chalmers University, S-41296 Gothenburg, Sweden

E-mail: arkeryd@math.chalmers.se

Abstract. The first part reviews some recent ideas and L1-existence results for non-linear sta-

tionary equations of Boltzmann type in a bounded domain in Rn and far from global Maxwellian

equilibrium. That is an area not covered by the DiPerna and P. L. Lions methods for the time-

dependent Boltzmann equation from the late 1980-ies.

The final part discusses the more classical perturbative case close to global equilibrium and

corresponding small mean free path limits of fully non-linear stationary problems. Here the focus

is on a particular two-rolls model problem including leading order hydrodynamic limits, but in

a perspective of more general situations and the resolution of a variety of asymptotic stationary

questions.

Remarks are made about stationary solutions as long-time limits of corresponding time-

dependent ones, and a number of open problems are also reviewed.

0. Introduction. In the first part I will review some recent ideas and existence results

for stationary equations of Boltzmann type in a bounded domain in Rn, an area not cov-

ered by the original DiPerna and P. L. Lions method for the time-dependent non-linear

Boltzmann equation from the late 1980-ies. Their approach to existence fundamentally

depends on conservation laws and entropy control to obtain a priori bounds and com-

pactness properties. In the corresponding stationary problems, it is only the flows of such

quantities that are under control, and they are not by themselves enough to imply all

the required bounds and compactness related properties. But at least energy control is

available from the moment flows. To replace an unavailable entropy bound, there is a

weaker and more involved entropy dissipation control, and mass control may be forced

onto the problem at a price. Using such devices and detailed properties of the collision

geometry, together with A. Nouri in Marseille, we have developed an approach to sta-

2000 Mathematics Subject Classification: 76P05, 35Q35.

Key words and phrases: kinetic systems, fluid limits.

The paper is in final form and no version of it will be published elsewhere.

[13]



14 L. ARKERYD

tionary existence in an L1-context for nonlinear Boltzmann related equations, also far

from global Maxwellian equilibrium.

Before this, only the perturbative case close to global Maxwellian equilibria had been

systematically studied, with Grad [G], Kogan [K] and Guiraud [Gu] (see also [H, P, UA])

as the pioneers in the late 1960-ies, and with the main arguments based on fixed points

and contraction mapping techniques. But even there, mainly due to a lack of suitable

estimates, up till now only little (but see [DEL, ELM]) has been done concerning the

small mean free path limit of such fully nonlinear stationary problems. The final part of

the survey will take up a possible remedy, consisting in suitable new techniques, again

developed jointly with A. Nouri. I shall present this for a rotating two-rolls model problem

including leading order hydrodynamic limits. Our expectation is that these techniques

will ultimately resolve a variety of asymptotic stationary questions.

In the middle of the survey I will also comment on stationary solutions as long-

time limits of the time-dependent development. A number of open problems will also be

reviewed. For an introduction to the area see [C2, CIP].

1. On large data stationary existence. For the topic of large data stationary exis-

tence, our basic approach to the fully non-linear Boltzmann equation may be described

as follows:

Velocities in the pair collisions of the Boltzmann equation—(v, v∗) (before)→ (v′, v′∗)
(after)—are connected by (σ ∈ Sn−1)

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ.

The density of a rarefied gas is as usual modelled by nonnegative functions f(x, v), with

x the position and v the velocity. We shall write

f(v) = f, f(v∗) = f∗, f(v′) = f ′, f(v′∗) = f ′∗.

The x-domain Ω in position space is for convenience assumed smooth and strictly convex

with inner normal n(x) (but see the remarks further on).

On the ingoing boundary ∂Ω+ = {(x, v) ∈ ∂Ω × Rn; v · n(x) > 0} are given a diffuse

reflection operator R and indata fb. The boundary conditions are

f = ΘRf + (1−Θ)fb, (1.1)

where 0 ≤ Θ ≤ 1. The stationary Boltzmann equation in the domain Ω is

v · 5xf(x, v) = Q(f, f)(x, v) = Q+(x, v)−Q−(x, v) = Q+(x, v)− fν(f)(x, v)

=

∫

R3

∫

S2

B(v − v∗, ω)[f ′f ′
∗ − ff∗]dωdv∗, x ∈ Ω, v ∈ Rn, (1.2)

where Q+ −Q− is the splitting into gain and loss parts of the collision operator Q, and

ν is the collision frequency.

Integrating this boundary value problem multiplied with ln f , gives a bound for the

entropy dissipation,

−e(f) =

∫
B(ff∗ − f ′f ′∗) ln

ff∗
f ′f ′∗

< c.
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If f∗ is bounded from below and f ′f ′∗ from above on sufficiently large sets, we get some

control of possible mass concentrations for f where f is large. Of course this is more

restricted than entropy, since e.g. the entropy dissipation is zero even for a Dirac type

Maxwellian. But when it is applicable, as it in fact is for many stationary situations, then

mass concentrations are prevented. It turns out that for stationary boundary values of

type (1.1), this observation about the entropy dissipation is enough to deliver existence

for the kinetic Povzner and Enskog equations in bounded domains in Rn [AN4], and for

the Boltzmann equation in a slab both for soft and hard forces under no other restrictions

than Grad’s angular cut-off [AN3, AN6]. Let us discuss the slab case, and without loss of

generality focus on a three dimensional velocity space. A typical result in the slab case

is the following:

Let the slab be given by −1 ≤ x ≤ 1. Set v = (ξ, ṽ), with ξ parallel to x, and ṽ

orthogonal to x. The stationary Boltzmann equation in the slab is

ξ
∂

∂x
f(x, v) = Q(f, f)(x, v), x ∈ [−1, 1], v ∈ R3. (1.3)

For simplicity we take the kernel B(v−v∗, σ) in the collision operator Q as | v−v∗ |β b(θ),
with

−3 < β < 2, b ∈ L1
+(0, π), b(θ) ≥ c2 > 0 a.e.

Given a constant m > 0 and positive indata fb bounded away from zero on compacts,

positive solutions f to the slab equation(1.3) are sought such that
∫ 1

−1

∫

R3

(1 + |v|)βf(x, v)dxdv = m, (1.4)

f(−1, v) = kfb(−1, v), ξ > 0, f(1, v) = kfb(1, v), ξ < 0, (1.5)

for some constant k > 0. The constant k is determined from the value m of the β-norm

(1.4). In this way, the lack of a mass estimate is compensated by forcing a β-norm control

m on the solution. If it were not for the problem with small velocities, the control (1.4)

could be replaced by the condition k = 1.

Theorem 1.1 [AN3]. Suppose given m > 0, 0 ≤ β < 2, and indata fb satisfying
∫

ξ>0

[ξ(1 + |v|2 + | ln fb|) + (1 + |v|)β ]fb(−1, v)dv <∞,
∫

ξ<0

|ξ|(1 + |v|2 + | ln fb|) + (1 + |v|)β ]fb(1, v)dv <∞.

Then there is a weak solution to the stationary slab problem (1.3-5).

Analogous results hold for boundary conditions of diffuse reflection type, (i.e. (1.1)

with Θ = 1) and for the mixed case. There are similar theorems for soft forces, i.e.

for 0 > β > −3. In all those cases, the collision frequency integral along characteristics,

essentially behaves like a volume integral, which is a priori controlled in the approximation

scheme. It is a serious obstacle that this is not so for the nonlinear Boltzmann equation

itself in higher dimensions (n > 1),

v · 5xf(x, v) = Q(f, f), x ∈ Ω, v ∈ Rn. (1.6)



16 L. ARKERYD

However, that problem can be overcome, at least as long as the other main obstacle

to the full Rn-result is eliminated, namely the small velocities in the nonlinear collision

operator. So consider Q given by
∫

Rn

∫

Sn−1

χs(v, v∗, σ)B(v − v∗, σ)(f(x, v′)f(x, v′∗)− f(x, v)f(x, v∗))dv∗dσ

with s > 0, and

χs(v, v∗, σ) = 0 if |v| < s or |v∗| < s or |v′| < s or |v′∗| < s, χs(v, v∗, σ) = 1 else.

The removal of small velocities through χs, again allows mass to be estimated by a priori

controlled energy, and we may study the equation with given indata instead of the pre-

vious β-norm m plus indata profile. So given a function fb > 0 defined on ∂Ω+, we look

for a solution f to (1.2) with

f(x, v) = fb(x, v), (x, v) ∈ ∂Ω+. (1.7)

A priori estimates along characteristics using the exponential solution form, together with

new local information from the entropy dissipation control, leads to the following result.

Theorem 1.2 [AN7]. Suppose that fb > ae−dv
2

for some a, d > 0 and a.a. (x, v) ∈ ∂Ω+,

and that ∫

(x,v)∈∂Ω+

[v · n(x)(1 + v2 + ln+ fb(x, v)) + 1]fb(x, v)dxdv <∞.

Then the equation (1.6) has a solution satisfying the boundary condition (1.7).

Remarks. If we were to keep the small velocities and remove the truncation χs, a variant

of the limiting procedure in the proof would still work but, besides admitting the desired

solution of the boundary value problem, would also allow the unwanted alternative of

a total collapse as Dirac measure at velocity zero, which we don’t know how to prevent.

The removal of the small-velocity χs-truncation probably requires fresh ideas. Mathe-

matically the imposed small velocity cut-off is a serious restriction, but physically less

so, if e.g. the velocity is only removed below some Planck scale. Physically more serious

is the lack of uniqueness (or at least local uniqueness i.e. isolated solutions), a problem

(P :) of course shared with the [DPL] time dependent theory in its present state.

P : The technical restrictions on Ω and fb can be relaxed. In fact we even expect the result

to hold for the same mathematically and physically natural, non-smooth domains as in

the time dependent case [AH], namely with boundaries having finite Hausdorff measure

plus a certain cone condition.

I will end this first part of the presentation with two interesting technical points

from the proofs. It is clear from what I have already said, that the behaviour at small

velocities is a major difficulty for stationary kinetic problems. Let us first see how the

small velocities can be handled for the slab problem with given indata profile. Actually,

for the slab this difficulty comes up as the small velocity in the slab direction, ξ. Let us

focus on one instance of the main idea, which is to deduce the small velocity behaviour

from the large velocity behaviour. To minimize technicalities, assume Maxwellian forces,
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i.e. β = 0. We start from the collision operator with an extra velocity-cutoff for small ξ ,

Qs(f, f)(x, v) =

∫

R3

∫

S2

χsB(σ)[f ′f ′
∗ − ff∗]dσdv∗.

In the limit of disappearing cut-off, s → +0, we then recover the desired Maxwellian

collision operator with only a Grad angular cut-off.

We also start from an approximation of the equation including an extra absorption,

sfs + ξ
∂

∂x
fs = Qs(fs, fs), x ∈ Ω, v ∈ Rn.

Since β = 0, the moment condition (1.4) fixes the mass. The boundary values are given

indata profile (1.5). This approximation can be solved by fixed point arguments and

devices related to the corresponding time dependent problem. They deliver a solution

with the constant k of (1.5) bounded over the approximations,

0 < inf
S
ks ≤ sup

S
ks <∞.

In the usual way of multiplying the equation with ξ and integrating, the ξ2-moment is

uniformly controlled in s and x,
∫
ξ2fsdv ≤ c3 <∞,

and the entropy dissipation is likewise uniformly controlled in s,

−e(fs) := −
∫
Qs(fs, fs) ln fsdxdv ≤ c4 <∞.

From here the small-ξ control follows by the geometry, as I shall illustrate for the case

when |ṽ| > 10λ and λ� 10. Take v∗ = (ξ∗, ṽ∗) with |ṽ∗| ≤ 10, and 10−1 ≤ |ξ∗| ≤ 1.

The exponential form of the equation immediately gives for all such v∗ and all s, x, that

fs(x, v∗) ≥ c5 > 0. For these (x, v, v∗, σ, s) and for L > 2, it holds that

c2c5f
s(x, v) ≤ b(θ)f s(x, v)fs(x, v∗) ≤ Lb(θ)f ′sf ′s∗ +

2

lnL
b(θ)(fsfs∗ − f ′sf ′s∗ ) ln

fsfs∗
f ′sf ′s∗

.

And so ∫

s≤|ξ|≤1,10λ≤|ṽ|
fs(x, v)dxdv ≤ cL

λ4
+

c

lnL
.

This is arbitrarily small for L sufficiently large, and then λ taken large enough.

Let me also say a few words about the ideas behind the nD-result with given indata in

Theorem 1.2. Without loss of generality we can again restrict the discussion to dimension

n = 3. As in the previous slab case, the first step in the proof is to solve the equation

with an extra absorption term αf added. We start from the weak form of the equation,
∫

Ω×R3

[−αfα + fαv · 5x +Q(fα, fα)]ϕ(x, v)dxdv

= −
∫

∂Ω+

v.n(x)fbϕ(x, v)dxdv −
∫

∂Ω−
v.n(x)fαϕ(x, v)dxdv.

The collision integral
∫
Q(f, f)ϕdv vanishes for ϕ = 1, v, v2, and is non-positive for ϕ =

ln f . That leads to a priori α-dependent estimates of mass
∫
f , energy

∫
fv2, and entropy
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∫
f ln f . Using fixed point arguments and other devices just like the slab case, it follows

that the α-approximation has a non-negative solution fα.

Again using the weak form, we can estimate outgoing mass flow a priori by ingoing

mass flow independently of α > 0. The exponential form of the equation is

fα(x, v) = fb(x− s+(x, v)v, v)e
−
∫ 0
−s+(x,v)

(α+ν(fα)(x+sv,v))ds

+

∫ 0

−s+(x,v)

Q+(fα, fα)(x− τv, v)e−
∫ 0
−τ (α+ν(fα)(x+tv,v))dtdτ.

Here s+ is the time it takes to reach the ingoing boundary point along the characteristic

(x− sv, v). It follows that

fbe
−
∫
ν ≤ f(x, v) ≤ foutgoinge

∫
ν ,

and so the exponential form gives uniform estimates of fα along characteristics outside

a small set; given ε > 0 there is a constant Cε independent of α, so that outside a set

(depending on α) of characteristics of measure ε, it holds that fα < Cε. We replace fα by

zero outside the nicely bounded characteristics. Then the weak limit fε = w − lim fαrestr
increases with 1/ε.

With the final limit f = s-lim fε of these approximate solutions a rather naive can-

didate for the true solution, the hard part is to prove that this candidate really solves

the desired problem. We use the so-called iterated integral form of the equation, where it

is easy to suppress the solution along whole characteristics, by setting the test function

equal to zero along them,
∫

∂Ω+

(fbϕ)(x, v)v · n(x)dxdv

+

∫

∂Ω−

(∫ 0

−s+(x,v)

[−αfϕ+Q(f, f)ϕ+ fv · 5xϕ](x+ σv, v)dσ

)
|v · n(x)|dxdv = 0

The iterated collision integral is well defined through our approximation scheme, even

if Q may not be integrable. The replacement of the test functions by zero along certain

characteristics is possible, since the test functions are in L∞, and only required to be

differentiable along characteristics.

The main difficulty with this removal procedure, is the following. Consider the col-

lision frequency ν =
∫
dσ
∫
Bfα∗ dv∗. It may happen at a point x ∈ Ω along a retained

characteristic for fα, that other characteristics through the point x ∈ Ω are not retained.

This may decrease the collision frequency at x, which is an integral in the second velocity

variable v∗. The second step in the proof consists in a study of the interaction between

what is retained and what is removed. A central part is a lemma quantifying in what

sense the possibly bad behaviour along the particular small set of removed character-

istics, in the limit does not influence the behaviour based on the rest of phase space,

in spite of the mixing non-linear character of the collision operator. The proof of this

lemma involves some violent scalings and estimates. Finally the third step in the proof is

a check that the final L1-limit of the approximations, by itself solves the boundary value

problem.
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2. On long time behaviour. Stationary solutions to the Boltzmann equation, besides

having an intrinsic interest, come up as natural candidates for the time asymptotics

of corresponding evolutionary problems after the transients have died down. Rigorous

convergence results in various topologies for the limit of infinite time are known, when the

boundary conditions are periodic, or specular reflections as well as diffuse reflections with

temperature and pressure constant around the boundary. But this is also an area with

many important (cf [CCW, CGT, V, W]) and still open problems of varying difficulty.

P : In the long term, does one always find convergence to a steady situation, or are also

periodic and more irregular types of limiting behaviour possible?

P : When there is convergence, what is its type and, when meaningful, its rate?

There are deep and interesting ongoing activities about this rate problem by Villani and

Desvillettes, which I will not enter. I will only illustrate the area of time asymptotics with

an easily explained case of strong L1-convergence to a unique Maxwellian, essentially

controlled by the boundary interaction. Consider the time dependent equation

(∂t + v · 5x)f = Q(f, f), t ∈ R3, x ∈ Ω, v ∈ R3, (2.1)

where Ω is bounded, strictly convex and smooth, and Q as before denotes the Boltzmann

collision operator, together with an initial condition

f(0, x, v) = f0(x, v), x ∈ Ω, v ∈ R3. (2.2)

Here f0 has finite mass, energy, and entropy. Let us assume Maxwellian diffuse reflection

on the boundary,

f(t, x, v) = M(ξ)

∫

v′·n(x)<0

|v′ · n(x)|f(t, x, v′)dv′, t ∈ R+, x ∈ ∂Ω, v · n(x) > 0, (2.3)

with

M(v) = c0 exp(−.5θ|v|2),

a normalized Maxwellian, c0 a normalization constant, and 1
θ > 0 a constant temperature.

The relevant equilibrium solution is fs = c1M with

c1 =

∫
Ω×R3 f0(x, v)dxdv∫
Ω×R3 M(v)dxdv

.

The following existence result holds by the time-dependent existence theory:

Theorem 2.1 [AM]. There exists a mild solution

f ∈ C(R+, L1(Ω× R3)), f ≥ 0,

to the initial boundary value problem (2.1-3).

After multiplication with ln f
M , the equation gives

(∂t + v · 5x)

(
f ln

f

M

)
= Q(f, f) ln

f

M
+Q(f, f).

Integrating this over [0, t]× Ω× R3 and using the initial and boundary values, implies
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∫

Ω×R3

(
f ln

f

M

)
(t, x, v)dxdv −

∫ t

0

∫

∂Ω×R3

v · n(x)

(
f ln

f

M

)
dτdxdv

−1

4

∫ t

0

∫

Ω×R3

e(f)dτdxdv ≤
∫

Ω×R3

f0 ln
f0

M
(x, v)dxdv. (2.4)

Since e(f) ≤ 0 and the boundary integral is non-positive by Darrozes & Guiraud’s in-

equality (see [C2]), it follows that
∫

Ω×R3

f ln
f

M
(t, x, v)dxdv < c,

and

0 ≤
∫ +∞

0

∫

Ω×R3

e(f)(t, x, v)dtdxdv < c.

The density f is a Maxwellian, when the integrand in e is zero a.e.. And the desired

convergence to a Maxwellian is obtained by an analysis of how f is close to a Maxwellian,

when the integral of e for large times is close to zero. Once the limit is proved to be

Maxwellian, the limit boundary condition by itself turns out to select (via Green’s identity

or directly) the precise limit Maxwellian. This leads to the following convergence result.

Theorem 2.2 [AN1]. Let f be a solution of the initial boundary value problem (2.1-3)

with nowhere vanishing collision kernel. When t tends to infinity, f(t, ., .) converges

strongly in L1(Ω× R3) to the global Maxwellian c1M .

In the theorem, M comes from the boundary condition (2.3), and c1 is given by the

conservation of mass (c1 =
∫
f0/
∫
M).

Specific for the kinetic case, and not generally correct in fluid dynamics situations,

the natural restrictions on the domain are few, only that the boundary has finite (n− 1)-

dimensional Hausdorff measure—for reasonable traces to exist—and obeys a certain cone

condition - to ensure that a molecule which falls on the surface has a strictly positive

probability to be reflected into some body angle of size (uniformly over the surface)

bounded from below. Theorem 2.2 can be generalized to that natural type of boundary.

Also the Maxwellian is uniquely determined by the initial value and the boundary

condition.

P : The uniqueness in Theorem 2.2 has so far not been proved for the cases of periodic,

specular, or direct reflection boundary conditions, where some limit existence results are

known. What can rigorously be said about uniqueness in those cases? Can anything be

said about convergence when the boundary temperature in the above problem is varying?

3. The two-rolls model and fluid limits. Stationary solutions are also of importance

in rarefied gas dynamics, which deals with gas phenomena, where Navier-Stokes type

equations are not valid in some significant region of the flow field. A useful parameter

is the Knudsen number Kn, the ratio of the molecular mean free path (in ordinary air

∼ 10−5 cm) to a typical length scale for the flow. This length scale could be based on

the gradients occurring in the flows. Often the regions are very thin, where deviation

from the Navier-Stokes behaviour is expected, and the non Navier-Stokes terms become

important. The broad picture is one of normal regions where the gas flow follows the
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macroscopic fluid equations, plus thin shock layers, boundary layers, and initial layers,

where matching conditions are sought between fluid regions on each side of the shock, or

between outside initial or boundary control and interior fluid behaviour.

From that picture, I will now focus on a stationary two-rolls problem with boundary

layers, and its behaviour in the small Kn limit. The set-up is as follows. Consider the

stationary Boltzmann equation in the space Ω between two coaxial cylinders. Denoting

by (r, θ, z) and (vr, vθ, vz) respectively, the cylindrical spatial coordinates and the corre-

sponding velocity coordinates, for parameter ranges where the system stays axially and

rotationally uniform, the solutions are thus positive functions f(r, vr, vθ, vz). In these

coordinates the Boltzmann equation may be written

vr
∂f

∂r
+

1

r
Nf =

1

εj
Q(f, f), r ∈ (rA, rB), (vr, vθ, vz) ∈ R3. (3.1)

Here

Nf := v2
θ

∂f

∂vr
− vθvr

∂f

∂vθ
.

The Knudsen number εj = Kn will in this talk be taken as j = 4. As boundary con-

ditions, functions fb are given on the ingoing boundary ∂Ω+, i.e. {(rA, v); vr > 0} and

{(rB , v); vr < 0}. For convenience we take them as Maxwellians Mα having the known

values at the boundary for pressure Pα, temperature Tα, and rotation rate vθα, where

α = A or B. We may assume that the solutions are even in the vz-variable. The ear-

lier mentioned slab existence without small velocity cut-off in one space dimension, can

actually be extended to this problem with space dimension two, namely

Theorem 3.1 [AN9]. Given m =
∫ rB
rA

∫
R3(1 + |v|)βfdxdv and boundary Maxwellians,

there exists a weak L1-solution to the Boltzmann equation for hard forces in the two-roll

domain with β-moment m and the given indata profile (much more general profiles are

possible).

As in the slab case discussed earlier, the proof is based on weak L1 compactness and

does not require any cut-off for small velocities. It gives on the other hand no informa-

tion about uniqueness, isolated solutions, fluid limits with extra terms, or possible ghost

effects. Such results still have to be based on the asymptotic methods inititated by Grad

[G], Kogan [K] and Guiraud [Gu] a full generation ago. Many important problems are still

open—at least when it comes to rigorous mathematical analysis, in contrast to formal

asymptotics and scientific computing, which has matured much further. For the formal

and numerical aspects, a recent monograph by Y. Sone [S] from Kyoto gives a good

picture, and the 1993 monograph by N. Maslova [M] is a fine introduction to what was

known about the rigorous mathematics.

I will now devote the rest of the survey to asymptotic problems for the rotating two-roll

situation, and in particular some recent progress by AN and myself concerning rigorous

results for bifurcating multiple solutions and their positivity. Expand the solution to (3.1)

as f = M(1 + ψ + εj0R) with

ψ =

j0∑

1

εjψj , M = (2π)−
3
2 exp

(
− v2

2

)
,
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and split the rest term as

R = P0R+ (I − P0)R = R‖ +R⊥,

where P0 is the orthogonal projection on the hydrodynamic part. Here
∑j0

1 εjψj is the

asymptotic expansion with boundary values of the terms equal to the corresponding order

in the ε-expansions of the boundary Maxwellians Mα. We take j0 = 4, and assume that

the rotational velocities of the inner and outer cylinders are scaled as uθA = εuθA1 and

uθB = εuθB1 respectively, and that the non-dimensional temperature difference is

τB = ε2τB2,

where uθA1, uθB1, τB2 are given. The asymptotic expansion in ε per se, can be computed

based on a splitting into interior Hilbert behaviour, together with boundary layers of

suction and Knudsen type (cf [AN2, AN5, BCN, BU, C1, GPS, GP, V]). That expansion

is of course not by itself a density solution of the Boltzmann equation, since it satisfies

the Boltzmann equation only up to some order - in our case ε4 - and may by its essentially

polynomial character become negative, whereas a real density should be everywhere pos-

itive. Also, mathematically interesting but not implied by the formal asymptotics, is in

what sense the leading order gas dynamics equations are limits of the kinetic ones. An

important problem is here a rigorous study of the rest term, using as ingoing boundary

values what remains of the boundary Maxwellians after the asymptotic expansion. To ob-

tain our bifurcation situation, we assume that the temperature and density are coupled

by

ωB =
ε2

1 + ε2τB2

(
r2
B − 1

r2
B

u2
θA1 − τB2 + ∆ε

)
,

where ∆ is a parameter. It then holds for the full solution f that

Theorem 3.2 [AN8]. Assume that (uθA1−uθB1rB)(3uθA1 +uθB1rB) > 0. Then there is

a negative ∆bif , such that for ∆ < ∆bif and 0 < ε small enough, there are two positive,

isolated non-negative L1-solutions f jε , j = 1, 2 of the Boltzmann equation in the two-rolls

domain (3.1), with Maxwellian indata (1.7), for which
∫
M−1 ess sup

r∈(rA,rB)

|f jε (r, v)|2dv < +∞.

The two solutions have different outward radial bulk velocities of order ε3. For fixed ε,

they converge to the same solution when ∆ increases to ∆bif . The solutions have rigorous

leading order hydrodynamic limits when ε→ 0.

The monograph I mentioned earlier by Sone [S] from Kyoto already contains this result

on the level of formal asymptotic expansions and numerics. It also resolves many other

situations besides this bifurcation for the two-rolls problem. In all those cases there is

a corresponding version of Theorem 3.2. In particular this proves rigorously the existence

in some cases even of three or more simultaneous positive solutions to the same stationary

boundary value problem for the two-rolls system.

P : Some of the stationary numerical results by the Kyoto group, were obtained as time

asymptotics of corresponding time-dependent problems. So here again comes the impor-



FLUID LIMITS 23

tant mathematical question, whether a time dependent solution really converges to a sta-

tionary one with time, when the temperature and pressure are varying over the boundary.

The three simultaneous stationary solutions we rigorously obtained, are a warning about

possible complications. Since stationary solutions are sometimes not unique in the non-

linear case, how is that coupled to the time-asymptotics?

The proof of Theorem 3.2 requires a study of the equation for the rest term R, to

which we now turn. R should be a solution to

vr
∂R

∂r
+

1

r
NR =

1

ε4
(L̃R+ 2J̃(R, χ̄ψ) + ε4J̃(R,R) + l), (3.2)

where

l =
1

ε4
(L̃(χ̄ψ) + J̃(χ̄ψ, χ̄ψ)− ε4D(χ̄ψ)),

J̃ is the rescaled quadratic Boltzmann collision operator,

J̃(Φ, ψ)(v)

:=
1

2

∫

R3×S2

B(v−v∗, ω)M(v∗)(Φ(v′)ψ(v′∗)+Φ(v′∗)ψ(v′)−Φ(v∗)ψ(v)−Φ(v)ψ(v∗))dv∗dω,

and L̃ is the operator J̃ linearized around the Maxwellian,

(L̃Φ)(v) :=
1

ε4

∫

R3×S2

B(v−v∗, ω)M(v∗)(Φ(v′)+Φ(v′∗)−Φ(v∗)−Φ(v))dv∗dω = K̃(Φ)−ν̃Φ.

Our a priori estimates for R that underlie the contraction mappings leading to Theorem

3.2, are uniform in ε, so the low order hydrodynamic limits can be established in a

mathematically rigorous way. Denoting the right hand side of the rest-term equation

(3.2) by L̃R+g
ε4 , Green’s formula gives that

−
∫

Ω×R3

MRL̃R ≤
∫

Ω×R3

MgR + ε4
∫

∂Ω+

MR2
b .

Since c
∫

Ω×R3 ν̃MR2
⊥ ≤ −

∫
Ω×R3 MRL̃R, and since g is essentially nonhydrodynamic, it

is actually enough to consider g = g⊥, and we may conclude that∫

Ω×R3

ν̃MR2
⊥ ≤ c

∫
Mg2 + ε4

∫

∂Ω+

MR2
b .

As for the hydrodynamic estimates, fairly exact computations are required, and here I

have to refer to our paper.

P : These techniques should also hold the key to resolving many other problems. Work is

in progress [AN10] on a similar study about the axially inhomogeneous Taylor Couette

problem of [SD1]. What can be done in this direction for the Bénard problem [SD2],

for multi-component gases [ATT], for ghost effects, for obtaining fluid bifurcations from

kinetic ones, etc.

I would like to end with a discussion of the positivity proof for our solutions of

asymptotic expansion type f = M(1 + ψ + εj0R). Start for positivity from the related

problem
v · 5xf = Q(f+, f+)−ML(M−1f−), (x, v) ∈ Ω× R3,

f = fb, on ∂Ω+,
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where f+ = max{f, 0} and f− = max{−f, 0}. Also for this equation there are solutions

which can be expanded as f = M(1 + χ̄
∑4

i=1 ε
iψi + ε4R), and solved like the previous

problem. Proving that f− = 0 will imply that the rest terms of the two expansions

coincide, and that the originally obtained solution f is nonnegative and isolated.

Theorem 3.3 [AN10]. Let Ω be a bounded set in R3, and fb a nonnegative function

defined on ∂Ω+. If a function f such that M−1f ∈ L̃∞(Ω× R3) satisfies

v · 5xf = Q(f+, f+)−ML(M−1f−), (x, v) ∈ Ω× R3,

f = fb, on ∂Ω+,

then f− = 0 and f = f+ solves the boundary value problem

v · 5xf = Q(f, f), Ω× R3,

f = fb, on ∂Ω+.

Proof of Theorem 3.3. The function F = M−1f satisfies

v · 5xF = J(F+, F+)− L(F−), F = M−1fb, on ∂Ω+.

Define J+ and J− by J(ϕ, ϕ) = J+(ϕ, ϕ)− J−(ϕ, ϕ), where

J+(ϕ, ϕ)(v) :=

∫
|v − v∗|βb(θ)M∗ϕ′ϕ′∗dv∗dω,

J−(ϕ, ϕ)(v) := ϕ(v)

∫
|v − v∗|βb(θ)M∗ϕ∗dv∗dω.

Also, F− satisfies

− v · 5xF− = χF− 6=0(J+(F+, F+)− L(F−)), (3.3)

F− = 0, on ∂Ω+.

Multiplying (3.3) by −MF−, integrating on Ω× R3 and using that

−
∫
MF−χF− 6=0L(F−)dv = −

∫
MF−L(F−)dv ≥ c

∫
Mν̃|(I − P0)F−|2dv,

implies that
∫

∂Ω−
|v · n|M(F−)2 + c

∫

Ω×R3

Mν̃|(I − P0)F−|2 ≤ −
∫
MF−χF− 6=0J

+(F+, F+) ≤ 0.

It follows that

F− = 0, on ∂Ω−, L(F−) = 0.

And so, F− satisfies

F− = 0, on ∂Ω− ∪ ∂Ω+, v · 5xF− ≤ 0.

This implies that F− is identically zero.
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