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Abstract. A kinetic collision operator of Landau type for Fermi-Dirac particles is considered.

Equilibrium states are rigorously determined under minimal assumptions on the distribution

function of the particles. The particular structure of the considered operator (strong non-linearity

and degeneracy) requires a special investigation compared to the classical Boltzmann or Landau

operator.

1. Introduction. The Landau or Landau-Fokker-Planck equation is a kinetic collision

model used to describe the evolution of charged particles in a plasma [2, 3, 4, 11]. When

quantum effects such as the Pauli exclusion principle come into play, this collision operator

has to be modified and leads to the so-called Landau-Fermi-Dirac (LFD) operator [4, 6,

11]. Besides, a Landau equation with Fermi statistics also arises in the modelling of stellar

systems [5, 9]. In this paper, we consider the LFD equation in the spatially homogeneous

case. It reads:

∂tf(t, v) = QL(f)(t, v), t ∈ R+, v ∈ R3, (1)

where

QL(f)(t, v) = ∇ ·
∫

Ψ(v − v∗)Π(v − v∗){f∗(1− f∗)∇f − f(1− f)∇f∗} dv∗, (2)

with f = f(t, v), f∗ = f(t, v∗), Π(z) denotes the orthogonal projection on (Rz)⊥,

Πi,j(z) = δi,j −
zizj
|z|2 , 1 ≤ i, j ≤ 3,
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and Ψ is a function such as Ψ(z) = |z|2+γ , −3 ≤ γ ≤ 1. Here as in the rest of this paper,

∇ denotes the gradient operator with respect to the v variable. The choice Ψ(z) = |z|2+γ

corresponds to inverse power law potentials. According to the value of γ, we distinguish

the Coulomb potential (γ = −3), soft potentials (−3 < γ < 0), the Maxwellian potential

(γ = 0) and hard potentials (0 < γ ≤ 1). We recall here that the Coulomb potential is

however the only one to have a physical relevance.

Equilibrium states and trend to equilibrium for the classical Boltzmann and Landau

equations have been considered in several papers, see [3, 7, 14, 15] for the Boltzmann

equation and [8, 16, 17] for the Landau equation, and the references therein. For the

Boltzmann-Fermi-Dirac (BFD) equation, Lu [12] has shown the existence of two classes

of equilibria, which are the class of Fermi-Dirac distributions and the class of characteris-

tic functions of the euclidean balls. Large time behaviour for the BFD equation has been

studied in [13]. To our knowledge, there are few works on the Landau-Fermi-Dirac equa-

tion ([6, 10, 1]). In particular, the determination of its equilibrium states have not been

yet considered at a rigorous level. We point out that the Pauli exclusion principle implies

that both a solution to the LFD and BFD equations must satisfy 0 ≤ f ≤ 1 as soon as

this is satisfied by the initial data. Similarly to the BFD equation, there should be two

classes of equilibria for the LFD equation, namely the class of Fermi-Dirac distributions

and a class of degenerated equilibria. Our purpose in this present work is to clarify this

claim. In particular, we rigorously determine the expressions of the equilibrium states (i.e.

the solutions to QL(f) = 0) under minimal and ‘natural’ assumption on the distribution

function f . The strong non-linearity in (2) (term f(1− f)) and its degeneracy for f ∼ 1

give rise to additional difficulties compared to the classical case and a special treatment

is required.

We now describe the contents of the paper. We set notations and state our main result

in the next section. The proof is given in Section 3.

2. Main results. The usual a priori estimates are available for (1)-(2). Indeed, one can

formally check that solutions preserve mass and energy, namely

∀t ≥ 0,

∫
f(t, v) dv =

∫
fin dv and

∫
f(t, v) |v|2 dv =

∫
fin |v|2 dv.

Moreover, considering the entropy for Fermi-Dirac particles defined by

S(f) = −
∫

[f ln f + (1− f) ln(1− f)] dv ≥ 0,

one can see, still formally, that t 7−→ S(f)(t) is a non-decreasing function. More generally,

the dissipation term reads
∫
QL(f)[ln(1− f)− ln f ] dv =

1

2

∫∫
Π(v − v∗)|v − v∗|γ+2

(f∗(1− f∗)∇f − f(1− f)∇f∗)
( ∇f
f(1− f)

− ∇f∗
f∗(1− f∗)

)
dv∗ dv.

The conservation of mass and energy and the fact that the entropy is a non-decreasing

function have been rigorously proved in [1] for solutions to (1)-(2) with 0 ≤ γ ≤ 1.
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Equilibrium states are usually defined thanks to the cancellation of the dissipation

term. The problem here is to give a meaning to this expression. Noting that

2 ∇
[

Arctan

√
f

1− f

]
=

∇f√
f(1− f)

and that Π is a projector and thus satisfies Π = Π2, we infer that
∫
QL(f)[ln(1− f)− ln f ] dv

= 2

∫∫
|Π(v − v∗)|v − v∗|(2+γ)/2[g∗∇(p(f))− g∇∗(p(f∗))]|2 dv∗ dv,

where g =
√
f(1− f), p(f) = Arctan (

√
f/(1− f)) and ∇∗ denotes the gradient oper-

ator with respect to the v∗ variable.

If f is a measurable function satisfying 0 ≤ f ≤ 1 a.e. then p(f) belongs to L∞(R3).

Consequently, ∇p(f) ∈ D′(R3,R3). We may now define what we mean by equilibrium

states. We consider

Ω = {(v, v∗) ∈ (R3)2; v 6= v∗}.
Definition 1. A function f ∈ L1(R3) ∩ L∞(R3) is said to be an equilibrium state for

the LFD equation if it satisfies 0 ≤ f ≤ 1 a.e. and

Π(v − v∗)|v − v∗|(2+γ)/2[g∗∇(p(f))− g∇∗(p(f∗))] = 0, in D′(Ω,R3). (3)

Formally, if f is a smooth function that satisfies 0 ≤ f ≤ 1 a.e. and (3), then

f(v) =
ae−b|v−V0|2

1 + ae−b|v−V0|2 ,

with a, b > 0 and V0 ∈ R3. Our aim is to give a rigorous proof for this statement, under

’minimal’ assumptions for f .

Remark 2. Any function f ∈ L1(R3)∩L∞(R3) such that 0 ≤ f ≤ 1 a.e. and f(1−f) = 0

a.e. satisfies (3), that is, any characteristic function of a measurable set with a finite

measure is a solution to (3). We thus recover a class of degenerate equilibria as for the

BFD equation (see [12]). However, this new class strictly includes the one concerning the

BFD equation.

Owing to the previous remark, we restrict ourselves to the functions that satisfy (3)

and

meas({v ∈ R3; 0 < f(v) < 1}) 6= 0. (4)

Our main result is the following.

Theorem 3. The equilibrium states of the LFD equation satisfying (4) are the Fermi-

Dirac distributions, that is, the functions of the following form:

f(v) =
ae−b|v−V0|2

1 + ae−b|v−V0|2 ,

with V0 ∈ R3 and a, b > 0.
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3. Proof of Theorem 3. Let f ∈ L1(R3) ∩ L∞(R3) satisfying (3), (4) and 0 ≤ f ≤ 1

a.e. on R3. We set

T = g∗∇(p(f))− g∇∗(p(f∗)).
Then, (3) implies that

Π(v − v∗)T = 0 in D′(Ω,R3). (5)

Lemma 4. If (5) holds, there exists a real-valued distribution Λv,v∗ ∈ D′(Ω,R) such that

T = (v − v∗)Λv,v∗ , in D′(Ω,R3). (6)

Proof. The proof of this lemma is similar to that of the classical case [17]. Let ϕ ∈
D(Ω,R3). Since Π(z) is the orthogonal projection on (Rz)⊥,

ϕ(v, v∗) = λ(v, v∗)(v − v∗) + ζ(v, v∗),

with

ζ(v, v∗) = Π(v − v∗)ζ(v, v∗) = Π(v − v∗)ϕ(v, v∗),

λ(v, v∗) =
ϕ(v, v∗) · (v − v∗)
|v − v∗|2

.

Then,

〈T, ϕ(v, v∗) 〉 = 〈 (v − v∗) · T , λ(v, v∗) 〉+ 〈T , Π(v − v∗)ζ(v, v∗) 〉

= 〈(v − v∗) · T ,
ϕ(v, v∗) · (v − v∗)
|v − v∗|2

〉+ 〈Π(v − v∗)T, ζ(v, v∗) 〉,

where 〈 , 〉 denotes the dual product. Owing to (5), equation (6) holds for

Λv,v∗ =
(v − v∗) · T
|v − v∗|2

.

Lemma 5. Let P be a measurable set with a positive measure. Then, there exist distinct

points ui ∈ R3, i = 1, 2, 3 such that, for i = 1, 2, 3, we have

∀r > 0, meas(B(ui, r) ∩ P) > 0, (7)

where B(ui, r) denotes the ball with center ui and radius r of R3.

Moreover, there exist ri > 0, i = 1, 2, 3 such that

Bi ∩Bj = ∅, if i 6= j, (8)

where Bi := B(ui, ri), i = 1, 2, 3.

Proof.

Step 1. We first prove that there exists u1 ∈ R3 that satisfies (7). Suppose, contrary to our

claim, that for every w ∈ R3 there exists r(w) > 0 such that meas(B(w, r(w)) ∩ P) = 0.

Then, for n ∈ N,

B(0, n) ⊂
⋃

w∈B(0,n)

B(w, r(w)).

Since B(0, n) is relatively compact in R3, there exist some wi, i = 1, . . . , N , such that

B(0, n) ⊂
N⋃

i=1

B(wi, r(wi)).
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Hence,

meas(B(0, n) ∩ P) ≤
N∑

i=1

meas(B(wi, r(wi)) ∩ P) = 0

and meas(P) = limn→∞meas(B(0, n)∩P) = 0, which contradicts our assumption on P .

Consequently, there exists u1 ∈ R3 that satisfies (7).

Step 2. The function τ defined by τ(r) = meas(B(u1, r) ∩ P) is continuous and satisfies

τ(0) = 0 and limr→+∞ τ(r) = meas(P). Therefore, there exists r1 > 0 such that

meas(B(u1, 2 r1) ∩ P) ≤ meas(P)

4
. (9)

We set P1 := P\B(u1, 2r1). From (9) follows that meas(P1) ≥ 3 meas(P)/4 > 0.

Similarly to the first step, we infer that there exists u2 ∈ R3\B(u1, 2r1) such that

∀r > 0, meas(B(u2, r) ∩ P1) > 0.

Since P1 ⊂ P , u2 also satisfies (7). As previously, there exists r2 > 0 such that

meas(B(u2, 2 r2) ∩ P) ≤ meas(P)

4
.

We choose r2 := min(r2, d(u2, B(u1, r1))), where d(u2, B(u1, r1)) denotes the distance

between u2 and B(u1, r1).

We now set P2 := P\(B(u1, 2r1) ∪ B(u2, 2r2)). Then, meas(P2) ≥ meas(P)/2 > 0.

Similarly to the first step, it implies that there exists u3 ∈ R3\(B(u1, 2r1) ∪ B(u2, 2r2))

such that

∀r > 0, meas(B(u3, r) ∩ P2) > 0.

Since P2 ⊂ P , u3 satisfies (7). We set r3 := min(d(u3, B(u1, r1)), d(u3, B(u2, r2))).

Proposition 6. Let f ∈ L1(R3) ∩ L∞(R3) satisfying 0 ≤ f ≤ 1 a.e., (4) and (5). Then

f ∈ C∞(R3,R) and p(f) ∈ C∞(R3,R).

Proof. We consider

U = {(v1, v2, v3) ∈ (R3)3 ; v1 6= v2, v1 6= v3, v2 6= v3},
and for (v1, v2, v3) ∈ U , we set fi = f(vi), gi =

√
fi(1− fi) and Λi,j = Λvi,vj , i, j = 1, 2, 3.

We deduce from Lemma 4 that

g2 g3∇p(f1)− g1 g3∇p(f2) = (v1 − v2)g3Λ1,2,

g3 g1∇p(f2)− g2 g1∇p(f3) = (v2 − v3)g1Λ2,3,

g1 g2∇p(f3)− g3 g2∇p(f1) = (v3 − v1)g2Λ3,1,

in D′(U,R3). Summing these three equations leads to

0 = (v1 − v2)g3Λ1,2 + (v2 − v3)g1Λ2,3 + (v3 − v1)g2Λ3,1, in D′(U,R3).

Since v3 − v1 = v3 − v2 + v2 − v1, we get

(v1 − v2)[g3Λ1,2 − Λ3,1g2] + (v2 − v3)[g1Λ2,3 − g2Λ3,1] = 0, in D′(U,R3). (10)
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For (v1, v2, v3) ∈ (R3)3, we set V = (v1− v2)|v2− v3|2−
[
(v1− v2) · (v2− v3)

]
(v2− v3)

and

d(v1 − v2, v2 − v3) = V · (v1 − v2)

= |v1 − v2|2|v2 − v3|2 −
[
(v1 − v2) · (v2 − v3)

]2
.

Easy calculations lead to the following properties of d:

Lemma 7. For every (v1, v2, v3) ∈ (R3)3, the function d satisfies

• d(v1 − v2, v2 − v3) = d(v1 − v2, v1 − v3) = d(v1 − v3, v1 − v2),

• d(v1 − v2, v2 − v3) ≥ 0,

• d(v1 − v2, v2 − v3) = 0 ⇐⇒ v1 − v2 and v2 − v3 colinear,

⇐⇒ v1, v2 and v3 are aligned points in R3.

In particular, if v1 6= v2, meas {v3 ∈ R3; d(v1 − v2, v2 − v3) = 0} = 0.

Taking test functions of the form V ϕ with ϕ ∈ D(U,R) in (10), we deduce from

V · (v2 − v3) = 0 that

d(v1 − v2, v2 − v3)[Λ1,2g3 − Λ3,1g2] = 0, in D′(U,R). (11)

We set P :=
{
v ∈ R3

/
f(v)(1−f(v)) > 0

}
. By (4) and Lemma 5, there exists ui ∈ R3 and

ri > 0, i = 1, 2, 3 such that (7) and (8) hold. We first show that f ∈ C∞(R3\B3,R) and

p(f) ∈ C∞(R3\B3,R). For i = 1, 2, 3, there exists a nonnegative function ψi ∈ D(R3,R)

such that

B

(
ui,

ri
2

)
⊂ supp (ψi) ⊂ Bi. (12)

By (7) and the definition of P , we have
∫
g3ψ3(v3) dv3 > 0. Owing to Lemma 7,

∫
d(v1 − v2, v2 − v3)g3ψ3(v3) dv3 > 0, ∀(v1, v2) ∈ Ω.

Moreover, the function

(v1, v2) 7→
∫
d(v1 − v2, v2 − v3)g3ψ3(v3) dv3

belongs to C∞(Ω,R). Taking test functions of the form (v1 − v2) · ϕ(v1, v2)ψ3(v3) with

ϕ ∈ D(Ω\(B3)2,R3) in (11) leads to

g1∇p(f2)− g2∇p(f1) = (v1 − v2)Gv1
(v2) g2 in D′(Ω\(B3)2,R3), (13)

where

Gv1
(v2) =

〈d(v1 − v2, v2 − v3)Λ3,1, ψ3(v3)〉v3∫
d(v1 − v2, v2 − v3)g3ψ3(v3) dv3

.

We denote here by 〈, 〉v3
the dual product with respect to the v3 variable. By (7), (12)

and the definition of P , we have
∫
g1 ψ1(v1) dv1 > 0. Thus, taking test functions of the

form θ(v2)ψ1(v1) with θ ∈ D(R3\(B1 ∪B3),R3) in (13), we get

∇p(f2) = ξ(v2) g2 in D′(R3\(B1 ∪B3),R3), (14)

where the function ξ is defined on R3\(B1 ∪B3) by

ξ(v2) =
1

〈g1, ψ1(v1)〉v1

[〈∇p(f1), ψ1(v1)〉v1
+ 〈(v1 − v2)Gv1

(v2), ψ1(v1)〉v1
].
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Since ξ ∈ C∞(R3\(B1 ∪B3),R) and g ∈ L∞(R3), we deduce that p(f) ∈W 1,∞
loc (R3\(B1∪

B3),R). From Sobolev embeddings follows that p(f) ∈ C(R3\(B1 ∪ B3),R). We now

consider h =
√
f/(1− f). Since p(f) = Arctan(h), we deduce that h ∈ C(R3\(B1 ∪

B3),R). Moreover, (14) reads

∇ (Arctan(h)) = ξ
h

1 + h2
in D′(R3\(B1 ∪B3),R3).

Consequently, Arctan(h) ∈ C1(R3\(B1 ∪B3),R) and h ∈ C1(R3\(B1 ∪B3),R). By boot-

strap, it follows that h ∈ C∞(R3\(B1 ∪B3),R). Thus,

f ∈ C∞(R3\(B1 ∪B3),R) and p(f) ∈ C∞(R3\(B1 ∪B3),R).

The same calculations with ψ2 instead of ψ1 lead to f ∈ C∞(R3\(B2 ∪ B3),R) and

p(f) ∈ C∞(R3\(B2 ∪ B3),R). From (8) follows that f ∈ C∞(R3\B3,R) and p(f) ∈
C∞(R3\B3,R). The same proof with B2 instead of B3 implies that f ∈ C∞(R3\B2,R)

and p(f) ∈ C∞(R3\B2,R). By (8), the proof of Proposition 6 is now complete.

Proof of Theorem 3. Owing to Proposition 6, T ∈ C∞((R3)2,R3). We define the real

function Λ by

Λ(v, v∗) =

{
(v − v∗) · T/|v − v∗|2 if v 6= v∗

0 else.

Then, it follows from Lemma 4 that

T = (v − v∗)Λ(v, v∗), in D′(Ω,R3).

Since T and Λ belong respectively to C∞((R3)2,R3) and C∞(Ω,R), this equality holds in

fact a.e. on (R3)2. Therefore,

g3 g2∇p(f1)− g3 g1∇p(f2) = (v1 − v2)Λ(v1, v2) g3,

g1 g3∇p(f2)− g1 g2∇p(f3) = (v2 − v3)Λ(v2, v3) g1, a.e. on (R3)3.

g2 g1∇p(f3)− g2 g3∇p(f1) = (v3 − v1)Λ(v3, v1) g2,

As previously, we deduce that

(v1 − v2)Λ(v1, v2)g3 + (v2 − v3)Λ(v2, v3)g1 + (v3 − v1)Λ(v3, v1)g2 = 0,

a.e. on (R3)3. Consequently, multiplying by v2 × v3 leads to

det(v1, v2, v3)
[
Λ(v1, v2)g3 − Λ(v3, v1)g2

]
= 0 a.e. on (R3)3.

Since meas
{

(v1, v2, v3) ∈ (R3)3; det(v1, v2, v3) = 0
}

= 0, we get

Λ(v1, v2)g3 − Λ(v3, v1)g2 = 0 a.e. on (R3)3.

Let θ be a nonnegative function from D(R3,R) such that
∫
R3 g2 θ(v2) dv2 > 0. Then,

Λ(v3, v1) = µ1 g3. By symmetry, we deduce that

Λ(v3, v1) = λ g1 g3 a.e. on (R3)2,

with λ ∈ R. From (4) and Proposition 6 follows the existence of u0 ∈ R3 and r > 0 such

that f(1− f) > 0 on B(u0, r). Therefore,

f∗(1− f∗)∇f − f(1− f)∇f∗ = λ ff∗(1− f)(1− f∗) (v − v∗), a.e. on (B(u0, r))
2.
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Let ψ be a nonnegative function from D(B(u0, r),R). Then,
∫
R3 f∗(1−f∗)ψ(v∗) dv∗ >

0. We set, if λ 6= 0,

λV0 =
1∫

R3 f∗ (1− f∗)ψ(v∗) dv∗
[−〈∇f∗ , ψ(v∗)〉+ λ〈f∗(1− f∗)v∗, ψ(v∗)〉] ∈ R3.

Then,

∇f = λ f (1− f) (v − V0), a.e. on B(u0, r).

Since f(1− f) > 0 on B(u0, r), we have

∇
[√

f

1− f e
−λ |v−V0|2

4

]
= 0, on B(u0, r).

Hence,

f(v) =
Ceλ

|v−V0|2
2

1 + Ceλ
|v−V0|2

2

on B(u0, r), (15)

where λ < 0 because f ∈ L1(R3). Owing to Proposition 6, we deduce that (15) holds on

R3. Similar calculations for λ = 0 lead to a nonintegrable function.
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