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Abstract. The existence of a one-parameter family of stationary solutions to a fragmentation

equation with size diffusion is established. The proof combines a fixed point argument and

compactness techniques.

1. Introduction. We study the existence and uniqueness of stationary solutions to a

model of particle growth in which the size of the particles is altered by diffusion and

fragmentation. A typical situation where there is an interplay between these two mech-

anisms is the growth of ice crystals: indeed, ice crystals grow or shrink in a way which

looks like diffusion and are subjected to stresses which could lead to fragmentation [6].

An interesting feature of such a model is that diffusion and fragmentation have somehow

opposite effects on the size distribution of the particles: while the fragmentation mecha-

nism “moves” the size distribution towards small sizes, the diffusion mechanism “pushes”

the size distribution towards large sizes. Owing to this competition, one might expect a

balance to occur between these two effects leading to stationary size distributions. The

existence of steady states has been observed in [6] in a particular case and the aim of this

paper is to identify a class of data for which steady states exist.

From a mathematical viewpoint, the fragmentation equation with size diffusion de-

scribes the evolution of the size distribution function f(t, x) ≥ 0 of particles of size

x ∈ (0,∞) at time t ≥ 0 and reads

∂tf(t, x)−D∂2
xf(t, x) = −a(x) f(t, x) +

∫ ∞

x

a(x∗) b(x, x∗) f(t, x∗) dx∗.(1)
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Here, D > 0 is the diffusion coefficient which is assumed to be a positive constant, a is

the fragmentation rate and b the daughter size distribution. In the absence of diffusion,

the equation (1) is the well-known fragmentation equation with multiple fragmentation

[7, 11] which has been studied extensively. We refer to [4, 7, 9, 12] (and the references

therein) for the computation of explicit solutions and to [1, 3, 5, 7, 8, 10, 11] (and the

references therein) for analytical studies relying on either a deterministic or a stochastic

approach. When size diffusion is taken into account, the solution to (1) has been computed

explicitly in [6] when a(x) = x, b(x, x∗) = 2, the equation (1) being supplemented by the

homogeneous Dirichlet boundary condition f(t, 0) = 0 and the requirement that f decays

to zero at infinity. These boundary conditions and the choice of b ensure that there is no

exchange of matter between the system of particles and the outer medium, that is,
∫ ∞

0

x f(t, x) dx = const.(2)

through time evolution provided this quantity is initially finite. In addition, a one-

parameter family of stationary solutions is exhibited in that case, and our purpose is

to extend this result to a larger class of data a and b.

We thus consider the boundary-value problem

−∂2
xf(x) = −a(x) f(x) +

∫ ∞

x

a(x∗) b(x, x∗) f(x∗) dx∗, x ∈ (0,∞),(3)

f(0) = 0,(4)

where we have taken D = 1 for simplicity. We assume that the fragmentation rate a and

the daughter distribution function b fulfil the following conditions:

a(x) = xα, x ∈ (0,∞), α ≥ 0,(5)

b is measurable and b > 0 a.e.,(6) ∫ x

0

x∗ b(x∗, x) dx∗ = x, x ∈ (0,∞),(7)

and, for each β ≥ 0, there is a positive constant Bβ such that
∫ x

0

xβ∗ b(x∗, x) dx∗ ≤ Bβ xβ , x ∈ (0,∞),(8)

with the additional requirement that

Bβ < 1 when β > 1.(9)

A typical example of daughter distribution function b satisfying (6)-(9) is

b(x∗, x) = (ν + 2)xν∗ x
−ν−1, 0 < x∗ < x,(10)

for ν > −1 (with Bβ = (ν + 2)/(β + ν + 1)) [9]. Observe that the case studied in [6]

corresponds to the choice α = 1 in (6) and ν = 0 in (10).

We may now state our main result.

Theorem 1. Assume that a and b fulfil the conditions (6)-(9). Given % ∈ [0,∞), there

is a unique non-negative solution

f% ∈W 1,1
0 (0,∞) ∩W 2,1(0,∞) ∩ L1(0,∞;x1+α dx)
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to (3), (4) satisfying ∫ ∞

0

x f%(x) dx = %.(11)

In addition, f% ∈ L1(0,∞;xβ dx) for each β ≥ 0.

Since (3), (4) is a linear boundary-value problem, we obviously have f% = % f1 for

% ≥ 0. We will thus only consider the case % = 1 in the sequel.

Observe that, under the assumptions (6)-(9), the boundary-value problem (3), (4)

has a solution with a fast decay at infinity. Such a property is expected since the as-

sumptions on a and b are somehow reminiscent of the strong fragmentation assumption

which is used in the study of coagulation-fragmentation equations with binary fragmen-

tation [2, 5]. More precisely, under the strong fragmentation assumption, it is known that

the L1(0,∞;xβ dx)-norm of solutions to coagulation-fragmentation equations becomes

instantaneously finite for positive times for every β > 1 [2, 5].

Remark 2. Let us point out that the conservation of matter (2) discussed previously may

fail for the fragmentation equation (1) without diffusion (D = 0) [9]. This phenomenon

is the so-called “shattering” transition and corresponds to the appearance of dust (i.e.

particles of size zero). It however only occurs when a is singular for x = 0 (typically

a(x) = xα with α < 0) and is thus excluded from our analysis. We refer to [1, 4, 7, 8, 9]

for a more detailed account on the “shattering” transition.

Owing to the unboundedness of a and b, the proof of Theorem 1 is split in two parts: we

first consider a “truncated” boundary-value problem on a bounded interval (0, N), N ≥ 1,

for which we establish an existence result by the Schauder fixed point theorem. The second

step is to deduce from (8) and (9) a bound in L1(0, N ;xβ dx) which is independent on

N . A compactness argument then allows us to complete the existence part of Theorem 1.

The uniqueness part of Theorem 1 relies on the contractivity properties in L1(0,∞;x dx)

of the fragmentation and diffusive terms.

2. A truncated boundary-value problem. Let N ≥ 1 be a fixed integer. In this

section, we use the Schauder fixed point theorem to show the existence of a non-negative

solution f to

−∂2
xf(x) = −a(x) f(x) +

∫ N

x

a(x∗) b(x, x∗) f(x∗) dx∗, x ∈ (0, N),(12)

f(0) = N ∂xf(N)− f(N) = 0,(13)

such that ∫ N

0

x f(x) dx = 1.(14)

Proposition 3. There is a unique non-negative solution f ∈ W 2,1(0, N) to (12), (13)

which satisfies (14).

Proof. (a) Uniqueness. Let f and f̂ be two non-negative solutions in W 2,1(0, N) to (12),

(13) which fulfil (14), and put F = f − f̂ . Then F ∈W 2,1(0, N) is also a solution to (12),
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(13) and satisfies ∫ N

0

xF (x) dx = 0.(15)

We put σ(x) = sign (F (x)), x ∈ (0, N). On the one hand, we infer from the Kato

inequality and (13) that

−
∫ N

0

xσ(x) ∂2
xF (x) dx ≤ −N σ(N) ∂xF (N) + |F (N)| − |F (0)| = 0.

On the other hand, (7) and the Fubini theorem yield
∫ N

0

xσ(x) (−a(x)F (x) +

∫ N

x

a(x∗) b(x, x∗)F (x∗) dx∗) dx

= −
∫ N

0

x a(x) |F (x)| dx+

∫ N

0

a(x)F (x)

∫ x

0

x∗ b(x∗, x)σ(x∗) dx∗dx

= −
∫ N

0

a(x) |F (x)|
∫ x

0

x∗ b(x∗, x) (1− σ(x)σ(x∗)) dx∗dx.

We now multiply (12) for F by xσ(x), integrate over (0, N) and use the previous two

inequalities to conclude that
∫ N

0

a(x) |F (x)|
∫ x

0

x∗ b(x∗, x) (1− σ(x)σ(x∗)) dx∗dx ≤ 0.

Since σ(x)σ(x∗) ≤ 1, the positivity of a and b entail that

|F (x)| (1− σ(x)σ(x∗)) 1(0,x)(x∗) = 0 a.e. in (0, N)× (0, N).(16)

Introducing

Pk =

{
x ∈ (0, N), F (x) ≥ 1

k

}
for k ≥ 1 and P =

⋃

k≥1

Pk,

Nk =

{
x ∈ (0, N), F (x) ≤ − 1

k

}
for k ≥ 1 and N =

⋃

k≥1

Nk,

we deduce from (16) that

2

k
|Pk| |Nk| =

2

k

∫ N

0

∫ x

0

1Pk(x) 1Nk(x∗) dx∗dx

+
2

k

∫ N

0

∫ x∗

0

1Pk(x) 1Nk(x∗) dx∗dx

=
1

k

∫ N

0

∫ x

0

1Pk(x) 1Nk(x∗) (1− σ(x)σ(x∗)) dx∗dx

+
1

k

∫ N

0

∫ x∗

0

1Pk(x) 1Nk(x∗) (1− σ(x)σ(x∗)) dx∗dx

≤
∫ N

0

∫ x

0

|F (x)| (1− σ(x)σ(x∗)) dx∗dx

+

∫ N

0

∫ x∗

0

|F (x∗)| (1− σ(x)σ(x∗)) dx∗dx

≤ 0.
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Consequently, |Pk| |Nk| = 0 for every k ≥ 1 and letting k → ∞ entail that |P| |N | = 0.

We have thus shown that either F ≥ 0 a.e. or F ≤ 0 a.e., which, together with (15),

implies that F = 0 and completes the uniqueness proof.

(b) Existence. We put ω = Nα/2 = ‖a‖1/2L∞(0,N). For g ∈ L1(0, N), we denote by ug

the unique solution in W 2,1(0, N) to the boundary-value problem

−∂2
xug + ω2 ug = g, x ∈ (0, N),(17)

ug(0) = N ∂xug(N)− ug(N) = 0.(18)

We recall that ug is given by

ug(x) =

(
λ−

∫ x

0

e−ωx∗ g(x∗) dx∗

)
eωx

2ω
−
(
λ−

∫ x

0

eωx∗ g(x∗) dx∗

)
e−ωx

2ω

with

λ = ϑ

∫ N

0

e−ωx∗ g(x∗) dx∗ + (1− ϑ)

∫ N

0

eωx∗ g(x∗) dx∗,

ϑ =
N ω − 1

N ω − 1 + (N ω + 1) e−2ωN
.

In particular, there is a constant ΓN depending on N such that

‖ug‖W 1,∞(0,N) ≤ ΓN ‖g‖L1(0,N).(19)

Next, for f ∈ L1(0, N), we define

L(f)(x) = (ω2 − a(x)) f(x) +

∫ N

x

a(x∗) b(x, x∗) f(x∗) dx∗, x ∈ (0, N).

Owing to the choice of ω, we have L(f) ≥ 0 whenever f ≥ 0 and straightforward compu-

tations, (7) and (8) yield
∫ N

0

xL(f)(x) dx = ω2

∫ N

0

x f(x) dx,(20)

‖L(f)‖L1(0,N) ≤ ω2 (2 +B0) ‖f‖L1(0,N).(21)

We finally introduce the set

C =

{
f ∈ L1(0, N), f ≥ 0,

∫ N

0

x f(x) dx = 1, ‖f‖L1(0,N) ≤ R?
}
,

with

R? = N ω2 +
N

2
(3 + ω2),

which is a bounded closed and convex subset of L1(0, N). For f ∈ C, we define Λ(f) =

uL(f) and first check that Λ(f) also belongs to C. Indeed, it is clear that uL(f) ∈
W 2,1(0, N) ⊂ L1(0, N). Next, since f ≥ 0, we have also L(f) ≥ 0 and the maximum

principle implies that uL(f) ≥ 0. It also readily follows from (17), (18) and (20) that

∫ N

0

xuL(f)(x) dx = 1.(22)
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Now, we multiply (17) for Λ(f) by x3, integrate over (0, N) and use (7), (18) and (22) to

obtain

−N3 ∂xΛ(f)(N) + 3N2 Λ(f)(N)− 6

∫ N

0

xΛ(f)(x) dx+ ω2

∫ N

0

x3 Λ(f)(x) dx

=

∫ N

0

x3 (ω2 − a(x)) f(x) dx+

∫ N

0

a(x∗) f(x∗)
∫ x∗

0

x3 b(x, x∗) dxdx∗

2N2 Λ(f)(N)− 6 ≤ ω2

∫ N

0

x3 f(x) dx+N2

∫ N

0

a(x∗) f(x∗)x∗ dx∗

≤ N2 ω2

∫ N

0

x f(x) dx+N2 ω2

∫ N

0

x f(x) dx

≤ 2N2 ω2,

whence

Λ(f)(N) ≤ 3 + ω2.(23)

We then multiply (17) for Λ(f) by x2, integrate over (0, N) and use (18) and the non-

negativity of f , a and b to obtain

N Λ(f)(N)− 2

∫ N

0

Λ(f)(x) dx+ ω2

∫ N

0

x2 Λ(f)(x) dx ≥ −
∫ N

0

x2 a(x) f(x) dx

N Λ(f)(N) + ω2

∫ N

0

x2 Λ(f)(x) dx+

∫ N

0

x2 a(x) f(x) dx ≥ 2

∫ N

0

Λ(f)(x) dx,

whence, thanks to (22) and (23),

2

∫ N

0

Λ(f)(x) dx ≤ N (3 + ω2) +N ω2 +N ω2 = 2R?.

Consequently, Λ maps C into itself. In addition, we infer from (19) and (21) that, for

f ∈ C and f̂ ∈ C, we have

‖uL(f)−uL(f̂)‖L1(0,N) = ‖uL(f)−L(f̂)‖L1(0,N) = ‖uL(f−f̂)‖L1(0,N) ≤ C(N) ‖f − f̂‖L1(0,N).

Therefore, Λ maps continuously C into itself and Λ(C) is compact in L1(0, N) by the

compactness of the embedding of W 1,∞(0, N) in L1(0, N). We are then in a position to

employ the Schauder fixed point theorem and conclude that there exists f ∈ C such that

Λ(f) = f . In other words, f satisfies (13) and (14), and

−∂2
xf(x) + ω2 f(x) = (ω2 − a(x)) f(x) +

∫ N

x

a(x∗) b(x, x∗) f(x∗) dx∗

for x ∈ (0, N), i.e. f satisfies (12).

3. Proof of Theorem 1. For N ≥ 1, we denote by fN the solution to (12), (13)

satisfying (14) given by Proposition 3, and we still denote by fN its extension by zero to

(0,∞). In particular, we have

fN ≥ 0,

∫ ∞

0

x fN (x) dx = 1.(24)
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Lemma 4. For each β ≥ 3, there is a constant Cβ depending only on α and β such that

Nβ−1 fN (N) +

∫ N

0

xα+β fN (x) dx ≤ Cβ .(25)

There is a positive constant C0 depending only on α such that
∫ N

0

fN (x) dx ≤ C0.(26)

Proof. We multiply (12) by xβ , integrate over (0, N) and use (8), (9) and (13) to obtain

−Nβ ∂xfN (N) + β Nβ−1 fN (N)− β (β − 1)

∫ N

0

xβ−2 fN (x) dx

=

∫ N

0

a(x) fN (x)

∫ x

0

xβ∗ b(x∗, x) dx∗dx−
∫ N

0

a(x)xβ fN (x) dx,

(β − 1)Nβ−1 fN (N)− β (β − 1)

∫ N

0

xβ−2 fN (x) dx ≤ (Bβ − 1)

∫ N

0

a(x)xβ fN (x) dx,

(27) Nβ−1 fN (N) + (1−Bβ)

∫ N

0

xα+β fN (x) dx ≤ β (β − 1)

∫ N

0

xβ−2 fN (x) dx.

Since β ≥ 3, the Young inequality and (24) ensure that there is a positive constant Cβ
depending on α and β such that

∫ N

0

xβ−2 fN (x) dx ≤ 1−Bβ
2

∫ N

0

xα+β fN (x) dx+ Cβ

∫ N

0

x fN (x) dx

≤ 1−Bβ
2

∫ N

0

xα+β fN (x) dx+ Cβ .

Combining (27) and the previous estimate yields (25).

We next multiply (12) by x2, integrate over (0, N) and use the non-negativity of fN ,

a and b to obtain

N fN (N)− 2

∫ N

0

fN (x) dx ≥ −
∫ N

0

x2+α fN (x) dx.

It then follows from (24), (25) and the Hölder inequality that

2

∫ N

0

fN (x) dx ≤ C3

N
+ C

(α+1)/(α+2)
3 ,

which completes the proof of Lemma 4.

Remark 5. We point out here that Lemma 4 illustrates the opposite effects of the frag-

mentation and diffusion on the size distribution. Indeed, on the one hand, the bound (25)

on moments of fN of high order results from the assumptions on the fragmentation and

prevents the diffusion to expand the size distribution to the right. On the other hand,

the L1-bound (26) follows from the diffusive term and shows that diffusion prevents the

concentration of the size distribution near x = 0.

Lemma 6. There is a constant C depending only on α such that

‖fN‖W 1,∞(0,N) ≤ C.(28)
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Proof. It follows from (12) and (13) that, for x ∈ (0, N),

∂xfN (x) = ∂xfN (N)−
∫ N

x

∂2
xfN (x′) dx′

=
fN (N)

N
−
∫ N

x

a(x′) fN (x′) dx′ +
∫ N

x

∫ N

x′
a(x∗) b(x

′, x∗) fN (x∗) dx∗dx
′.

Since α ≥ 0, we infer from (8), (25), (26) and the Hölder inequality that

|∂xfN (x)| = fN (N)

N
+

∫ N

0

a(x) fN (x) dx+

∫ N

0

a(x∗) fN (x∗)
∫ x∗

0

b(x, x∗) dxdx∗(29)

≤ C3

N3
+ (1 +B0)

∫ N

0

xα fN (x) dx

≤ C3 + (1 +B0) ‖fN‖3/(α+3)
L1(0,N)

(∫ N

0

xα+3 fN (x) dx

)α/(α+3)

,

|∂xfN (x)| ≤ C.

Now, since

0 ≤ fN (x) =

∫ x

0

∂xfN (x∗) dx∗

by (13), Lemma 6 readily follows from (29).

Proof of Theorem 1. It readily follows from (25), (28) and the Vitali theorem that (fN ) is

relatively compact in L1(0,∞;xβ dx) for each β ≥ 0, while (28) and the Ascoli theorem

entail the relative compactness of (fN ) in C([0, R]) for each R > 0. Consequently, there

are a subsequence of (fN ) (not relabeled) and

f ∈ C([0,∞)) ∩
⋂

β≥0

L1(0,∞;xβ dx)

such that (fN ) converges towards f uniformly on compact subsets of [0,∞) and

lim
N→∞

∫ ∞

0

xβ |fN (x)− f(x)| dx = 0(30)

for each β ≥ 0. In particular, f is non-negative. Also, (30) allows us to let N → ∞ in

(24) and obtain that ∫ ∞

0

x f(x) dx = 1.

In addition, we may pass to the limit as N → ∞ in (12) and (13) and use classical

arguments to conclude that f ∈W 2,1(0,∞) ∩W 1,1
0 (0,∞) is a solution to (3), (4).

Finally, owing to the integrability properties required in Theorem 1, the proof of the

uniqueness part of Theorem 1 is similar to that of Proposition 3.
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