NONLOCAL ELLIPTIC AND PARABOLIC PROBLEMS BANACH CENTER PUBLICATIONS, VOLUME 66 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2004

STEADY STATES FOR A FRAGMENTATION EQUATION WITH SIZE DIFFUSION

PHILIPPE LAURENÇOT

Mathématiques pour l'Industrie et la Physique, CNRS UMR 5640 Université Paul Sabatier – Toulouse 3 118 route de Narbonne F-31062 Toulouse Cedex 4, France E-mail: laurenco@mip.ups-tlse.fr

Abstract. The existence of a one-parameter family of stationary solutions to a fragmentation equation with size diffusion is established. The proof combines a fixed point argument and compactness techniques.

1. Introduction. We study the existence and uniqueness of stationary solutions to a model of particle growth in which the size of the particles is altered by diffusion and fragmentation. A typical situation where there is an interplay between these two mechanisms is the growth of ice crystals: indeed, ice crystals grow or shrink in a way which looks like diffusion and are subjected to stresses which could lead to fragmentation [6]. An interesting feature of such a model is that diffusion and fragmentation have somehow opposite effects on the size distribution of the particles: while the fragmentation mechanism "moves" the size distribution towards small sizes, the diffusion mechanism "pushes" the size distribution towards large sizes. Owing to this competition, one might expect a balance to occur between these two effects leading to stationary size distributions. The existence of steady states has been observed in [6] in a particular case and the aim of this paper is to identify a class of data for which steady states exist.

From a mathematical viewpoint, the fragmentation equation with size diffusion describes the evolution of the size distribution function $f(t, x) \ge 0$ of particles of size $x \in (0, \infty)$ at time $t \ge 0$ and reads

(1)
$$\partial_t f(t,x) - D \,\partial_x^2 f(t,x) = -a(x) \,f(t,x) + \int_x^\infty a(x_*) \,b(x,x_*) \,f(t,x_*) \,dx_*.$$

2000 Mathematics Subject Classification: Primary 45J05.

Key words and phrases: fragmentation, diffusion, stationary solution.

The paper is in final form and no version of it will be published elsewhere.

Here, D > 0 is the diffusion coefficient which is assumed to be a positive constant, a is the fragmentation rate and b the daughter size distribution. In the absence of diffusion, the equation (1) is the well-known fragmentation equation with multiple fragmentation [7, 11] which has been studied extensively. We refer to [4, 7, 9, 12] (and the references therein) for the computation of explicit solutions and to [1, 3, 5, 7, 8, 10, 11] (and the references therein) for analytical studies relying on either a deterministic or a stochastic approach. When size diffusion is taken into account, the solution to (1) has been computed explicitly in [6] when a(x) = x, $b(x, x_*) = 2$, the equation (1) being supplemented by the homogeneous Dirichlet boundary condition f(t, 0) = 0 and the requirement that f decays to zero at infinity. These boundary conditions and the choice of b ensure that there is no exchange of matter between the system of particles and the outer medium, that is,

(2)
$$\int_0^\infty x f(t,x) \, dx = \text{ const.}$$

through time evolution provided this quantity is initially finite. In addition, a oneparameter family of stationary solutions is exhibited in that case, and our purpose is to extend this result to a larger class of data a and b.

We thus consider the boundary-value problem

(3)
$$-\partial_x^2 f(x) = -a(x) f(x) + \int_x^\infty a(x_*) b(x, x_*) f(x_*) dx_*, \quad x \in (0, \infty),$$

$$(4) f(0) = 0,$$

where we have taken D = 1 for simplicity. We assume that the fragmentation rate a and the daughter distribution function b fulfil the following conditions:

(5)
$$a(x) = x^{\alpha}, \quad x \in (0, \infty), \quad \alpha \ge 0,$$

(6)
$$b$$
 is measurable and $b > 0$ a.e.,

(7)
$$\int_0^x x_* b(x_*, x) \, dx_* = x, \quad x \in (0, \infty),$$

and, for each $\beta \geq 0$, there is a positive constant B_{β} such that

(8)
$$\int_0^x x_*^\beta b(x_*, x) \, dx_* \le B_\beta \, x^\beta, \quad x \in (0, \infty),$$

with the additional requirement that

(9)
$$B_{\beta} < 1 \text{ when } \beta > 1.$$

A typical example of daughter distribution function b satisfying (6)-(9) is

(10)
$$b(x_*, x) = (\nu + 2) x_*^{\nu} x^{-\nu - 1}, \quad 0 < x_* < x,$$

for $\nu > -1$ (with $B_{\beta} = (\nu + 2)/(\beta + \nu + 1)$) [9]. Observe that the case studied in [6] corresponds to the choice $\alpha = 1$ in (6) and $\nu = 0$ in (10).

We may now state our main result.

THEOREM 1. Assume that a and b fulfil the conditions (6)-(9). Given $\rho \in [0, \infty)$, there is a unique non-negative solution

$$f_{\varrho} \in W_0^{1,1}(0,\infty) \cap W^{2,1}(0,\infty) \cap L^1(0,\infty;x^{1+\alpha}\,dx)$$

to (3), (4) satisfying

(11)
$$\int_0^\infty x f_{\varrho}(x) \, dx = \varrho$$

In addition, $f_{\varrho} \in L^1(0,\infty; x^{\beta} dx)$ for each $\beta \ge 0$.

Since (3), (4) is a linear boundary-value problem, we obviously have $f_{\varrho} = \varrho f_1$ for $\varrho \ge 0$. We will thus only consider the case $\varrho = 1$ in the sequel.

Observe that, under the assumptions (6)-(9), the boundary-value problem (3), (4) has a solution with a fast decay at infinity. Such a property is expected since the assumptions on a and b are somehow reminiscent of the strong fragmentation assumption which is used in the study of coagulation-fragmentation equations with binary fragmentation [2, 5]. More precisely, under the strong fragmentation assumption, it is known that the $L^1(0, \infty; x^\beta dx)$ -norm of solutions to coagulation-fragmentation equations becomes instantaneously finite for positive times for every $\beta > 1$ [2, 5].

REMARK 2. Let us point out that the conservation of matter (2) discussed previously may fail for the fragmentation equation (1) without diffusion (D = 0) [9]. This phenomenon is the so-called "shattering" transition and corresponds to the appearance of dust (i.e. particles of size zero). It however only occurs when a is singular for x = 0 (typically $a(x) = x^{\alpha}$ with $\alpha < 0$) and is thus excluded from our analysis. We refer to [1, 4, 7, 8, 9] for a more detailed account on the "shattering" transition.

Owing to the unboundedness of a and b, the proof of Theorem 1 is split in two parts: we first consider a "truncated" boundary-value problem on a bounded interval $(0, N), N \ge 1$, for which we establish an existence result by the Schauder fixed point theorem. The second step is to deduce from (8) and (9) a bound in $L^1(0, N; x^\beta dx)$ which is independent on N. A compactness argument then allows us to complete the existence part of Theorem 1. The uniqueness part of Theorem 1 relies on the contractivity properties in $L^1(0, \infty; x dx)$ of the fragmentation and diffusive terms.

2. A truncated boundary-value problem. Let $N \ge 1$ be a fixed integer. In this section, we use the Schauder fixed point theorem to show the existence of a non-negative solution f to

(12)
$$-\partial_x^2 f(x) = -a(x) f(x) + \int_x^N a(x_*) b(x, x_*) f(x_*) dx_*, \quad x \in (0, N),$$

(13)
$$f(0) = N \partial_x f(N) - f(N) = 0$$

such that

(14)
$$\int_0^N x f(x) \, dx = 1$$

PROPOSITION 3. There is a unique non-negative solution $f \in W^{2,1}(0,N)$ to (12), (13) which satisfies (14).

Proof. (a) Uniqueness. Let f and \hat{f} be two non-negative solutions in $W^{2,1}(0, N)$ to (12), (13) which fulfil (14), and put $F = f - \hat{f}$. Then $F \in W^{2,1}(0, N)$ is also a solution to (12),

(13) and satisfies

(15)
$$\int_{0}^{N} x F(x) \, dx = 0.$$

We put $\sigma(x) = \text{sign } (F(x)), x \in (0, N)$. On the one hand, we infer from the Kato inequality and (13) that

$$-\int_0^N x\,\sigma(x)\,\partial_x^2 F(x)\,dx \le -N\,\sigma(N)\,\partial_x F(N) + |F(N)| - |F(0)| = 0.$$

On the other hand, (7) and the Fubini theorem yield

$$\int_{0}^{N} x \,\sigma(x) \left(-a(x) F(x) + \int_{x}^{N} a(x_{*}) b(x, x_{*}) F(x_{*}) \,dx_{*}\right) dx$$

= $-\int_{0}^{N} x \,a(x) |F(x)| \,dx + \int_{0}^{N} a(x) F(x) \int_{0}^{x} x_{*} \,b(x_{*}, x) \,\sigma(x_{*}) \,dx_{*} dx$
= $-\int_{0}^{N} a(x) |F(x)| \int_{0}^{x} x_{*} \,b(x_{*}, x) \left(1 - \sigma(x) \,\sigma(x_{*})\right) dx_{*} dx.$

We now multiply (12) for F by $x \sigma(x)$, integrate over (0, N) and use the previous two inequalities to conclude that

$$\int_{0}^{N} a(x) |F(x)| \int_{0}^{x} x_{*} b(x_{*}, x) (1 - \sigma(x) \sigma(x_{*})) dx_{*} dx \le 0.$$

Since $\sigma(x) \sigma(x_*) \leq 1$, the positivity of a and b entail that

(16)
$$|F(x)| (1 - \sigma(x) \sigma(x_*)) \mathbf{1}_{(0,x)}(x_*) = 0 \quad \text{a.e. in} \quad (0,N) \times (0,N).$$

Introducing

$$\mathcal{P}_{k} = \left\{ x \in (0, N), \quad F(x) \ge \frac{1}{k} \right\} \text{ for } k \ge 1 \text{ and } \mathcal{P} = \bigcup_{k \ge 1} \mathcal{P}_{k},$$
$$\mathcal{N}_{k} = \left\{ x \in (0, N), \quad F(x) \le -\frac{1}{k} \right\} \text{ for } k \ge 1 \text{ and } \mathcal{N} = \bigcup_{k \ge 1} \mathcal{N}_{k},$$

we deduce from (16) that

$$\begin{aligned} \frac{2}{k} |\mathcal{P}_k| & |\mathcal{N}_k| = \frac{2}{k} \int_0^N \int_0^x \mathbf{1}_{\mathcal{P}_k}(x) \, \mathbf{1}_{\mathcal{N}_k}(x_*) \, dx_* dx \\ &+ \frac{2}{k} \int_0^N \int_0^{x_*} \mathbf{1}_{\mathcal{P}_k}(x) \, \mathbf{1}_{\mathcal{N}_k}(x_*) \, dx_* dx \\ &= \frac{1}{k} \int_0^N \int_0^x \mathbf{1}_{\mathcal{P}_k}(x) \, \mathbf{1}_{\mathcal{N}_k}(x_*) \left(1 - \sigma(x) \, \sigma(x_*)\right) dx_* dx \\ &+ \frac{1}{k} \int_0^N \int_0^{x_*} \mathbf{1}_{\mathcal{P}_k}(x) \, \mathbf{1}_{\mathcal{N}_k}(x_*) \left(1 - \sigma(x) \, \sigma(x_*)\right) dx_* dx \\ &\leq \int_0^N \int_0^x |F(x)| \left(1 - \sigma(x) \, \sigma(x_*)\right) dx_* dx \\ &+ \int_0^N \int_0^{x_*} |F(x_*)| \left(1 - \sigma(x) \, \sigma(x_*)\right) dx_* dx \\ &\leq 0. \end{aligned}$$

214

Consequently, $|\mathcal{P}_k| |\mathcal{N}_k| = 0$ for every $k \ge 1$ and letting $k \to \infty$ entail that $|\mathcal{P}| |\mathcal{N}| = 0$. We have thus shown that either $F \ge 0$ a.e. or $F \le 0$ a.e., which, together with (15), implies that F = 0 and completes the uniqueness proof.

(b) Existence. We put $\omega = N^{\alpha/2} = ||a||_{L^{\infty}(0,N)}^{1/2}$. For $g \in L^{1}(0,N)$, we denote by u_{g} the unique solution in $W^{2,1}(0,N)$ to the boundary-value problem

(17)
$$-\partial_x^2 u_g + \omega^2 u_g = g, \qquad x \in (0, N),$$

(18)
$$u_g(0) = N \partial_x u_g(N) - u_g(N) = 0.$$

We recall that u_q is given by

$$u_g(x) = \left(\lambda - \int_0^x e^{-\omega x_*} g(x_*) \, dx_*\right) \frac{e^{\omega x}}{2\omega} - \left(\lambda - \int_0^x e^{\omega x_*} g(x_*) \, dx_*\right) \frac{e^{-\omega x}}{2\omega}$$

with

$$\begin{split} \lambda &= \vartheta \, \int_0^N e^{-\omega x_*} \, g(x_*) \, dx_* + (1 - \vartheta) \, \int_0^N e^{\omega x_*} \, g(x_*) \, dx_*, \\ \vartheta &= \frac{N \, \omega - 1}{N \, \omega - 1 + (N \, \omega + 1) \, e^{-2\omega N}}. \end{split}$$

In particular, there is a constant Γ_N depending on N such that

(19)
$$\|u_g\|_{W^{1,\infty}(0,N)} \leq \Gamma_N \|g\|_{L^1(0,N)}.$$

Next, for $f \in L^1(0, N)$, we define

$$\mathcal{L}(f)(x) = (\omega^2 - a(x)) f(x) + \int_x^N a(x_*) b(x, x_*) f(x_*) dx_*, \quad x \in (0, N).$$

Owing to the choice of ω , we have $\mathcal{L}(f) \geq 0$ whenever $f \geq 0$ and straightforward computations, (7) and (8) yield

(20)
$$\int_0^N x \mathcal{L}(f)(x) \, dx = \omega^2 \, \int_0^N x \, f(x) \, dx$$

(21)
$$\|\mathcal{L}(f)\|_{L^1(0,N)} \le \omega^2 \left(2 + B_0\right) \|f\|_{L^1(0,N)}$$

We finally introduce the set

$$\mathcal{C} = \left\{ f \in L^1(0, N), \ f \ge 0, \ \int_0^N x \ f(x) \ dx = 1, \ \|f\|_{L^1(0, N)} \le R_\star \right\},$$

with

$$R_{\star} = N\,\omega^2 + \frac{N}{2}\,(3+\omega^2),$$

which is a bounded closed and convex subset of $L^1(0, N)$. For $f \in \mathcal{C}$, we define $\Lambda(f) = u_{\mathcal{L}(f)}$ and first check that $\Lambda(f)$ also belongs to \mathcal{C} . Indeed, it is clear that $u_{\mathcal{L}(f)} \in W^{2,1}(0, N) \subset L^1(0, N)$. Next, since $f \geq 0$, we have also $\mathcal{L}(f) \geq 0$ and the maximum principle implies that $u_{\mathcal{L}(f)} \geq 0$. It also readily follows from (17), (18) and (20) that

(22)
$$\int_0^N x \, u_{\mathcal{L}(f)}(x) \, dx = 1.$$

Now, we multiply (17) for $\Lambda(f)$ by x^3 , integrate over (0, N) and use (7), (18) and (22) to obtain

$$\begin{split} -N^{3} \partial_{x} \Lambda(f)(N) &+ 3 N^{2} \Lambda(f)(N) - 6 \int_{0}^{N} x \Lambda(f)(x) \, dx + \omega^{2} \int_{0}^{N} x^{3} \Lambda(f)(x) \, dx \\ &= \int_{0}^{N} x^{3} \left(\omega^{2} - a(x)\right) f(x) \, dx + \int_{0}^{N} a(x_{*}) \, f(x_{*}) \int_{0}^{x_{*}} x^{3} \, b(x, x_{*}) \, dx dx_{*} \\ &\qquad 2 N^{2} \Lambda(f)(N) - 6 \leq \omega^{2} \int_{0}^{N} x^{3} \, f(x) \, dx + N^{2} \int_{0}^{N} a(x_{*}) \, f(x_{*}) \, x_{*} \, dx_{*} \\ &\qquad \leq N^{2} \, \omega^{2} \int_{0}^{N} x \, f(x) \, dx + N^{2} \, \omega^{2} \int_{0}^{N} x \, f(x) \, dx \\ &\leq 2 N^{2} \, \omega^{2}, \end{split}$$

whence

(23)
$$\Lambda(f)(N) \le 3 + \omega^2$$

We then multiply (17) for $\Lambda(f)$ by x^2 , integrate over (0, N) and use (18) and the non-negativity of f, a and b to obtain

$$N\Lambda(f)(N) - 2 \int_0^N \Lambda(f)(x) \, dx + \omega^2 \int_0^N x^2 \Lambda(f)(x) \, dx \ge -\int_0^N x^2 \, a(x) \, f(x) \, dx$$
$$N\Lambda(f)(N) + \omega^2 \int_0^N x^2 \, \Lambda(f)(x) \, dx + \int_0^N x^2 \, a(x) \, f(x) \, dx \ge 2 \int_0^N \Lambda(f)(x) \, dx,$$

whence, thanks to (22) and (23),

$$2 \int_0^N \Lambda(f)(x) \, dx \le N \, (3+\omega^2) + N \, \omega^2 + N \, \omega^2 = 2 \, R_\star.$$

Consequently, Λ maps C into itself. In addition, we infer from (19) and (21) that, for $f \in C$ and $\hat{f} \in C$, we have

$$\|u_{\mathcal{L}(f)} - u_{\mathcal{L}(\hat{f})}\|_{L^{1}(0,N)} = \|u_{\mathcal{L}(f) - \mathcal{L}(\hat{f})}\|_{L^{1}(0,N)} = \|u_{\mathcal{L}(f - \hat{f})}\|_{L^{1}(0,N)} \le C(N) \|f - \hat{f}\|_{L^{1}(0,N)}.$$

Therefore, Λ maps continuously \mathcal{C} into itself and $\Lambda(\mathcal{C})$ is compact in $L^1(0, N)$ by the compactness of the embedding of $W^{1,\infty}(0, N)$ in $L^1(0, N)$. We are then in a position to employ the Schauder fixed point theorem and conclude that there exists $f \in \mathcal{C}$ such that $\Lambda(f) = f$. In other words, f satisfies (13) and (14), and

$$-\partial_x^2 f(x) + \omega^2 f(x) = (\omega^2 - a(x)) f(x) + \int_x^N a(x_*) b(x, x_*) f(x_*) dx_*$$

for $x \in (0, N)$, i.e. f satisfies (12).

3. Proof of Theorem 1. For $N \ge 1$, we denote by f_N the solution to (12), (13) satisfying (14) given by Proposition 3, and we still denote by f_N its extension by zero to $(0, \infty)$. In particular, we have

(24)
$$f_N \ge 0, \qquad \int_0^\infty x f_N(x) \, dx = 1.$$

LEMMA 4. For each $\beta \geq 3$, there is a constant C_{β} depending only on α and β such that

(25)
$$N^{\beta-1} f_N(N) + \int_0^N x^{\alpha+\beta} f_N(x) dx \le C_\beta.$$

There is a positive constant C_0 depending only on α such that

(26)
$$\int_0^N f_N(x) \, dx \le C_0.$$

Proof. We multiply (12) by x^{β} , integrate over (0, N) and use (8), (9) and (13) to obtain

$$-N^{\beta} \partial_{x} f_{N}(N) + \beta N^{\beta-1} f_{N}(N) - \beta (\beta - 1) \int_{0}^{N} x^{\beta-2} f_{N}(x) dx$$

$$= \int_{0}^{N} a(x) f_{N}(x) \int_{0}^{x} x_{*}^{\beta} b(x_{*}, x) dx_{*} dx - \int_{0}^{N} a(x) x^{\beta} f_{N}(x) dx,$$

$$(\beta - 1) N^{\beta-1} f_{N}(N) - \beta (\beta - 1) \int_{0}^{N} x^{\beta-2} f_{N}(x) dx \leq (B_{\beta} - 1) \int_{0}^{N} a(x) x^{\beta} f_{N}(x) dx,$$

$$(27) N^{\beta-1} f_{N}(N) + (1 - B_{\beta}) \int_{0}^{N} x^{\alpha+\beta} f_{N}(x) dx \leq \beta (\beta - 1) \int_{0}^{N} x^{\beta-2} f_{N}(x) dx.$$

Since $\beta \geq 3$, the Young inequality and (24) ensure that there is a positive constant C_{β} depending on α and β such that

$$\int_{0}^{N} x^{\beta-2} f_{N}(x) dx \leq \frac{1-B_{\beta}}{2} \int_{0}^{N} x^{\alpha+\beta} f_{N}(x) dx + C_{\beta} \int_{0}^{N} x f_{N}(x) dx$$
$$\leq \frac{1-B_{\beta}}{2} \int_{0}^{N} x^{\alpha+\beta} f_{N}(x) dx + C_{\beta}.$$

Combining (27) and the previous estimate yields (25).

We next multiply (12) by x^2 , integrate over (0, N) and use the non-negativity of f_N , a and b to obtain

$$N f_N(N) - 2 \int_0^N f_N(x) \, dx \ge -\int_0^N x^{2+\alpha} f_N(x) \, dx.$$

It then follows from (24), (25) and the Hölder inequality that

$$2 \int_0^N f_N(x) \, dx \le \frac{C_3}{N} + C_3^{(\alpha+1)/(\alpha+2)},$$

which completes the proof of Lemma 4. \blacksquare

REMARK 5. We point out here that Lemma 4 illustrates the opposite effects of the fragmentation and diffusion on the size distribution. Indeed, on the one hand, the bound (25) on moments of f_N of high order results from the assumptions on the fragmentation and prevents the diffusion to expand the size distribution to the right. On the other hand, the L^1 -bound (26) follows from the diffusive term and shows that diffusion prevents the concentration of the size distribution near x = 0.

LEMMA 6. There is a constant C depending only on α such that

(28)
$$||f_N||_{W^{1,\infty}(0,N)} \le C.$$

Proof. It follows from (12) and (13) that, for $x \in (0, N)$,

$$\partial_x f_N(x) = \partial_x f_N(N) - \int_x^N \partial_x^2 f_N(x') \, dx' \\ = \frac{f_N(N)}{N} - \int_x^N a(x') \, f_N(x') \, dx' + \int_x^N \int_{x'}^N a(x_*) \, b(x', x_*) \, f_N(x_*) \, dx_* dx'.$$

Since $\alpha \geq 0$, we infer from (8), (25), (26) and the Hölder inequality that

$$(29) \quad |\partial_x f_N(x)| = \frac{f_N(N)}{N} + \int_0^N a(x) f_N(x) dx + \int_0^N a(x_*) f_N(x_*) \int_0^{x_*} b(x, x_*) dx dx_* \leq \frac{C_3}{N^3} + (1 + B_0) \int_0^N x^\alpha f_N(x) dx \leq C_3 + (1 + B_0) ||f_N||_{L^1(0,N)}^{3/(\alpha+3)} \left(\int_0^N x^{\alpha+3} f_N(x) dx\right)^{\alpha/(\alpha+3)}, |\partial_x f_N(x)| \leq C.$$

Now, since

$$0 \le f_N(x) = \int_0^x \partial_x f_N(x_*) \, dx_*$$

by (13), Lemma 6 readily follows from (29). \blacksquare

Proof of Theorem 1. It readily follows from (25), (28) and the Vitali theorem that (f_N) is relatively compact in $L^1(0,\infty; x^\beta dx)$ for each $\beta \ge 0$, while (28) and the Ascoli theorem entail the relative compactness of (f_N) in $\mathcal{C}([0,R])$ for each R > 0. Consequently, there are a subsequence of (f_N) (not relabeled) and

$$f \in \mathcal{C}([0,\infty)) \cap \bigcap_{\beta \ge 0} L^1(0,\infty; x^\beta \, dx)$$

such that (f_N) converges towards f uniformly on compact subsets of $[0,\infty)$ and

(30)
$$\lim_{N \to \infty} \int_0^\infty x^\beta \left| f_N(x) - f(x) \right| dx = 0$$

for each $\beta \ge 0$. In particular, f is non-negative. Also, (30) allows us to let $N \to \infty$ in (24) and obtain that

$$\int_0^\infty x \, f(x) \, dx = 1$$

In addition, we may pass to the limit as $N \to \infty$ in (12) and (13) and use classical arguments to conclude that $f \in W^{2,1}(0,\infty) \cap W_0^{1,1}(0,\infty)$ is a solution to (3), (4).

Finally, owing to the integrability properties required in Theorem 1, the proof of the uniqueness part of Theorem 1 is similar to that of Proposition 3. \blacksquare

References

 J. Banasiak and W. Lamb, On the application of substochastic semigroup theory to fragmentation models with mass loss, J. Math. Anal. Appl. 284 (2003), 9–30.

- [2] J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 231–244.
- [3] A. Eibeck and W. Wagner, Approximative solution of the coagulation-fragmentation equation by stochastic particle systems, Stochastic Anal. Appl. 18 (2000), 921–948.
- [4] M. H. Ernst and G. Szamel, Fragmentation kinetics, J. Phys. A 26 (1993), 6085–6091.
- [5] M. Escobedo, Ph. Laurençot, S. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations 195 (2003), 143–174.
- [6] J. Ferkinghoff-Borg, M. H. Jensen, J. Mathiesen, P. Olesen and K. Sneppen, Competition between diffusion and fragmentation: an important evolutionary process of nature, Phys. Rev. Lett. 91, 266103 (2003).
- [7] A. F. Filippov, On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl. 6 (1961), 275–294.
- B. Haas, Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl. 106 (2003), 245–277.
- E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett. 58 (1987), 892–895.
- [10] D. J. McLaughlin, W. Lamb and A. C. McBride, A semigroup approach to fragmentation models, SIAM J. Math. Anal. 28 (1997), 1158–1172.
- [11] Z. A. Melzak, A scalar transport equation, Trans. Amer. Math. Soc. 85 (1957), 547–560.
- R. M. Ziff and E. D. McGrady, The kinetics of cluster fragmentation and depolymerisation, J. Phys. A 18 (1985), 3027–3037.