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Abstract. This note is concerned with the recent paper “Non-topological N -vortex condensates

for the self-dual Chern-Simons theory” by M. Nolasco. Modifying her arguments and state-

ments, we show that the existence of “non-topological” multi-vortex condensates follows when

the number of prescribed vortex points is greater than or equal to 2.

1. Introduction. In recent years, charged vortex solutions in (2+1) dimensional abelian

Chern-Simons vortex theory have received much attention, because of their relation to

many fields of physics such as high-critical temperature superconductivity, some con-

densed matter systems, charged anyon-model, and so on ([5], [11]). A mathematical

proof of the existence of stationary vortex solutions, called the vortex condensate, has

been given by [1], [3], [4], [7], [8], [10] on the periodic cell domain satisfying a suitable

gauge-invariant periodicity, that is, the ’t Hooft boundary condition.

Let Ω be the fundamental cell domain in R2 generated by linearly independent vectors

e1 = (a, 0) and e2 = (0, b):

Ω =

{
x = (x1, x2) ∈ R2 | −a

2
≤ x1 ≤

a

2
, − b

2
≤ x2 ≤

b

2

}
,

and let p1, . . . , ps ∈ Ω \ ∂Ω be s distinct vortex points with multiplicities m1, . . . ,ms ∈
N. Then, after the reduction process of Taubes, existence of Chern-Simons N -vortex

condensates is reduced to finding a solution u = uκ to


−∆u =

4

κ2
eu(1− eu)− 4π

s∑

j=1

mjδpj in Ω,

u : doubly periodic on ∂Ω,

(1.1)
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where κ > 0 is the Chern-Simons coupling parameter and
∑s
j=1mj = N . From the

maximum principle it follows that eu < 1 on Ω, while integrating (1.1) over Ω implies∫

Ω

eu(1− eu)dx = πNκ2.

Hence we obtain euκ (1− euκ)→ 0 a.e. as κ→ 0 passing through a subsequence. Actually,

we are interested in the following cases:

• “topological” N -vortex condensates:

euκ → 1 locally uniformly on Ω \ {p1, . . . , ps} as κ→ 0.

• “non-topological” N -vortex condensates:

euκ → 0 locally uniformly on Ω \ {p1, . . . , ps} as κ→ 0.

The existence of “topological” N -vortex condensates was solved affirmatively in [10].

On the other hand, only partial results have been known concerning “non-topological”

N -vortex condensates ([10], [8], [4], [3]).

In a recent paper, M. Nolasco asserted that “non-topological” N -vortex condensate

existed for any given vortex points in Ω. Unfortunately, some estimates are not described

in detail and there seem to be several gaps in the argument. In this note, first, we shorten

and clarify her analytic arguments. Second, we point out that some modifications are

needed in the statement of the above theorem. More precisely, if the number of vortex

points s is greater than or equal to 2, then the conclusion of the above theorem is proven;

more precisely,

Theorem 1. Given pj ∈ Ω \ ∂Ω and mj ∈ N (j = 1, . . . , s), if s ≥ 2 we have κ̄ > 0 such

that if κ ∈ (0, κ̄) there is a solution u = uκ to (1.1) satisfying the following:

(1) euκ < 1 on Ω.

(2) euκ → 0 in Cqloc(Ω \ {p1, . . . , ps} for any q ≥ 0 as κ→ 0.

(3) 4
κ2 e

uκ(1− euκ) ⇀ 4π
∑s
j=1mjδpj in the sense of measures on Ω as κ→ 0.

In spite of the above mentioned technical improvements, we reproduce some parts

of [9] for completeness. The authors thank Professor Dongho Chae for informing them

about the original paper [9].

2. Radially symmetric vortex. First, we extend the solution u = u(x) to (1.1) for all

x ∈ R2 by periodicity. That is, ũ(x) = u(x+ n1e1 + n2e2), which satisfies that



−∆ũ =

4

κ2
eũ(1− eũ)− 4π

∑

n∈Z2

s∑

j=1

mjδpn
j

in R2,

ũ(x+ ei) = ũ(x) for x ∈ R2 and i = 1, 2,

(2.1)

where pnj = pj + n1e1 + n2e2 with (n1, n2) ∈ Z2 denotes the periodic lattice of vortex

points for j = 1, . . . , s. Next, we introduce the scaling parameters δ, ε in 0 < δ � ε as

κ = 2εδ, and set û(x) = ũ(δx) and p̂nj = 1
δp
n
j for j = 1, . . . , s. Then, it follows that




−∆û =

1

ε2
eû(1− eû)− 4π

∑

n∈Z2

s∑

j=1

mjδp̂n
j

in R2,

û(x+ êi) = û(x) for x ∈ R2 and i = 1, 2

(2.2)
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for êi := 1
δ ei, because we have a2δ(x) = δ(xa ) for any a > 0 and x ∈ R2. This is the

equation that we solve by the implicit function theorem, taking suitable approximate

solutions. It is done by “glueing” radially symmetric vortex solutions of Chae-Imanuvilov

[2], and therefore, we briefly recall the latter work.

Namely, we consider N -vortex condensate at the origin,
{
−∆u =

1

ε2
eu(1− eu)− 4πNδ0 in R2,

u(x)→ −∞ as |x| → ∞,
(2.3)

where the case N = 0 is allowed. Chae-Imanuvilov [2] constructs a solution to (2.3) as a

perturbation from log ρN , where ρN is the radially symmetric function defined by

ρN (|x|) =
8(N + 1)2|x|2N
(1 + |x|2N+2)2

.(2.4)

Actually, it is a solution to the Liouville equation

−∆ log ρN = ρN − 4πNδ0 in R2.(2.5)

Next, we introduce the auxiliary function w = wN (|x|) ∈ C2(R2) by

−∆w = ρN (x)w − ρN (x)2 in R2,(2.6)

and make a change of variables in (2.3):

u(|x|) = log(ε2ρN (|x|)) + ε2wN (|x|) + ε2v(|x|).(2.7)

Then, the new unknown v = v(|x|) has to satisfy

−∆v =
1

ε2
ρNe

ε2(v+wN ) − ρ2
Ne

2ε2(v+wN ) − 1

ε2
ρN + ∆wN(2.8)

in R2.

Now, we take Hilbert spaces

X = {u ∈W 2,2
loc (R2) | ‖u‖2X = (u, u)X < +∞},

Y = {u ∈ L2(R2) | ‖u‖2Y = (u, u)Y < +∞},(2.9)

with the inner products ( , )X , ( , )Y defined by

(u, v)Y =

∫

R2

(1 + |x|2+α)uvdx,

(u, v)X = (∆u,∆v)Y +

∫

R2

uv(1 + |x|2+α)−1dx,(2.10)

for α ∈ (0, 1
2 ). Further, Xr, Y r denote the spaces of radially symmetric functions in X,Y

respectively. Then, we have the following (Lemmas 1.1 and 2.2 of [2]).

Lemma 1. We have

|v(x)| ≤ ‖v‖X(log+ |x|+ 1)(2.11)

for v ∈ X and x ∈ R2.

Lemma 2. There are C, C̃ > 0 such that

|wN (|x|)| ≤ C(log+ |x|+ 1) for all x ∈ R2,

wN (|x|) = −C̃ log+ |x|+ o(log |x|) as |x| → ∞.
(2.12)
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In view of those lemmas, we can realize

PN (v, ε) = ∆v +
1

ε2
ρNe

ε2(v+wN ) − ρ2
Ne

2ε2(v+wN ) − 1

ε2
ρN − ρNwN + ρ2

N(2.13)

as a smooth mapping from a bounded neighbourhood of (0, 0) in Xr ×R into Y r. Fur-

thermore, v ∈ Xr is a solution to (2.8) for ε > 0 if and only if PN (v, ε) = 0, and we have

PN (0, 0) = limε↓0 PN (0, ε) = 0 by the choice of wN .

To find continuous ε 7→ vε ∈ Xr in a neighborhood of (0, 0) satisfying PN (vε, ε) = 0,

we take the bounded linear operator

LrN = DvPN (0, 0) = ∆ + ρN : Xr → Y r.

It is proven in [2] that LrN is onto and Ker(LrN ) is equal to span{φN} for φN (|x|) =

(1− |x|2N+2)/(1 + |x|2N+2). Therefore, taking

Hr
N = {u ∈ Xr | (u, φN )X = 0} = Xr/KerLrN ,

we can apply the standard implicit function theorem and obtain v∗ε,N ∈ Hr
N in a neigh-

borhood of the origin, satisfying PN (v∗ε,N , ε) = 0 for 0 < ε � 1. We can check that v∗ε,N
is a smooth function, and by (2.11),

|v∗ε,N (|x|)| ≤ C(ε)(log+ |x|+ 1)(2.14)

with C(ε) = ‖v∗ε,N‖X → 0 as ε ↓ 0. Thus,

u∗ε,N (|x|) = log(ε2ρN (|x|)) + ε2wN (|x|) + ε2v∗ε,N (|x|)(2.15)

is a solution to (2.3) satisfying

eu
∗
ε,N = O(|x|−2N−4−β(ε))(2.16)

as |x| → ∞ for some β(ε) > 0 in limε↓0 β(ε) = 0, and hence is a “non-topological”

solution.

3. Linearization. Process of glueing requires fine analysis of the linearized operator

around the Chae-Imanuvilov solution, namely,

Aε,N = DvPN (v∗ε,N , ε) : X → Y.

Although the proof of this part is not described in detail in [9], we can justify the state-

ment by using the perturbation theory for Fredholm operators. Actually, this operator is

given as

Aε,N = ∆ + ρNe
ε2(wN+v∗ε,N ) − 2ε2ρ2

Ne
2ε2(wN+v∗ε,N ).(3.1)

Because eε
2(wN+v∗ε,N ) = 1 + ε2wN + o(ε2) by (2.12) and (2.14), we have

Aε,N = LN + ε2BN + o(ε2)(3.2)

in the operator norm, where

LN = ∆ + ρN(3.3)

and

BN = ρNwN − 2ρ2
N .(3.4)

Now, we recall the following (Lemma 2.4, Proposition 2.2, and Lemma 2.5 of [2]).
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Lemma 3.

Ker LN = span{φN , φ+
N , φ

−
N}

for

φN (x) =
1− |x|2N+2

1 + |x|2N+2

φ+
N (x) =

|x|N+1 cos(N + 1)θ

1 + |x|2N+2
(3.5)

φ−N (x) =
|x|N+1 sin(N + 1)θ

1 + |x|2N+2
.

Lemma 4.

Im LN =

{
f ∈ Y |

∫

R2

fφ±Ndx = 0

}
.

Lemma 5.

I±N ≡
(
BNφ

±
N , φ

±
N

)
L2(R2)

{
< 0 (N = 1, 2, · · ·),
= 0 (N = 0).

We also make use of

(BNφ
+
N , φ

−
N )L2(R2) = (BNφN , φ

±
N )L2(R2) = 0

valid for N ∈ N ∪ {0}. Furthermore, we have φ±N ∈ HN for

HN = {u ∈ X | (u, φN )X = 0},(3.6)

and the orthogonal decomposition X = HN ⊕H⊥N with

H⊥N = span{φN}.
The following lemma assures the injectivity of Aε,N |HN : HN → Y , and we provide

a detailed proof for completeness. Actually, it simplifies the original one and justifies

Lemma 4.2 of [9]. Let us note that (4.18) of [9] does not hold for N = 0.

Lemma 6. If N ≥ 1, we have ε0 > 0 and C > 0 such that

‖Aε,Nv‖Y ≥ Cε2‖v‖X
for any ε ∈ (0, ε0) and v ∈ HN .

Proof. If this is not the case, we have εn ↓ 0 and vn ∈ HN with ‖vn‖X = 1 and

ε−2
n ‖Aε,Nvn‖Y → 0. Then, we can extract a subsequence, denoted by the same symbol,

satisfying vn ⇀ v̄ weakly in X for some v̄ ∈ HN . This implies Aεn,Nvn ⇀ LN v̄ weakly in

Y , and hence LN v̄ = 0 follows from ‖Aεn,Nvn‖ = o(ε2
n). Namely, we have v̄ ∈ KerLN ∩

HN , and hence

v̄ = C+φ
+
N + C−φ

−
N

with some C+, C− ∈ R by Lemma 3. Now, we claim that vn → v̄ strongly in X, and

therefore, that v̄ 6≡ 0 or equivalently, C2
+ + C2

− 6= 0.
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In fact, by (3.2) and our assumption, we have ‖LN (vn − v̄)‖Y = o(1), which leads to

‖∆(vn − v̄)‖Y ≤ ‖ρN (vn − v̄)‖Y + o(1)

as n → ∞. On the other hand, Rellich-Kondrachov’s theorem and the growth estimate

(2.11) guarantee the compactness of K1 = ρN : X → Y , and therefore, ∆vn → ∆v̄

strongly in Y . On the other hand, K2 = (1 + |x|2+α)−1/2 : X → L2(R2) is also compact,

and then we conclude that vn → v̄ strongly in X as desired.

Now, we show that this is a contradiction in the case of N 6= 0. In fact, for w̄ =

v̄/(1 + |x|2+α) ∈ Y we have

1

ε2
n

|(Aεn,Nvn, w̄)Y | ≤
1

ε2
n

‖Aεn,Nvn‖Y ‖w̄‖Y → 0,

while (3.2) implies

1

ε2
n

(Aεn,Nvn, w̄)Y =
1

ε2
n

(LNvn, w̄)Y + (BNvn, w̄)Y + o(1).

We also have from Lemma 4 that

1

ε2
n

(LNvn, w̄)Y =
1

ε2
n

(LNvn, C+φ
+
N + C−φ

−
N )L2(R2) = 0,

and hence it follows that (BNvn, w̄)Y = o(1). Therefore, because vn → v̄ strongly in X,

we have

(BN v̄, w̄)Y = (BN v̄, v̄)L2(R2) = 0.

However,

(BN v̄, v̄)L2(R2) = C2
+(BNφ

+
N , φ

+
N )L2(R2) + C2

−(BNφ
−
N , φ

−
N )L2(R2)

+ 2C+C−(BNφ+,N , φ−,N )L2(R2) = C2
+I

+
N + C2

−I
−
N < 0

by N 6= 0 and Lemma 5, and this contradiction proves the lemma.

It is asserted in [9] that Im(Aε,N |HN ) is closed in Y and Aε,N |HN is surjective if

ε > 0 sufficiently small (Lemmas 4.3 and 4.4), and therefore, Aε,N |HN : HN → X has

a bounded inverse (Lemma 4.5). We justify this by using the perturbation theory of

Fredholm operators in the case of N ≥ 1. (See [2].) Let us recall that a bounded linear

operator T : E → F , between Banach spaces E,F , is Fredholm if Ker(T ) is of finite

dimension in E, and Im(T ) is closed and has a finite codimension in F and that its index

is defined by Index(T ) = dim Ker(T ) − codim Im(T ). Then, we can make use of the

following abstract theorem of Gohberg and Krein ([6]):

Theorem 2. Let E,F be Banach spaces, and assume that the bounded linear operator

T : E → F is Fredholm. Then, there is γ > 0 such that if B : E → F is a bounded linear

operator with ‖B‖ < γ, then T +B is also Fredholm,

dim Ker (T +B) ≤ dim Ker (T ),

codim Im (T +B) ≤ codim Im (T ),

Index (T +B) = Index (T ).
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Actually, Bε.N ≡ Aε,N − LN : X → Y is a bounded linear operator satisfying

limε↓0 ‖Bε,N‖ = 0 by (3.2). On the other hand, we have for LN |HN : HN → Y the

following.

• Ker(LN |HN ) = Ker(LN ) ∩HN = span{φ+
N , φ

−
N} and hence dim Ker (LN |HN ) = 2

by Lemma 3.

• We have

LN (X) = LN (HN ⊕H⊥N ) = LN (HN ⊕ span{φN}) = LN (HN )⊕ {0},
and hence

Im(LN |HN ) = Im(LN ) = {f ∈ Y | (f, φ±N )L2(R2) = 0}
by Lemma 4. In particular, Im(LN |HN ) is closed in Y and

codim Im(LN |HN ) = 2.

Those facts guarantee that LN |HN : HN → Y is a Fredholm operator of index 0, and we

can apply Theorem 2 for E = HN , F = Y , T = LN |HN , and B = Bε,N |HN . Then, we

conclude that

Aε,N |HN = LN |HN +Bε,N |HN
is also a Fredholm operator of index 0 for 0 < ε � 1. Because Lemma 6 guarantees the

injectivity of Aε,N |HN : HN → Y for N ≥ 1 and 0 < ε� 1, we get that Aε,N |HN is also

surjective then. Now, we conclude the following.

Lemma 7. If N ≥ 1, we have ε0 > 0 such that Aε,N |HN : HN → Y is invertible for

ε ∈ (0, ε0). Furthermore, there is C > 0 independent of ε such that

‖(Aε,N |HN )−1u‖X ≤
C

ε2
‖u‖Y

for any ε ∈ (0, ε0) and u ∈ Y .

4. Glueing. Nolasco [9] constructed the approximate solution to (2.2) by “glueing”

radially symmetric single vortex entire solutions to (2.5), by applying a partition of

unity. More precisely, setting a false vortex point p0 = 0 with multiplicity m0 = 0, she

studied the invertibility of the linearized operator. However, some modifications seem to

be needed in this process. For example, (Ânε,0)−1 in (6.34) of [9] does not exist.

To this end, we assume that the number of vortex points is greater than or equal to

2, namely, s ≥ 2. Then, we suppose that the multiplicity of p1 is equal to

m1 = min
j=1,...,s

{mj}

without loss of generality, and letting r = 1
2 mini6=j{|pi − pj |, dist(pj , ∂Ω)}, we put

Bj = {x ∈ Ω | |x− pj | < r}, j = 2, . . . , s,

B1 =

{
x ∈ R2 | dist

(
x,Ω \

⋃

j=2,...,s

Bj

)
<
r

2

}
.

Let us note that Bi ∩Bj = ∅ for i, j ∈ {2, . . . , s}, i 6= j, and B1 ∩Bj 6= ∅ for j = 2, . . . , s.

By the definition, each Bj contains exactly one vortex point pj with multiplicity mj . It
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is different from [9], where B0 contains no vortex points at all. Our situation is possible

because of the assumption of s ≥ 2.

Given n = (n1, n2) ∈ Z2 and j = 1, . . . , s, we set

Bnj = Bj + n1e1 + n2e2.

Then, the collection {Bnj }n∈Z2,j=1,...,s forms a locally finite periodic open covering of R2,

and therefore, we can take an associated partition of unity

{ϕnj }n∈Z2,j=1,...,s

such that ϕnj ∈ C∞c (Bnj ), 0 ≤ ϕnj ≤ 1, and

∑

n∈Z2

s∑

j=1

ϕnj (x) = 1 (x ∈ R2).

Now, we recall that the scaling parameters 0 < δ � ε are so taken as κ = 2εδ. Then,

letting

B̂nj =
1

δ
Bnj , ϕ̂nj (x) = ϕnj (δx)

for n ∈ Z2 and j = 1, . . . , s, we have supp ϕ̂nj ⊂ B̂nj , 0 ≤ ϕ̂nj ≤ 1, and

∑

n∈Z2

s∑

j=1

ϕ̂nj (x) = 1 (x ∈ R2).(4.1)

That is, {ϕ̂nj }n,j is a partition of unity subordinate to the locally finite periodic covering

{B̂nj }n,j of R2. We also have

sup
x∈B̂n

j

|∇ϕ̂nj | ≤ Cδ, sup
x∈B̂n

j

|∆ϕ̂nj | ≤ Cδ2(4.2)

and

B̂ni ∩ B̂nj = ∅, i, j ∈ {2, . . . , s}, i 6= j,

B̂n1 ∩ B̂nj 6= ∅, j = 2, . . . , s,

B̂ni ∩ B̂kj = ∅, k 6= n and k 6∈ 〈n〉, i, j = 1, . . . , s,

B̂n1 ∩ B̂k1 6= ∅, k ∈ 〈n〉,

(4.3)

where 〈n〉 = {k ∈ Z2 | |n− k| = 1} denotes the nearest neighborhood of n ∈ Z2.

We put

ρ̂nj (x) = ρmj (|x− p̂nj |) =
8(mj + 1)2|x− p̂nj |2mj
(1 + |x− p̂nj |2mj+2)2

(4.4)

and

ŵnj (x) = wmj (|x− p̂nj |),
where ρN and wN stand for the functions defined by (2.4) and (2.6) for N ∈ N ∪ {0},
respectively. Further, we set

φ̂nj (x) = φmj (|x− p̂nj |) =
1− |x− p̂nj |2mj+2

1 + |x− p̂nj |2mj+2
.(4.5)
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We introduce Hilbert spaces

X̂n
j = {u ∈W 2,2

loc (R2) | ‖u‖2
X̂n
j

= (u, u)X̂n
j
< +∞},

Ŷ nj = {u ∈ L2(R2) | ‖u‖2
Ŷ n
j

= (u, u)Ŷ nj
< +∞},(4.6)

Ĥn
j = {u ∈ X̂n

j | (u, φ̂nj )X̂n
j

= 0},

with the inner products ( , )X̂n
j
, ( , )Ŷ n

j
defined by

(u, v)Ŷ n
j

=

∫

R2

(1 + (δ|x− p̂nj |)2+α)uvδ2dx,

(u, v)X̂n
j

= (∆u,∆v)Ŷ n
j

+

∫

R2

uvδ2

1 + (δ|x− p̂nj |)2+α
dx.

(4.7)

We also put that

Ĥδ = {u ∈W 2,2
loc (R2) | ϕ̂nj u ∈ Ĥn

j for any n, j and ‖u‖Ĥδ < +∞},
Ŷ δ = {u ∈ L2

loc(R
2) | ϕ̂nj u ∈ Ŷ nj for any n, j and ‖u‖Ŷ δ < +∞},

(4.8)

where

‖u‖Ĥδ = sup
n,j
‖ϕ̂nj u‖X̂n

j
, ‖u‖Ŷ δ = sup

n,j
‖ϕ̂nj u‖Ŷ n

j
.

Finally, we take

v̂nε,j(x) = v∗ε,mj (|x− p̂nj |)(4.9)

for v∗ε,N = v∗ε,N (|x|) constructed in §2, which solves PN (v, ε) = 0 for 0 < ε � 1. This

means that Pnj (v̂nε,j , ε) = 0 for

Pnj (v, ε) = ∆v +
1

ε2
ρ̂nj e

ε2(v+ŵnj ) − (ρ̂nj )2e2ε2(v+ŵnj ) − 1

ε2
ρ̂nj − ρ̂nj ŵnj + (ρ̂nj )2,(4.10)

and the linearized operator Ânε,j = DvP
n
j (v̂nε,j , ε) : Ĥn

j → Ŷ nj , defined by

Ânε,j = ∆ + ρ̂nj e
ε2(ŵnj +v̂nε,j) − 2ε2(ρ̂nj )2e2ε2(ŵnj +v̂nε,j),(4.11)

is subject to Lemma 7. Namely, we have the following lemma. (See Proposition 5.2 of

[9].) It will become clear from this lemma that the sum of radial vortex solutions with

vortex points p̂nj (j = 1, 2, . . . , s) is a good approximate solution to (2.2).

Lemma 8. There exist ε0 > 0 and C > 0 independent of 0 < δ � 1 such that Ânε,j |Ĥn
j

:

Ĥn
j → Ŷ nj is invertible and satisfies

‖(Ânε,j |Ĥn
j
)−1u‖X̂n

j
≤ C

ε2
‖u‖Ŷ n

j

for any ε ∈ (0, ε0) and u ∈ Ŷ nj .

Now, we define z = z(x) by

û(x) =
∑

n∈Z2

s∑

j=1

ϕ̂nj (x)ûnj (x) + ε2z(x)(4.12)

in (2.2), where
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ûnj (x) = log(ε2ρ̂nj (x)) + ε2ŵnj (x) + ε2v̂nε,j(x)(4.13)

is a solution to

−∆ûnj =
1

ε2
eû

n
j (1− eûnj )− 4πmjδp̂n

j
(4.14)

in R2. Then, (2.2) is reduced to finding z = z(x) satisfying

∆z +
1

ε2

∑

n,j

{(∆ϕ̂nj )ûnj + 2∇ϕ̂nj · ∇ûnj }(4.15)

+
1

ε4

(∑

n,j

ϕ̂nj e
2ûnj − exp(2

∑

n,j

ϕ̂nj û
n
j ) exp(2ε2z)

)

− 1

ε4

(∑

n,j

ϕ̂nj e
ûnj − exp

(∑

n,j

ϕ̂nj û
n
j

)
exp(ε2z)

)
= 0

in R2, because
∑
n,j ϕ̂

n
jmjδp̂n

j
−∑n,jmjδp̂n

j
≡ 0. In the rest of this section, we shall

represent (4.15) in a simple form.

First, we set

Cnj (x) = (∆ϕ̂nj )ûnj + 2∇ϕ̂nj · ∇ûnj(4.16)

for n ∈ Z2, j = 1, . . . , s. Next, we put

Rn1 (x) ≡ exp
{ s∑

l=2

ϕ̂nl (ûnl − ûn1 )
}
× exp

{ ∑

k∈〈n〉
ϕ̂k1(ûk1 − ûn1 )

}

= exp

{ s∑

l=2

ϕ̂nl

(
log

ρ̂nl
ρ̂n1

+ ε2(ŵnl − ŵn1 ) + ε2(v̂nε,l − v̂nε,1)

)}

×exp

{ ∑

k∈〈n〉
ϕ̂k1

(
log

ρ̂k1
ρ̂n1

+ ε2(ŵk1 − ŵn1 ) + ε2(v̂kε,1 − v̂nε,1)

)}
,(4.17)

Rnj (x) ≡ exp{ϕ̂n1 (ûn1 − ûnj )}

= exp

{
ϕ̂n1

(
log

ρ̂n1
ρ̂nj

+ ε2(ŵn1 − ŵnj ) + ε2(v̂nε,1 − v̂nε,j)
)}

,

for j = 2, . . . , s. Then, we obtain

Rn1 (x) = 1 on
( s⋃

l=2

B̂nl ∪
⋃

k∈〈n〉
B̂k1

)c
,

Rnj (x) = 1 on (B̂n1 )c, j = 2, . . . , s.

On the other hand, we have from (4.3) that

∑

n,j

ϕ̂nj û
n
j =





ϕ̂n1 û
n
1 + ϕ̂nj û

n
j (x ∈ B̂nj , j = 2, . . . , s)

s∑

l=1

ϕ̂nl û
n
l +

∑

k∈〈n〉
ϕ̂k1 û

k
1 (x ∈ B̂n1 )(4.18)

Now

exp
(∑

n,j

ϕ̂nj û
n
j

)
= Rnj (x)eû

n
j (x) = ε2ρ̂nj e

ε2(ŵnj +v̂nε,j)Rnj on B̂nj(4.19)
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by (4.17) and (4.18), where n ∈ Z2, j = 1, . . . , s. In fact, if x ∈ B̂nj for j 6= 1, we have

ϕ̂n1 (x) + ϕ̂nj (x) = 1, and hence

exp
(∑

n,j

ϕ̂nj û
n
j

)
= eϕ̂

n
1 û

n
1 +ϕ̂nj û

n
j = eϕ̂

n
1 û

n
1−ϕ̂n1 ûnj · e(ϕ̂n1 +ϕ̂nj )ûnj = Rnj (x)eû

n
j .

For x ∈ B̂n1 , we have
∑s

l=1 ϕ̂
n
l (x) +

∑
k∈〈n〉 ϕ̂

k
1(x) = 1, and therefore,

exp
(∑

n,j

ϕ̂nj û
n
j

)
= exp

( s∑

l=1

ϕ̂nl û
n
l +

∑

k∈<n>
ϕ̂k1 û

k
1

)

= exp
( s∑

l=1

ϕ̂nl (ûnl − ûn1 ) +
∑

k∈<n>
ϕ̂k1(ûk1 − ûn1 )

)

× exp
(( s∑

l=1

ϕ̂nl +
∑

k∈<n>
ϕ̂k1

)
ûn1

)
= Rn1 (x)eû

n
1 .

This proves (4.19).

By (4.19), we have

exp
(∑

n,j

ϕ̂nj û
n
j

)
=
∑

n,j

ϕ̂njR
n
j e
ûnj , exp

(
2
∑

n,j

ϕ̂nj û
n
j

)
=
∑

n,j

ϕ̂nj (Rnj )2eû
n
j

on R2. Therefore, (4.15) is equivalent to

Fε,δ(z) = 0,(4.20)

where

Fε,δ(z) = ∆z +
1

ε2

∑

n,j

Cnj (x)(4.21)

+
1

ε2

∑

n,j

ϕ̂nj ρ̂
n
j e
ε2(ŵnj +v̂nε,j)(eε

2zRnj (x)− 1)

− 1

ε2

∑

n,j

ϕ̂nj (ρ̂nj )2e2ε2(ŵnj +v̂nε,j)(e2ε2zRnj (x)2 − 1).

This equation is solved by Banach’s fixed point theorem, and in the next section we study

the linearized operator.

5. Second linearization. We show the solvability of Fε,δ(z) = 0 by examining the

method of [9] in detail. First, Fε,δ : Ĥδ → Ŷ δ is well defined by (2.12) and (2.14). More

precisely, we have the following estimates (Lemmas 6.2, 6.3, 6.4 of [9]).

Lemma 9. We have

sup
x∈R2

ϕ̂nj (x)ρ̂nj (x)|Rnj (x)− 1| = O(δ4−β(ε))(5.1)

and ∥∥∥
∑

n,j

Cnj (x)
∥∥∥
Ŷ δ

= O(δ2| log δ|)(5.2)

as δ ↓ 0 with β(ε)→ 0, where n ∈ Z2 and j = 1, . . . , s.
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Proof. By (4.5) and

diam(B̂nj ) = O(δ−1),(5.3)

there are C1, C2 > 0 such that

C1δ
2mj+4 ≤ ρ̂nj (x) ≤ C2δ

2mj+4,

where n ∈ Z2, j = 1, . . . , s and x ∈ B̂nj . Hence

sup
x∈B̂nj ∩B̂n1

ρ̂nj (x)

ρ̂n1 (x)
≤ Cδ2mj−2m1 ≤ C (j = 2, . . . , s),

sup
x∈B̂k1∩B̂n1

ρ̂k1(x)

ρ̂n1 (x)
≤ C (k ∈ 〈n〉).

(5.4)

In fact, the exponent of δ in (5.4) is nonnegative by our choice of m1. Moreover by (2.12)

and (2.14), we have

sup
x∈B̂n

j
∩B̂n1

(|ŵn1 (x)− ŵnj (x)|+ |v̂nε,1(x)− v̂nε,j(x)|) ≤ C| log δ|

for j = 2, . . . , s and

sup
x∈B̂k1∩B̂n1

(|ŵn1 (x)− ŵk1(x)|+ |v̂nε,1(x)− v̂kε,1(x)|) ≤ C| log δ|

for k ∈ 〈n〉. Therefore by (5.4) and (4.17), we have

|Rnj (x)| ≤ exp(C + Cε2| log δ|) = Cδ−Cε
2

(5.5)

for all x ∈ R2. This implies that

sup
x∈R2

ϕ̂nj (x)ρ̂nj (x)|Rnj (x)− 1| ≤ sup
x∈B̂nj

ρ̂nj (x)(Rnj (x) + 1) ≤ Cδ2mj+4−β(ε)

for 0 < δ � 1, where β(ε) = Cε2. Thus, we obtain (5.1).

Now, we note the following: If fk` (k ∈ Z2, ` ∈ {1, . . . , s}) are functions satisfying

supp(fk` ) ⊂ B̂kl , then ∥∥∥
∑

k,l

fk`

∥∥∥
Ŷ δ
≤ C sup

k,`
‖fk` ‖Ŷ k

l
,(5.6)

where C is a constant independent of k, `. In fact,
∥∥∥
∑

k,l

fk`

∥∥∥
Ŷ δ

= sup
n,j

∥∥∥ϕ̂nj
∑

k,l

fk`

∥∥∥
Ŷ n
j

≤ C sup
n,j

sup
k,`

B̂n
j
∩B̂k

l
6=∅

‖ϕ̂nj fk` ‖Ŷ n
j
,

and

‖ϕ̂nj fk` ‖Ŷ n
j

=

∫

R2

(1 + (δ|x− p̂nj |)2+α)|ϕ̂nj (x)fk` (x)|2δ2dx

=

∫

B̂n
j
∩B̂k

l

1 + (δ|x− p̂nj |)2+α

1 + (δ|x− p̂kl |)2+α
(1 + (δ|x− p̂kl |)2+α)|ϕ̂nj fkl |2δ2dx

≤ C

∫

B̂k
l

(1 + (δ|x− p̂kl |)2+α)|fkl (x)|2δ2dx
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because
1 + (δ|x− p̂nj |)2+α

1 + (δ|x− p̂kl |)2+α
= O(1) (x ∈ B̂nj ∩ B̂kl )

and ϕ̂nj (x) ≤ 1. This shows (5.6).

From this, we obtain that∥∥∥
∑

n,j

Cnj

∥∥∥
Ŷ δ
≤ C sup

n,j
‖Cnj ‖Ŷ n

j
(5.7)

≤ C sup
x∈B̂n

j

(|∆ϕ̂nj (x)||ûnj (x)|+ 2|∇ϕ̂nj (x)||∇ûnj (x)|).

Similarly, we have from (2.11), (2.12), (2.14) that

|ûnj (x)| ≤ C| log |x− p̂nj ||, |∇ûnj (x)| ≤ C

|x− p̂nj |
(5.8)

as |x| → ∞, where C > 0 is a constant independent of n, j. We also have (4.2), and hence

(5.2) follows as ∥∥∥
∑

n,j

Cnj (x)
∥∥∥
Ŷ δ
≤ C(δ2 log

1

δ
+ δ2).

The proof is complete.

Now, we see that Fε,δ is a smooth map from the unit ball of Ĥδ to Ŷ δ if 0 < ε � 1.

Furthermore, by (2.12), (2.14) and (5.3), we have

sup
x∈B̂n

j

eε
2(ŵnj +v̂nε,j) ≤ Cδ−Cε2 ,(5.9)

and hence

‖ϕ̂nj ρ̂nj eε
2(ŵnj +v̂nε,j)[Rnj − 1]‖Ŷ n

j
≤ sup

x∈B̂n
j

ϕ̂nj (x)ρ̂nj (x)eε
2(ŵnj +v̂nε,j)|Rnj (x)− 1|(5.10)

≤ Cδ2mj+4−Cε2 = o(δ2)

as δ ↓ 0. Similarly, we have

‖ϕ̂nj (ρ̂nj )2e2ε2(ŵnj +v̂nε,j)[(Rnj )2 − 1]‖Ŷ n
j
≤ o(δ2).

Therefore, Lemma 9 guarantees the following.

Lemma 10. For 0 < δ � ε� 1,

‖Fε,δ(0)‖Ŷ δ ≤
C

ε2
δ2| log δ|

as δ ↓ 0.

Now, we turn to Aε,δ ≡ DFε,δ(0) : Ĥδ → Ŷ δ. It is realized as

Aε,δ = ∆ +
∑

n,j

ϕ̂nj ρ̂
n
j e
ε2(ŵnj +v̂nε,j)Rnj (x)− 2ε2

∑

n,j

ϕ̂nj (ρ̂nj )2e2ε2(ŵnj +v̂nε,j)Rnj (x)2.(5.11)

The next lemma is Lemma 6.4 of [9]. There, it is shown that this operator is approximated

locally by Ânε,j of (4.11):

Ânε,j = ∆ + ρ̂nj e
ε2(ŵnj +v̂nε,j) − 2ε2(ρ̂nj )2e2ε2(ŵnj +v̂nε,j).
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Lemma 11. There are C > 0 and β(ε)→ 0 as ε ↓ 0 such that

‖(Aε,δ − Ânε,j)(ϕ̂nj h)‖Ŷ n
j
≤ Cδ4−β(ε)‖ϕ̂nj h‖X̂n

j

for any n, j and h ∈ Ĥδ in the case of 0 < δ � ε� 1.

Proof. In fact, we have

‖(Aε,δ − Ânε,j)(ϕ̂nj h)‖Ŷ nj ≤ ‖ρ̂
n
j e
ε2(ŵnj +v̂nε,j)(ϕ̂njR

n
j (x)− 1)(ϕ̂nj h)‖Ŷ nj(5.12)

+2ε2‖(ρ̂nj )2e2ε2(ŵnj +v̂nε,j)(ϕ̂njR
n
j (x)2 − 1)(ϕ̂nj h)‖Ŷ n

j

+
∥∥∥

∑

(k,l)6=(n,j)

ϕ̂kl ρ̂
k
l e
ε2(ŵkl +v̂kε,l)Rkl (x)(ϕ̂nj h)

∥∥∥
Ŷ n
j

+2ε2
∥∥∥

∑

(k,l)6=(n,j)

ϕ̂kl (ρ̂kl )2e2ε2(ŵkl +v̂kε,l)Rkl (x)2(ϕ̂nj h)
∥∥∥
Ŷ n
j

.

We apply (5.9) and (5.1) for the first term of the right-hand side, and get that

‖ρ̂nj eε
2(ŵnj +v̂nε,j)(ϕ̂njR

n
j (x)− 1)(ϕ̂nj h)‖Ŷ nj

≤ sup
x∈B̂n

j

(ρ̂nj (x)eε
2(ŵnj +v̂nε,j)|Rnj (x)− 1|)‖ϕ̂nj h‖Ŷ n

j
≤ Cδ4−β(ε)‖ϕ̂nj h‖X̂n

j

Similarly, we have

‖(ρ̂nj )2e2ε2(ŵnj +v̂nε,j)(ϕ̂njR
n
j (x)2 − 1)(ϕ̂nj h)‖Ŷ nj ≤ o(δ

4−β(ε))‖ϕ̂nj h‖X̂nj .

For the third and the fourth terms, we apply (5.6) and (5.9). Then, we get that
∥∥∥

∑

(k,l)6=(n,j)

ϕ̂kl ρ̂
k
l e
ε2(ŵkl +v̂kε,l)Rkl (x)(ϕ̂nj h)

∥∥∥
Ŷ n
j

≤ sup
(k,l)6=(n,j)

sup
x∈B̂n

j
∩B̂k

l

ρ̂kl (x)eε
2(ŵkl +v̂kε,l)Rkl (x)‖ϕ̂nj h‖Ŷ n

j
≤ Cδ4−β(ε)‖ϕ̂nj h‖X̂n

j
,

and ∥∥∥
∑

(k,l)6=(n,j)

ϕ̂kl (ρ̂kl )2e2ε2(ŵkl +v̂kε,l)Rkl (x)2(ϕ̂nj h)
∥∥∥
Ŷ n
j

≤ o(δ4−β(ε))‖ϕ̂nj h‖X̂nj .

From these estimates, we obtain the lemma.

Now, we show the main result of section. (See Proposition 6.5 of [9].)

Theorem 3. Given 0 < ε � 1, there exists δ = δε > 0 such that Aε,δ = DFε,δ(0) :

Ĥδ → Ŷ δ is invertible for any δ ∈ (0, δε). Moreover, ‖A−1
ε,δ‖ ≤ C/ε2 with a constant

C > 0 independent of δ ∈ (0, δε) and 0 < ε� 1.

Proof. We follow the key idea of the original proof [9], and take the smooth function

ĝnj (x) =
ϕ̂nj (x)

{∑k,l ϕ̂
k
l (x)2}1/2 ,(5.13)
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where n ∈ Z2 and j = 1, . . . , s. Now, we introduce the auxiliary linear operator Sε,δ :

Ĥδ → Ŷ δ by

Sε,δh =
∑

n∈Z2

∑

j=1,...,s

ĝnj (Ânε,j)
−1(ĝnj h),(5.14)

where h ∈ Ŷ δ. In fact, we have from (5.6) and Lemma 8 that

‖Sε,δh‖Ĥδ ≤ C sup
n,j
‖ĝnj (Ânε,j)

−1ĝnj ‖ ≤
C

ε2
‖h‖Ŷ δ ,(5.15)

with a constant C > 0 independent of δ in 0 < δ � ε.

We shall show that both Aε,δSε,δ : Ŷ δ → Ŷ δ and Sε,δAε,δ : Ĥδ → Ĥδ are invertible.

In fact, we have

Sε,δAε,δ = IĤδ +
∑

n,j

ĝnj (Ânε,j)
−1(Aε,δ − Ânε,j)ĝnj −

∑

n,j

ĝnj (Ânε,j)
−1[Aε,δ, ĝ

n
j ],(5.16)

with the commutator [Aε,δ, ĝ
n
j ] given by

[Aε,δ, ĝ
n
j ]h = Aε,δ(ĝ

n
j h)− ĝnjAε,δh = ∆(ĝnj h)− ĝnj ∆h = [∆, ĝnj ]h(5.17)

for h ∈ Ĥδ. Then, we can prove that the error term Sε,δAε,δ − IĤδ in (5.16) is small in

the operator norm for 0 < δ � ε. Because the original proof of [9] is not described in

detail at this stage, here we examine it in full length.

First, by (5.6) and Lemmas 8 and 11, we have

(5.18)
∥∥∥
∑

n,j

ĝnj (Ânε,j)
−1(Aε,δ − Ânε,j)(ĝnj h)

∥∥∥
Ĥδ

≤ C sup
n,j
‖ĝnj (Ânε,j)

−1(Aε,δ − Ânε,j)(ĝnj h)‖X̂n
j

≤ C

ε2
sup
n,j
‖(Aε,δ − Ânε,j)(ϕ̂nj h)‖Ŷ n

j
≤ C

ε2
δ4−β(ε) sup

n,j
‖ϕ̂nj h‖X̂n

j

for any h ∈ Ĥδ. Similarly, we have
∥∥∥
∑

n,j

ĝnj (Ânε,j)
−1[Aε,δ, ĝ

n
j ]h
∥∥∥
Ĥδ
≤ C sup

n,j
‖ĝnj (Ânε,j)

−1[Aε,δ, ĝ
n
j ]h‖X̂nj(5.19)

≤ C

ε2
sup
n,j
‖[∆, ĝnj ]h‖Ŷ n

j
.

Now, we shall show that

‖[∆, ĝnj ]h‖Ŷ n
j

= O(δ) sup
n,j
‖ϕ̂nj h‖X̂n

j
(5.20)

as δ ↓ 0. Actually, this part requires several (rather delicate) modifications of the original

paper. First, we note

sup
x∈B̂n

j

|∆ĝnj (x)| ≤ Cδ2, sup
x∈B̂n

j

|∇ĝnj (x)| ≤ Cδ,

and 1 + (δ|x− p̂nj |)2+α = O(1) for x ∈ B̂nj , which implies that
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‖[∆, ĝnj ]h‖2
Ŷ n
j

=

∫

B̂n
j

(1 + (δ|x− p̂nj |)2+α)(2∇ĝnj · ∇h+ (∆ĝnj )h)2δ2dx(5.21)

≤ C

∫

B̂n
j

(|∆ĝnj |2h2 + |∇ĝnj |2|∇h|2)δ2dx

≤ Cδ4

∫

B̂n
j

h2δ2dx+ Cδ2

∫

B̂n
j

|∇h|2δ2dx.

Here, we show the following.

Lemma 12. We have ∫

B̂n
j

(h2 + |∇h|2)δ2dx ≤ C sup
k,l
‖ϕ̂kl h‖2X̂k

l

(5.22)

for any h ∈ Ĥδ.

Proof. Given (n, j) ∈ Z2 × {1, . . . , s}, we put

Jnj = {(k, l) ∈ Z2 × {1, . . . , s} | B̂kl ∩ B̂nj 6= ∅}.(5.23)

The cardinality of Jnj satisfies |J | ≡ supn,j |Jnj | < +∞, because the periodic covering

{B̂nj }n,j of R2 is locally finite. Therefore, Schwarz’ inequality guarantees for any x ∈ B̂nj
that

1 ≡
∑

(k,l)∈Jnj

ϕ̂kl (x) ≤
{ ∑

(k,l)∈Jnj

ϕ̂kl (x)2
}1/2{ ∑

(k,l)∈Jnj

12
}1/2

≤ |J |
∑

(k,l)∈Jnj

ϕ̂kl (x)2,(5.24)

and hence∫

B̂n
j

h2δ2dx ≤ |J |
∑

(k,l)∈Jnj

∫

B̂n
j
∩B̂k

l

(ϕ̂kl )2h2δ2dx(5.25)

≤ C sup
(k,l)∈Jn

j

∫

B̂k
l

(ϕ̂kl h)2δ2

(1 + (δ|x− p̂kl |)2+α)
dx ≤ C sup

k,l
‖ϕ̂kl h‖2X̂k

l

because

C−1 ≤ 1 + (δ|x− p̂nj |)2+α ≤ C

for all x ∈ B̂nj . Similarly, we have
∫

B̂n
j

|∇h|2δ2dx ≤ |J |
∑

(k,l)∈Jn
j

∫

B̂n
j
∩B̂k

l

(ϕ̂kl )2|∇h|2δ2dx ≤ C
∑

k,l

∫

B̂k
l

|ϕ̂kl∇h|2δ2dx(5.26)

≤ C sup
k,l

∫

B̂k
l

|∇(ϕ̂kl h)|2δ2dx+ C sup
k,l

∫

B̂k
l

|∇ϕ̂kl |2h2δ2dx

≤ C sup
k,l

∫

B̂k
l

|∇(ϕ̂kl h)|2δ2dx+ Cδ2 sup
k,l

∫

B̂k
l

h2δ2dx

since |ϕ̂kl∇h| ≤ |∇(ϕ̂kl h)| + |∇ϕ̂kl ||h|. For the first term of the right-hand side, we note

that ϕ̂kl h ∈ C1
c (B̂kl ) by Sobolev’s imbedding theorem, and hence it follows from Young’s
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inequality that
∫

B̂k
l

|∇(ϕ̂kl h)|2δ2dx ≤
∫

B̂k
l

|(ϕ̂kl h)∆(ϕ̂kl h)|δ2dx(5.27)

≤ 1

2

∫

B̂k
l

(ϕ̂kl h)2δ2

(1 + (δ|x− p̂kl |)2+α)
dx

+
1

2

∫

B̂k
l

|∆(ϕ̂kl h)|2(1 + (δ|x− p̂kl |)2+α)δ2dx

≤ 1

2
‖ϕ̂kl h‖2X̂k

l

+
1

2
‖∆(ϕ̂kl h)‖2

Ŷ k
l

≤ ‖ϕ̂kl h‖2X̂k
l

.

Therefore, combining (5.26), (5.27), and (5.25), we obtain
∫

B̂n
j

|∇h|2δ2dx ≤ C(1 + δ2) sup
k,l
‖ϕ̂kl h‖2X̂k

l

,

and the proof is complete.

From (5.21) and Lemma 12, we obtain

‖[∆, ĝnj ]h‖Ŷ n
j
≤ C(δ + δ2) sup

k,l
‖ϕ̂kl h‖X̂k

l
,

and thus (5.20) follows. Therefore, we have from (5.18) and (5.19) that

‖Sε,δAε,δ − IĤδ‖ =
C

ε2
O(δ)→ 0

as δ ↓ 0. On the other hand,

Aε,δSε,δ = IŶ δ +
∑

n,j

ĝnj (Aε,δ − Ânε,j)(Ânε,j)−1ĝnj +
∑

n,j

[Aε,δ, ĝ
n
j ](Ânε,j)

−1ĝnj ,(5.28)

and ‖Aε,δSε,δ − IŶ δ‖ → 0 follows similarly.

Therefore, both Sε,δAε,δ : Ĥδ → Ĥδ and Aε,δSε,δ : Ŷ δ → Ŷ δ are invertible with

‖(Aε,δSε,δ)−1‖ ≤ 2 and ‖(Sε,δAε,δ)−1‖ ≤ 2 uniformly for 0 < δ � ε� 1. Thus, (Aε,δ)
−1 :

Ŷ δ → Ĥδ exists as

(Aε,δ)
−1 = Sε,δ(Aε,δSε,δ)

−1 = (Sε,δAε,δ)
−1Sε,δ.

We also have by (5.15) that

‖(Aε,δ)−1h‖Ĥδ = ‖(Sε,δAε,δ)−1Sε,δh‖Ĥδ ≤ 2‖Sε,δh‖Ĥδ ≤
C

ε2
‖h‖Ŷ δ

for h ∈ Ŷ δ. The proof of Theorem 3 is complete.

6. Completion of proof. We are in a position to apply Banach’s fixed point theorem

to the functional equation Fε,δ(z) = 0. Henceforth, we put Br = {z ∈ Ĥδ | ‖z‖Ĥδ ≤ r}
for r > 0, and introduce the nonlinear mapping Gε,δ : B1 → Ĥδ by

Gε,δ(z) = z − (Aε,δ)
−1Fε,δ(z).(6.1)

Thus, we are seeking a fixed point of Gε,δ in B1. Actually, this is done by the following.

(See Theorem 7.1 of [9].)
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Theorem 4. For any 0 < ε � 1 there exists δε > 0 satisfying limε↓0 δε = 0 such that if

δ ∈ (0, δε) there is a unique fixed point z∗ε,δ in BRδ of Gε,δ, where Rδ = δβ with β ∈ (1, 2).

Proof. We show that Gε,δ is a contractive self-map on Br for r = Rδ = O(δβ) chosen

below. In fact, we have

DGε,δ(z) = I −A−1
ε,δDFε,δ(z) = A−1

ε,δ(Aε,δ −DFε,δ(z)),
and hence Theorem 3 guarantees that

‖DGε,δ(z)‖ ≤ ‖A−1
ε,δ‖‖DFε,δ(z)−Aε,δ‖ ≤

C

ε2
‖DFε,δ(z)−Aε,δ‖(6.2)

for any z ∈ B1.

Now, we have

DFε,δ(z) = ∆ +
∑

n,j

ϕ̂nj ρ̂
n
j e
ε2(ŵnj +v̂nε,j)eε

2zRnj (x)(6.3)

−2ε2
∑

n,j

ϕ̂nj (ρ̂nj )2e2ε2(ŵnj +v̂nε,j)e2ε2zRnj (x)2

and hence

‖(DFε,δ(z) − Aε,δ)h‖Ŷ δ = ‖(DFε,δ(z)−DFε,δ(0))h‖Ŷ δ(6.4)

= sup
n,j
‖ϕ̂nj (DFε,δ(z)−DFε,δ(0))h‖Ŷ n

j

≤ C sup
n,j
‖ϕ̂nj ρ̂nj eε

2(ŵnj +v̂nε,j)Rnj (x)(eε
2z − 1)ϕ̂nj h‖Ŷ n

j

+Cε2 sup
n,j
‖ϕ̂nj (ρ̂nj )2e2ε2(ŵnj +v̂nε,j)Rnj (x)2(e2ε2z − 1)ϕ̂nj h‖Ŷ n

j

for any h ∈ Ĥδ. Because of the maximum principle to (4.14) we have ûnj ≤ 0 and hence

it follows from (4.19) that

ε2ρ̂nj e
ε2(ŵnj +v̂nε,j)Rnj ≤ 1

in B̂nj . We also have

|eε2z(x) − 1| =
∣∣∣∣
d

dt

∫ 1

0

eε
2tz(x)dt

∣∣∣∣ ≤ ε2‖z‖∞eε
2‖z‖∞(6.5)

for all x ∈ R2, and Sobolev’s inequality implies that

‖u‖∞ ≤ C‖u‖W 2,2 ≈ C

δ
‖u‖X̂n

j

for u ∈ X̂n
j in supp u ⊂ B̂nj . From those relations we obtain

(6.6) ‖(DFε,δ(z)−Aε,δ)h‖Ŷ δ ≤ C sup
n,j
‖ϕ̂nj z‖∞(eε

2‖z‖∞ + e2ε2‖z‖∞)‖ϕ̂nj h‖X̂n
j

≤ C

δ
sup
n,j
‖ϕ̂nj z‖X̂n

j
(2 + 3ε2‖z‖∞)‖ϕ̂nj h‖X̂n

j
≤ C

δ
‖z‖Ĥδ (1 +

C

δ
‖z‖Ĥδ )‖h‖Ĥδ

since ex(1 + ex) = 2 + 3x+ o(x) as x→ 0.

We conclude from (6.6) and (6.2) that

‖DGε,δ(z)‖ ≤
1

2
(z ∈ BRδ)(6.7)
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for 0 < ε� 1 if
CRδ
δ

(
1 +

C

δ
Rδ

)
≤ 1

2
ε2.(6.8)

If we take Rδ = δβ for β ∈ (1, 2), this requirement (6.8) follows from

Cδβ−1(1 + Cδβ−1) ≤ ε2

2

or equivalently, δβ−1 ≤ ε2

4C . Therefore, setting

δε =

(
ε2

4C

)1/(β−1)

(6.9)

we see that (6.7) holds for δ ∈ (0, δε) and Rδ = δβ , which implies that Gε,δ is a contraction

on BRδ .

Next, we have for z ∈ BRδ that

‖Gε,δ(z)‖Ĥδ ≤ ‖Gε,δ(z)−Gε,δ(0)‖Ĥδ + ‖Gε,δ(0)‖Ĥδ
≤ 1

2
‖z‖Ĥδ + ‖A−1

ε,δFε,δ(0)‖Ĥδ ,
and it follows from Theorem 3 and Lemma 10 that

‖A−1
ε,δFε,δ(0)‖Ĥδ ≤ ‖A

−1
ε,δ‖‖Fε,δ(0)‖Ŷ δ ≤

C

ε4
δ2| log δ|.

Therefore, if C
ε4 δ

2| log δ| ≤ 1
2Rδ then Gε,δ(BRδ) ⊂ BRδ . Because Rδ = δβ , this is

equivalent to δ2−β | log δ| ≤ 1
2C ε

4, which means that δ ∈ (0, δε) for some δε > 0 with

limε↓0 δε = 0. The proof is complete.

Theorem 4 assures that

ûε,δ(x) =
∑

n∈Z2

s∑

j=1

ϕ̂nj (x)(log(ε2ρ̂nj (x)) + ε2ŵnj (x) + ε2v̂nε,j(x)) + ε2z∗ε,δ(x)(6.10)

is a solution to (2.2). On the other hand, it is obvious that z∗ε,δ(· + êk) ∈ BRδ and

Fε,δ(z
∗
ε,δ(· + êk)) = Fε,δ(z

∗
ε,δ) = 0. Hence from the uniqueness of the fixed point of

Gε,δ in BRδ , we have z∗ε,δ(x + êk) = z∗ε,δ(x) for any x ∈ R2 and k = 1, 2. This implies

ûε,δ(x+ êk) = ûε,δ(x) for k = 1, 2 and ûε,δ is a doubly periodic solution to (2.2).

Back to (1.1), given κ = 2εδ > 0 with 0 < ε � 1, we have δε > 0 such that if

δ ∈ (0, δε) there is a solution uε,δ to (1.1). It has the form

uε,δ(x) =

s∑

j=1

φj(x)u∗ε,mj (|x− pj |/δ) + ε2z∗ε,δ(x/δ)(6.11)

for x ∈ Ω, with u∗ε,mj (|· −pj |/δ) standing for the radially symmetric single vortex solution

with the vortex point pj and multiplicity mj . Once this expression is obtained, we can

evaluate the asymptotic behavior of |φκ| = exp(uε,δ/2) exactly in the same way as in

Proposition 8 of [9]. We just state it for completeness.

Theorem 5. If κ = 2εδ with 0 < ε � 1 and δ ∈ (0, δε), then |φκ| = exp(uε,δ/2) defined

for uε,δ given by (6.11) satisfies the following:

(1) |φκ| < 1 on Ω and vanishes exactly at the vortex points pj.
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(2) |φκ| → 0 in Cqloc(Ω \ {p1, . . . , ps}) for any q ≥ 0 as κ→ 0.

(3) 4
κ2 |φκ|2(1− |φκ|2) ⇀ 4π

∑s
j=1mjδpj in the sense of measures on Ω as κ ↓ 0.

Note. After completing the work, we noticed that Nolasco’s paper has appeared in Comm. Pure

Appl. Math. 56 (2003), 1752–1780. In that paper, she provided several modifications of the orig-

inal preprint ([9]), and the numbers of formulas and propositions are changed. In particular,

formula (6.34), Theorem 7.1, and Proposition 8 referred to in our paper are formula (6.36), The-

orem 6.6, and Proposition 7.1 of the modified version, respectively. Lemma 6.4 of the original

paper is corrected just as we pointed out (Lemma 11), but other parts still seem to need modifi-

cations. So far, we have confirmed that her result is correct in the case of s ≥ 2, but fortunately,

this is also the case for s = 1. It is proven by a slightly different covering of vortices, and detailed

arguments will be published elsewhere.
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