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Abstrat. Assuming that a Markov proess satis�es the minorization property, existene andproperties of the solutions to the additive and multipliative Poisson equations are studied usingsplitting tehniques. The problem is then extended to the study of risk sensitive and risk neutralontrol problems and orresponding Bellman equations.
1. Introdution. On a probability spae (Ω,F , P ) onsider a Markov proess X = (xn)taking values on a omplete separable metri state spae E endowed with the Borel
σ-algebra E . Assume that (xn) has a transition operator P (xn, ·) at time n, i.e., for
D ∈ E we have P{xn+1 ∈ D|x0, x1, . . . , xn} = P (xn,D), P a.e. Let c : E → R beontinuous and bounded and γ > 0. We would like to �nd onstants λ and λγ suh thatthe funtions

w(x) := Ex

{

∞
∑

i=0

(c(xi) − λ)
} (1)
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58 G. B. DI MASI AND Ł. STETTNERand
ewγ(x) := Ex

{

exp
{

∞
∑

i=0

γ(c(xi) − λγ)
}} (2)are well de�ned.The problems above are losely related to the existene of solutions: a onstant λand a funtion w or onstant λγ and funtion wγ respetively to the following equations:additive Poisson equation (APE)

w(x) + λ = c(x) + Pw(x) (3)where Pf(x) := Ex {f(x(1))} =
∫

E
f(y)P (x, dy), or multipliative Poisson equation(MPE)

ewγ(x)+λγ = eγc(x)

∫

E

ewγ(y)P (x, dy) (4)respetively. In fat the funtions w and wγ de�ned in (1) and (2) are natural andidatesfor solutions to (3) and (4) respetively.A su�ient ondition for existene of solutions to APE is (see [9℄ and [5℄) uniformergodiity of (xn), i.e.
sup
A∈E

sup
x,z∈E

|P (x,A) − P (z,A)| < 1. (5)In the ase of MPE a su�ient ondition for the existene of solutions an be formulatedas follows (see [2℄ and [5℄)
sup

x,z∈E

h(P (x, ·), P (z, ·)) < ∞ (6)where h(µ, ν) := supA,B∈E ln µ(A)ν(B)
ν(A)µ(B) is the so alled Hilbert norm in the spae P(E) ofprobability measures on E.In the paper we shall formulate more general onditions than (5) and (6) for theexistene of solutions of APE and MPE and study limit behavior of the solutions toMPE with risk fator γ onverging to 0.We will be furthermore interested in the ontrol of a Markov proess. For this purposewe shall assume that (xn) has a ontrolled transition operator P an(xn, ·) at time n, where

an is the ontrol at time n taking values on a ompat metri spae U and adapted tothe σ-algebra σ{x0, x1, . . . , xn}.Let now c : E × U → R be ontinuous bounded. We are looking for a ontrol (an)minimizing the following ost funtionals: risk neutral (average ost per unit time)
J((an)) := lim sup

n→∞

1

n
E(an)

x

{

n−1
∑

i=0

c(xi, ai)
} (7)or risk sensitive ost funtional

Jγ((an)) :=
1

γ
lim sup

n→∞

1

n
lnE(an)

x

{

exp
{

n−1
∑

i=0

γc(xi, ai)
}}

, (8)where E
(an)
x stands for expetation with respet to the onditional probability measureunder ontrol sequene (an), given the initial state x of the ontrolled proess (xn).



POISSON EQUATIONS 59The study of risk sensitive funtional is motivated by the fat that it measures not onlythe average ost but also higher moments of the average ost in partiular its varianewith weight γ (see [1℄ for �nanial motivation of these kind of problems). It an be alsoonsidered as a dual problem to the minimization of the probability that the average ostis greater that a given benhmark (see [7℄).The following Bellman equations orrespond to the ost funtionals (7) and (8) re-spetively
w(x) + λ = inf

a∈U
(c(x, a) + P aw(x)) (9)where P af(x) :=

∫

E
f(y)P a(x, dy), and
ewγ(x)+γλγ = inf

a∈U

(

eγc(x,a)

∫

E

ewγ(y)P a(x, dy)
)

. (10)One an expet that λ and λγ are optimal values of the ost funtionals (7) and (8)respetively.In what follows we shall assume the following Feller property(F): U × E ∋ (a, x) 7→ P af(x) is ontinuous for f ∈ C(E).Under (F) and ontrolled uniform ergodiity of the form
sup
A∈E

sup
a,a′∈U

sup
x,z∈E

|P a(x,A) − P a′

(z,A)| < 1 (11)there is (see [9℄) a bounded ontinuous funtion w and a unique onstant λ whih solvethe Bellman equation (9). Furthermore
λ = inf

(an)
J((an)) = J(û(xn)), (12)where û is a Borel measurable funtion for whih the in�mum on the right hand side of(9) is attained.If additionally to (F) we have that

sup
x,z∈E

sup
a,a′∈U

h(P a(x, ·), P a′

(z, ·)) < ∞ (13)then there exist (see [2℄) a bounded funtion wγ and a unique onstant λγ for whih theBellman equation (10) is satis�ed. Moreover
λγ = inf

(an)
Jγ((an)) = Jγ((ûγ(xn))), (14)where ûγ is a funtion for whih the in�mum in the right hand side of (10) is attained.We shall onsider the following two lasses of ontrols: Markov ontrols UM = {(an) :

an = un(xn)}, where un : E → U , and stationary ontrols Us = {(an) : an = u(x(n))},where u : E → U . We shall also indentify a Markov ontrol an = un(xn) with thesequene (un) of Borel measurable funtions un : E → U . Similarly a stationary ontrol
an = u(xn) shall be identi�ed with the Borel measurable funtion u : E → U .In the paper we generalize results onerning the existene of solutions to additiveand multipliative unontrolled and ontrolled Poisson equations. The assumptions (5),(6) and (11), (13) are mainly satis�ed when the state spae is ompat. Our purpose isto show the existene results under assumptions satis�ed by ergodi proesses on loally



60 G. B. DI MASI AND Ł. STETTNERompat spaes. Sine we shall use the so alled splitting tehnique of Markov proessesintrodued in [6℄ we shall assume the following minorization property:(A1) ∃β>0 ∃C compact∈E ∃ν∈P(E) with ν(C) = 1 suh that ∀A∈E

inf
x∈C

inf
a∈U

P a(x,A) ≥ βν(A).Furthermore the following ergodiity assumption will be onsidered(A2) C in (A1) is ergodi, i.e. ∀(an)∈UM
∀x∈E E

(an)
x {τC} < ∞, where τC = inf{i > 0 :

xi ∈ C} and ∀(an)∈UM

sup
x∈C

E(an)
x {τC} < ∞.Notie that assumptions (A1) and (A2) are roughly satis�ed by nondegenerate ergodiproesses on loally ompat state spae E, where C is a ball whih is a positive reurrentset. Given the set C satisfying (A1) and (A2) and the Markov ontrol (un) we onsider anew state spae Ê = {C×{0}∪C×{1}∪ (E \C)×{0}} and splitting of (xn) in the form

x̂n = (x1
n, x2

n) ∈ Ê with Markov ontrol of the form an = un(x1
n) and dynamis de�nedin the following way:(i) when (x1

n, x2
n) ∈ C × {0}, x1

n moves to y aordingly to (1 − β)−1(P an(x1
n, dy) −

βν(dy)) and whenever y ∈ C, x2
n is hanged into x2

n+1 = βn+1, where βn is i.i.d.
P{βn = 0} = 1 − β, P{βn = 1} = β,(ii) when (x1

n, x2
n) ∈ C × {1}, x1

n moves to y aordingly to ν and x2
n+1 = βn+1,(iii) when (x1

n, x2
n) ∈ (E \ C) × {0}, x1

n moves to y aordingly to P an(x1
n, dy) andwhenever y ∈ C, x2

n is hanged into x2
n+1 = βn+1.Let C0 = C × {0}, C1 = C × {1}. The following properties of the split Markov proessare shown in [3℄Lemma 1. Under Markov ontrol (an) ∈ UM the proess (x̂n = (x1

n, x2
n)) is Markov withtransition operator P̂ an(x̂n, dy) de�ned by (i)�(iii) and has a unique invariant measure

Ψ(an) given by the formula
Ψ(an)(A) =

Ê
(an)
z {

∑τC1
i=1 χA(x̂i)}

Ê
(an)
z {τC1

}
, (15)with z ∈ C1, for any Borel subset A of Ê, where E

(an)
z stands for the onditional law ofthe Markov proess x̂n with initial state z. Furthermore the �rst oordinate (x1

n) is alsoa Markov proess with transition operator P an(x1
n, dy).Corollary 1. For any bounded Borel measurable funtion f : Em → R, m = 1, 2, . . . ,and ontrol (an) ∈ UM we have

E(an)
x {f(x1, x2, . . . , xm)} = Ê

(an)
δ∗

x
{f(x1

1, x
1
2, . . . , x

1
m)} (16)where δ∗x = δ(x,0) for x ∈ E \ C and δ∗x = (1 − β)δ(x,0) + βδ(x,1) for x ∈ C.The paper onsists of 8 setions. We formulate �rst the existene results for APEwhih generalize results of [4℄ proved there in a more spei� ase and reall results onMPE from [3℄. In setion 4 we show that APE an be onsidered as the limit of MPEsletting the risk fator γ tend to 0. Starting from setion 5 we onsider a uniformly ergodi



POISSON EQUATIONS 61approximation of Markov proesses. An approximating proess with transition operator
P a

N (x, dy) satis�es assumptions (11) and (13), so that we have the existene of solutionsto ontrolled APE and MPE. In setion 6 using the above approximation we show theexistene of solutions to APE for proesses satisfying (A1) and (A2). In setion 7 we reallthe existene results for ontrolled MPE from [3℄ and �nally in setion 8 we onsider theasymptotis of MPE for the risk fator γ onverging to 0.2. The study of additive Poisson equation. We start with an obvious lemma whihfollows diretly from the boundedness of c, and onditions (A1) and (A2)Lemma 2. Given Borel measurable u : E → U there is a unique λ(u) suh that for x ∈ C1

Êx

{

τC1
∑

i=1

(c(x1
i , u(x1

i )) − λ(u))
}

= 0. (17)Furthermore λ(u) =
∫

Ê
c(x1, u(x1))Ψu(dx).For Borel measurable u : E → U let
ŵu(x) := Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λ(u))
}

. (18)In analogy to [4℄ (see also [3℄), where more spei� ase was studied, we an show thefollowing results:Lemma 3. The funtion ŵu is a solution to the additive Poisson equation (APE) for thesplit Markov proess (x̂n):
ŵu(x) = c(x1, u(x1)) − λ(u) +

∫

Ê

ŵu(y)P̂u(x1)(x, dy). (19)Furthermore, if ŵ and λ satisfy the equation
ŵ(x) = c(x1, u(x1)) − λ +

∫

Ê

ŵ(y)P̂u(x1)(x, dy) (20)and ŵ is integrable with respet to the measure Ψu then λ = λ(u) (de�ned in Lemma 2)and ŵ di�ers from ŵu by an additive onstant Ψu almost everywhere.Corollary 2. Given a solution w̃u : Ê → R to APE we have that wu de�ned by
wu(x) := w̃u(x, 0) + 1C(x)β(w̃u(x, 1) − w̃u(x, 0)) (21)is a solution to APE for the original Markov proess (xn)

wu(x) = c(x, u(x)) − λ(u) +

∫

E

wu(y)Pu(x)(x, dy). (22)Furthermore if wu is a solution to (22) then w̃u de�ned by
w̃u(x1, x2) = c(x1, u(x1)) − λ(u) + Êx1,x2

{

wu(x1(1))
} (23)is a solution to (19).



62 G. B. DI MASI AND Ł. STETTNERProposition 1. For Borel measurable u : E → U the value λ(u) de�ned in Lemma 2 isequal to
λ(u) = lim

n→∞

1

n
Ex

{

n−1
∑

i=0

c(xi, u(xi))
}

. (24)
3. The study of the multipliative Poisson equation. To study the MPE we needa stronger assumption than (A2). Fix γ > 0. We shall impose the ondition that(A3) ∀(an)∈Us

∃d s.t. ∀x∈Ê

Ê(an)
x

{

exp
{

τC1
∑

i=1

γ(c(x1
i , ai) − d)

}}

< ∞and for x ∈ C1

Ê(an)
x

{

exp
{

τC1
∑

i=1

γ(c(x1
i , ai) − d)

}}

≥ 1.Under (A3) we easily obtainLemma 4. Under (A3) for Borel measurable u : E → U there is a unique λγ(u) suh that
Ê(an)

x

{

exp
{

τC1
∑

i=1

γ(c(x1
i , ai) − λγ(u))

}}

= 1 (25)for x ∈ C1.For Borel measurable u : E → U and γ > 0 for whih (A3) holds de�ne
eŵu

γ (x) = Êu
x

{

exp
{

τC1
∑

i=0

γ(c(x1
i , u(x1

i )) − λγ(u))
}}

, (26)For a Borel measurable funtion w̃ : Ê → R de�ne the operator Φ(w̃) by the formula
eΦ(w̃) = (1 − β)

∫

C

ew̃(x,0)ν(dx) + β

∫

C

ew̃(x,1)ν(dx) (27)whenever it is well de�ned. We have (see [3℄ for the proofs)Lemma 5. The funtion ŵu
γ de�ned in (26) is a solution to the multipliative Poissonequation (MPE) for the split Markov proess (x̂n):

eŵu
γ (x) = eγc(x1,u(x1))−λγ(u)

∫

Ê

eŵu
γ (y)P̂u(x1)(x, dy). (28)Moreover Φ(ŵu

γ ) = 0, and for any other solution w̃u to (28) we have
w̃u(x) − Φ(w̃u) ≥ ŵu

γ (x) (29)with equality for Ψu almost all x ∈ Ê. Furthermore, if w̃ and λ satisfy the equation
ew̃(x) = eγc(x1,u(x1))−λ

∫

Ê

ew̃(y)P̂u(x1)(x, dy) (30)then λ ≥ λγ(u).



POISSON EQUATIONS 63Corollary 3. For x ∈ E and a solution w̃u : Ê → R and λ to MPE (28) we have that
wu de�ned by

ewu(x) := ew̃u(x,0) + 1C(x)β(ew̃u(x,1) − ew̃u(x,0)) (31)is a solution to MPE for the original Markov proess (xn)

ewu(x) = eγc(x,u(x))−λ

∫

E

ewu(y)Pu(x)(x, dy). (32)Furthermore if wu is a solution to (32) then w̃u de�ned by
ew̃u(x1,x2) = eγc(x1,u(x1))−λÊx1,x2{ewu(x1

1)} (33)is a solution to (28).From Proposition 1 of [3℄ we haveProposition 2. If for Borel measurable u : E → U(D1): Ê
(an)
x {exp{γ‖c‖spτC1

}} < ∞ for x ∈ Ê, with an = u(x1
n),where ‖c‖sp := sup(x,a)∈E×U c(x, a) − inf(x,a)∈E×U c(x, a), then for x ∈ E

λγ(u) =
1

γ
lim

n→∞

1

n
lnEu

x

{

exp
{

n−1
∑

i=0

γc(xi, u(xi)))
}}

. (34)
4. Asymptotis of MPEs. Given Borel measurable u : E → U assume that we have(D1) satis�ed for 0 < γ < γ0. Then by Proposition 2 there are solutions λγ(u) and wu

γ tothe MPE (32) and λγ(u) is of the form (34). We are now interested in the limit behaviorof λγ(u) and wu
γ as γ → 0.Proposition 3. We have that λγ(u) dereases to λ(u) and wu

γ (x) onverges to wu(x) for
Uu

1 (ν, ·) almost all x ∈ E as γ ↓ 0, where λ(u) and wu are solutions to the APE (22) and
Uu

1 (ν, ·) =
∑∞

i=1 2−iPui(ν, ·).Proof. Notie �rst that by the Hölder inequality
1

γ1
lnEu

x

{

exp
{

n−1
∑

i=0

γ1c(xi, u(xi)))
}}

≤
1

γ2
lnEu

x

{

exp
{

n−1
∑

i=0

γ2c(xi, u(xi)))
}} (35)whenever 0 < γ1 ≤ γ2. Therefore by (34) λγ(u) is dereasing as γ → 0. Consequently λ0 =

limγ↓0 λγ(u). Consider now the split Markov proess (x̂n) orresponding to a stationaryontrol u. Let ŵu
γ be given by (26). Then

eŵu
γ (x) ≤ Êu

x

{

exp
{

τC1
∑

i=0

γ(c(x1
i , u(x1

i )) − λ0)
}}

. (36)Consequently by de l'Hospital's rule we have
lim sup

γ↓0
ŵu

γ (x) ≤ lim sup
γ↓0

1

γ
ln Êu

x

{

exp
{

τC1
∑

i=0

γ(c(x1
i , u(x1

i )) − λ0)
}}

= Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λ0)
}

. (37)
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lim inf
γ↓0

1

γ
ŵγ(x) ≥ lim inf

γ↓0
ln Êu

x

{

exp
{

τC1
∑

i=0

γ(c(x1
i , u(x1

i )) − λγ̄)
}}

= Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λγ̄)
}

. (38)Therefore
Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λγ̄)
}

≤ lim inf
γ↓0

1

γ
ŵγ(x)

≤ lim sup
γ↓0

1

γ
ŵγ(x) ≤ Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λ0)
} (39)and letting γ̄ → 0 we obtain that

lim
γ↓0

1

γ
ŵu

γ (x) = Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λ0)
}

:= w(x). (40)Sine ŵu
γ (x0) = γ(c(x0, u(x0)) − λγ(u)) for x0 ∈ C1, we have w(x0) = c(x0, u(x0)) − λ0.Therefore by Lemma 3, λ0 = λ(u) and w(x) = ŵu(x) for Ψu almost all x ∈ Ê. From(21), (31) and the form (15) of the invariant measure Ψu we immediately have that

limγ↓0 wu
γ (x) = wu(x) for Uu

1 (ν, ·) almost all x ∈ E, whih ompletes the proof.5. Approximations to the Markov proess. In this setion we shall introdue an ap-proximation to a Markov transition operator in the form of a Markov transition operatorsatisfying ondition (13). We assume �rst that(A4) P a(x,A) =
∫

A
p(x, a, y)ν(dy)where p > 0 is a ontinuous funtion. Moreover letting |x| := ρ(x, θ), where ρ is a metrion E and θ ∈ E is a �xed point de�ne

p̃N (x, a, y) =



































p(x, a, y)

∆a
N (x)

for |y| ≤ N

p(θ, ā, y)

∆a
N (x)

for |y| ≥ N + 1

p(x, a, y)(N + 1 − |y|) + p(θ, ā, y)(|y| − N)

∆a
N (x)

elsewherewith ∆a
N (x) = P a(x,BN )+P ā(θ,Bc

N+1)+
∫

BN+1\BN
[p(x, a, y)(N+1−|y|)+p(θ, ā, y)(|y|−

N)]ν(dy), where BN = {x ∈ E : |x| ≤ N} and ā is a �xed element of U . Then let
pN (x, a, y) = p̃N (x, a, y) if |x| ≤ N

pN (x, a, y) = p̃N

(

x
|x|N, a, y)

) for |x| > N ,and de�ne
P a

N (x, dy) = pN (x, a, y)ν(dy) (41)We learly have



POISSON EQUATIONS 65Lemma 6.
sup
a∈U

‖P a
N (x, ·) − P a(x, ·)‖var → 0 (42)as N → ∞, uniformly in x from ompat sets. Furthermore for eah N

sup
a,a′∈U

sup
x,x′∈E

sup
y∈E

pN (x, a, y)

pN (x′, a′, y)
< ∞ (43)whih means that (13) is satis�ed.Remark 1. For the ontrolled Markov proess with transition operator P a

N (x, dy) de�nedin (41) we learly have that onditions (F), (11) and (13) are satis�ed. Consequently wehave solutions w(N), λ(N) and w
(N)
γ , λ

(N)
γ to the Bellman equations (9) and (10) respe-tively with operator P a replaed by P a

N . Furthermore, there exist optimal stationaryontrols û(N) and û
(N)
γ , whih are in fat seletors to the right hand sides of (9) and (10)respetively, for the ost funtionals J (N) and J

(N)
γ whih orrespond to the funtionals

J and Jγ with operator P a replaed by P a
N .6. Solution to additive Bellman equation. We shall need the following assumption:(A5) ∃ǫ>0 suh that ∀K compact,⊂Ê

sup
a∈U

sup
x∈K

sup
N

Êa,N
x

{
∣

∣

∣

τC1
∑

i=1

(c(x1
i , û

(N)(x1
i )) − λ(N))

∣

∣

∣

1+ǫ}

= M(K) < ∞, (44)where the ontrol at the �rst time is a0 = a and an = û(N)(x1
n) for n ≥ 1.Notie that (A5) in partiular is satis�ed when sup(an) supx∈K Ê

(an),N
x {τ1+ǫ

C1
} < ∞whih is satis�ed when C is a positive reurrent set whih the proess enters no matterwhat kind of ontrol is used.Theorem 1. Under (A5) there exist λ and a ontinuous funtion w : E → R suh that

w(x) = inf
a∈U

[

c(x, a) − λ +

∫

E

w(y)P a(x, dy)
]

. (45)Moreover λ is an optimal value of the ost funtional (7) within the lass of ontrols
u from Us suh that Ê

u(x1)
x1,x2

{

w(x1
1)

} is Ψu integrable. The ontrol û for whih the in�-mum in (45) is attained, is an optimal ontrol. If for an admissible ontrol (an) we have
limt→∞

1
t
E

(an)
x {w(xt)} = 0 then λ ≤ Jx((an)).Proof. The proof onsists of several steps:Step 1. Notie �rst that if ŵû(N)

N is a solution to APE orresponding to transition operator
P û(N) we have

Êa,N
x {1C1

(x̂1)ŵ
û(N)

N (x̂1)} = Êa,N
x {χC1

(x̂1)(c(x
1
1, û

(N)(x1
1)) − λ(N)(û(N)))}and

Êa,N
x {1Cc

1
(x̂1)ŵ

û(N)

N (x̂1)} = Êa,N
x

{

χCc
1
(x̂1)

τC1
∑

i=1

(c(x1
i , û

(N)(x1
i )) − λ(N)(û(N)))

}



66 G. B. DI MASI AND Ł. STETTNERand therefore by (A5) the terms
f

a,N
1 (x) := Êa,N

x {1C1
(x̂1)ŵ

û(N)

N (x̂1)},

f
a,N
2 (x) := Êa,N

x {1C0
(x̂1)ŵ

û(N)

N (x̂1)}and
f

a,N
3 (x) := Êa,N

x {1(E\C)×{0}(x̂1)ŵ
û(N)

N (x̂1)}are bounded in N uniformly on ompat subsets of (E0 ∪ C1) × U .Step 2. We show now that for N = 1, 2, . . . , the funtions f
a,N
1 (x), f

a,N
2 (x) and f

a,N
3 (x)are equiontinuous in x and a from ompat subsets of E0 ∪ C1 and U respetively.Notie that by (42) for eah ompat set K ⊂ E0 ∪ C1, ε′ > 0 there is a ompat set

K1 ⊃ C0 ∪ C1 suh that
sup
a∈U

sup
x∈K

sup
N

P̂ aN
x {x̂1 ∈ Kc

1} < ε′. (46)Furthermore by the Hölder inequality
sup
a∈U

sup
x∈K

sup
N

∣

∣

∣
Êa,N

x

{

1Kc
1
(x̂1)

τC1
∑

i=1

(c(x1
i , û

(N)(x1
i )) − λN (û(N)))

}
∣

∣

∣

≤ sup
a∈U

sup
x∈K

sup
N

(P̂ a,N
x {x̂1 ∈ Kc

1})
ε

1+ε sup
a∈U

sup
x∈K

sup
N

(

Êa,N
x

{∣

∣

∣

τC1
∑

i=1

(c(x1
i , û

N (x1
i ))

− λN (ûN ))
∣

∣

∣

(1+ǫ)})
1

1+ε

≤ ε′
ε

1+ε (M(K))
1

1+ε . (47)Now for a, a′ ∈ U , x, x′ ∈ Ê

|fa,N
1 (x) − f

a′,N
1 (x′)| ≤ ‖c‖‖P̂ aN (x,C1 ∩ ·) − P̂ a′N (x′, C1 ∩ ·)‖var, (48)

|fa,N
2 (x) − f

a′,N
2 (x′)| ≤ sup

x∈C0

|ŵû(N)

N (x)|‖P̂ aN (x,C0 ∩ ·) − P̂ a′N (x′, C0 ∩ ·)‖var (49)and using (47)
|fa,N

3 (x) − f
a′,N
3 (x′)| ≤ sup

x∈K1

|ŵû(N)

N (x)|‖P̂ aN (x,K1 ∩ ·) − P̂ a′N (x′,K1 ∩ ·)‖var

+ 2ε′
ε

1+ε (M(K))
1

1+ε . (50)For δ > 0 hoose K1 in (46) suh that ε′
ε

1+ε (M(K))
1

1+ε < δ
4 . For x, x′ ∈ E0 ∪ C1 and a,

a′ ∈ U suh that
‖P̂ aN (x,C1 ∩ ·) − P̂ a′N (x′, C1 ∩ ·)‖var ≤

δ

2‖c‖
(51)and

‖P̂ aN (x,K1 ∩ ·) − P̂ a′N (x′,K1 ∩ ·)‖var ≤
δ

2 supz∈K1
|ŵû(N)

N (z)|
(52)by (48)�(50) we obtain that

max
i=1,2,3

|fa,N
i (x) − f

a′,N
i (x′)| ≤ δ.



POISSON EQUATIONS 67Now by (A5) supz∈K1
|ŵû(N)

N (z)| is bounded in N and therefore by (42) we an hoose x,
x′ and a, a′ in (51) and (52) uniformly in N , whih ompletes the proof of equiontinuity.Step 3. By step 1, 2 and (21) we immediately see that Ea,N

x {wû(N)

N (x1)} is uniformly (inN)bounded and equiontinuous in x and a from ompat subsets of E × U . Sine û(N) isoptimal for P a
N (x, dy) we have that wûN

N = w(N). Therefore by Asoli's theorem (thm. 33of [8℄) there is a subsequene Nk suh that Ea,Nk
x {w(Nk)(x1)} onverges uniformly in

a ∈ U and x from ompat subsets of E and λ(Nk)(û(Nk)) → λ (sine λN (û(N)) ∈

[infx∈E,a∈U c(x, a), supx∈E,a∈U c(x, a)]). Consequently there is a ontinuous funtion wsuh that
w(x) = inf

a∈U

[

c(x, a) − λ + lim
k→∞

∫

E

w(Nk)(y)P a
Nk

(x, dy)
]

. (53)Moreover, sine w(N) = wû(N)

N is a solution to the suitable Bellman equation (9) (seeRemark 1) we have that
w(x) = lim

k→∞
inf
a∈U

[

c(x, a) − λ +

∫

E

w(Nk)(y)P a
Nk

(x, dy)
]

= lim
k→∞

(λ − λ(Nk)(û(Nk)) + w(Nk)(x)) = lim
k→∞

w(Nk)(x). (54)Step 4. To prove that the funtion w de�ned in (53) is a solution to the Bellman equation(45) it remains to show that
lim

k→∞
Ea,Nk

x {w(Nk)(x1)} = Ea
x{w(x1)}. (55)In fat, by (A5) and Fatou's lemma

Ea
x{w(x1)} ≤ lim

k→∞
Ea,Nk

x {w(Nk)(x1)} < ∞. (56)By step 1 and 2 one an �nd a ompat set K1 ⊃ C suh that
sup
N

sup
a∈U

Ea,N
x {1Kc

1
(x1)|w

(N)(x1)|} ≤
ε

3
(57)and

sup
a∈U

Ea
x{1Kc

1
(x1)|w(x1))|} ≤

ε

3
. (58)Therefore

|Ea
x{w(x1)} − Ea,Nk

x {w(Nk)(x1)}|

≤ |Ea
x{1K1

(x1)w(x1)} − Ea,Nk
x {1K1

(x1)w(x1)}|

+ |Ea,Nk
x {1K1

(x1)(w(x1) − w(Nk)(x1))}|

+ Ea,Nk
x {1Kc

1
(x1)w

(Nk)(x1)} + Ea
x{1Kc

1
(x1)w(x1)}

≤ sup
x∈K1

|w(x)|‖P a(x,K1 ∩ ·) − P aN (x,K1 ∩ ·)‖var + sup
x∈K1

|w(x) − w(Nk)(x)| +
2ε

3
.Consequently letting k → ∞ and taking into aount that ε may be arbitrarily small weobtain the onvergene (55). By ontinuity in x and a of the right hand side of (45) wehave the existene of a Borel measurable funtion û for whih the in�mum is attained.



68 G. B. DI MASI AND Ł. STETTNERStep 5. We shall show now that for Borel measurable u : E → U we have λ(u) ≥ λ. Infat, then
w(x) ≤ c(x, u(x)) − λ +

∫

E

w(y)Pu(x)(x, dy). (59)De�ne following (23)
ŵu(x1, x2) = c(x1, u(x1)) − λ + Ê

u(x1)
x1,x2 {w(x1

1)}. (60)Sine by Corollary 1 for a ∈ U

Ea
x{w(x1)} = Êa

δ∗

x
{w(x1

1)}

= 1C(x)[(1 − β)Êa
(x,0){w(x1

1)} + βÊa
(x,1){w(x1

1)}] + 1E\C(x)Êa
(x,0){w(x1

1)}from (59) we have
w(x) ≤ c(x, u(x)) − λ + 1C(x)[(1 − β)Ê

u(x)
(x,0){w(x1

1)} + βÊ
u(x)
(x,1){w(x1

1)}]

+ 1E\C(x)Ê
u(x)
(x,0){w(x1

1)}

= 1C(x)((1 − β)ŵu(x, 0) + βŵu(x, 1)) + 1E\C(x)ŵu(x, 0).Therefore
Ê

u(x1)
(x1,x2){w(x1

1)} ≤ Ê
u(x1)
(x1,x2){1C(x1

1)((1 − β)ŵu(x1
1, 0) + βŵu(x1

1, 1)) + 1E\C(x1
1)ŵ

u(x1
1, 0)}

= Ê
(u(x1)
(x1,x2){ŵ

u(x1)}. (61)Consequently by (60) we have that
ŵu(x1, x2) ≤ c(x1, u(x1)) − λ + Ê

u(x1)
(x1,x2){ŵ

u(x1)}. (62)Integrating both sides of the last inequality with respet to measure Ψu we obtain that
λ ≤ λ(u).Step 6. By Proposition 1 and step 5 we have for any Borel measurable u : E → U

λ = λ(û) = Jx(û(xn)) ≤ Jx((u(xn))),whih shows optimality of (û(xn)) within the lass of stationary ontrols. If for an ad-missible ontrol (an) we have lim supt→∞
1
t
E

(an)
x {w(xt)} = 0, then iterating (45) weobtain

w(x) ≤ E(an)
x

{

t−1
∑

i=0

(c(xi, ai) − λ) + w(xt)
}

and dividing both sides of the last inequality by t and letting t to in�nity we obtain that
Jx((an)) ≥ λ whih ompletes the proof.7. Solution to multipliative Bellman equation. Assume now that(A6) ∃ǫ>0 suh that ∀K compact⊂Ê

sup
a∈U

sup
x∈K̂

sup
N

Êa,N
x

{

exp
{

τC1
∑

i=1

γ(c(x1
i , û

(N)
γ (x1

i )) − λ(N)
γ (û(N)

γ ))
}}1+ǫ

< ∞, (63)where the ontrol at the �rst time is a0 = a and an = uN (x1
n) for n ≥ 1.



POISSON EQUATIONS 69A su�ient ondition for (A6) an be found in [3℄. We an now reall Theorem 1 of [3℄:Theorem 2. Under (A1)�(A4) and (A6) there exist λγ and a ontinuous funtion wγ :

E → R suh that
ewγ(x) = inf

a∈U

[

eγc(x,a)−λγ

∫

E

ewγ(y)P a(x, dy)
]

. (64)Moreover, under:(D2) supN sup(an)∈Us
Ê

(an),N
x {exp{γ‖c‖spτC1

}} < ∞ for x ∈ C1(D3) sup(an)∈Us
Ê

(an)
x {exp{(1+ε)γ‖c‖spτC1

}} < ∞ for x ∈ C1 and a su�iently small
ε > 0,we have that

λγ = inf
(an)∈Us

Jγ((an)) = lim
N→∞

λ(N)
γ (û(N)

γ ). (65)Assuming additionally that (D1) is satis�ed for ân = û(xn), where û is a Borel measurablefuntion for whih the in�mum in the right hand side of (50) is attained we have that
λγ = λγ(û). Furthermore, if for an admissible ontrol (an) we have

lim sup
t→∞

E(an)
x {(Eat

xt
{ew(x1)})α} < ∞for every α > 1, then λγ ≤ Jγ((an)).8. Asymptotis of Bellman equations. Notie �rst that by Proposition 3 if (D1) issatis�ed for su�iently small γ > 0, we have for any Borel measurable u : E → U

Jγ((u(x(n))) → J((u(x(n)))) (66)as γ → 0, and the limit is dereasing. Consequently we haveTheorem 3. Under (A1)�(A6) if (D1)�(D3) are satis�ed for su�iently small γ > 0 wehave
lim
γ→0

λγ = λ. (67)Furthermore, risk neutral ε-optimal ontrol u ∈ Us within the lass of stationary ontrolsis nearly optimal for the risk sensitive ost funtional with γ lose to 0, within the lassof stationary ontrols.Proof. By Theorem 2
λγ = inf

u∈Us

Jγ(u) (68)and by Theorem 1
λ = inf

u∈Us

J(u). (69)Therefore from (66) we immediately obtain (67). Now, if u ∈ Us is ε-optimal for J withinthe lass of stationary strategies, then by (66) for 0 < γ < γ0 we have
Jγ(u) ≤ J(u) + ε ≤ λ + 2ε ≤ λγ + 3ε, (70)whih is the required 3ε-optimality.



70 G. B. DI MASI AND Ł. STETTNERRemark 2. Although we have onvergene (67) it is not lear that the funtion wγ , thesolution to (64) onverges, (or at least a suitable subsequene does) to the funtion w,the solution to (45), as γ → 0, provided that at �xed point x̄ ∈ E we have wγ(x̄) = w(x̄).
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