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Abstract. The purpose of multifractal analysis of functions is to determine the Hausdorff di-

mensions of the sets of points where a function (or a distribution) f has a given pointwise

regularity exponent H. This notion has many variants depending on the global hypotheses made

on f ; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces

Cα
E(x0) are constructed, leading to a notion of pointwise regularity with respect to E; the case

E = L∞ corresponds to the usual Hölder regularity, and E = Lp corresponds to the T p
α(x0) reg-

ularity of Calderón and Zygmund. We focus on the study of the spaces T p
α(x0); in particular, we

give their characterization in terms of a wavelet basis and show their invariance under standard

pseudodifferential operators of order 0.

1. Introduction. Large classes of signals exhibit a very irregular behavior. In the

wildest situations, this irregularity may follow different regimes, and can switch from one

regime to another almost instantaneously. Precise recordings of turbulence data (which

became available at the beginning of the 80s) showed that turbulence falls in this category.

The techniques of multifractal signal analysis have been specifically designed to analyze

such behaviors. Initially developed in the mid 80s in the context of turbulence analysis,

they were applied successfully to a large range of signals, including traffic data (cars and

internet), stock market prices, speech signals, texture analysis, DNA sequences, heart-

beat intervals,. . . (see [1] and references therein).

In such applications, one is interested in analyzing signals whose regularity may widely

change from point to point. This instability usually makes the task of determining the

pointwise regularity very difficult numerically. However, points with a given regularity
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exponent often form fractal sets; therefore, one is not interested in determining the exact

value of the regularity at every point but rather in extracting some relevant information

concerning the size and geometry of these fractal sets. Mathematically, the purpose of

the multifractal analysis of a function is to determine their Hausdorff dimensions. This

motivation indicates why the term “multifractal” was introduced: To each regularity

exponent corresponds a fractal set. Therefore, if this exponent takes values in a continuum

(say, an interval of non-empty interior), then one deals with a noncountable number of

fractals, and the term multifractal is then fully justified.

The definition we gave has to be made more precise: What is the notion of regularity

which is used? How can one compute such quantities? Let us recall the different possi-

ble definitions which have been proposed up to now. Historically, the first definition of

pointwise regularity which was used is the Hölder regularity.

Definition 1. Let f : IRd → IR, be a locally bounded function, x0 ∈ IRd and α ≥ 0.

Then f ∈ Cα(x0) if there exist R > 0, C > 0, and a polynomial P of degree less than α

such that

if |x− x0| ≤ R, then |f(x) − P (x− x0)| ≤ C|x− x0|
α. (1)

The Hölder exponent of f at x0 is hf (x0) = sup{α : f ∈ Cα(x0)}.

The Hölder exponent supplies a definition of pointwise regularity which, in many

cases, is not pertinent; here are two examples of such situations (among several others):

• Mathematical results concerning multifractal analysis based on the Hölder exponent

necessarily make the assumption that f is continuous, see [8]; in many situations,

one wishes to analyse discontinuous functions; an important case in applications is

natural images which, because of the occlusion phenomenon (one object is partially

hidden by another), always present discontinuities. There exists other settings where

one has to consider non-locally bouded functions (for instance in the study of fully

developed turbulence, see [1]).

• Let Ω ⊂ IRd be a domain of IRd with a fractal boundary. A possible way to perform

a multifractal analysis of Ω consists in associating to its characteristic function 1Ω

a pointwise regularity exponent. The Hölder exponent is clearly not the right tool

since, in this case, it can take only two values: 0 on the boundary ∂Ω and +∞

elsewhere.

A third motivation, based on “robustness” requirements, will be detailed in the fol-

lowing section; these numerical stability requirements are related to the fact that the

condition f ∈ Cα(x0) is not invariant under simple pseudodifferential operators of order

0, and equivalently, cannot be characterized by conditions bearing on the moduli of the

wavelet coefficients of f .

The main motivation of this paper is to discuss which pointwise regularity criteria

should be adopted in particular in the setting of multifractal analysis. In Section 2, we

describe the criteria which have been used up to now. In Section 3, we discuss which

stability properties they should follow and why. In Section 4, we prove that the T p
α(x0)

condition satisfies these stability requirements, and deduce a wavelet characterization of
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these spaces. In Section 5, we give consequences in multifractal analysis. Some of the

results of this paper have been announced in [12].

2. Pointwise regularity spaces. Let B(x0, r) denote the open ball centered at x0 and

of radius r; the condition f ∈ Cα(x0) can obviously be rewritten as follows: There exists

a polynomial P and constants C,R > 0 such that

∀r < R ‖(f − P )‖L∞(B(x0,r)) ≤ Crα. (2)

Therefore, we can reinterpet Cα(x0) as a condition describing how the L∞ norm of f

behaves in small neighbourhoods of x0. This point of view has two advantages: We will

see that it explains why the Cα(x0) does not have the stability properties mentioned

above (it is just a consequence of the fact that L∞ does not possess these properties);

furthermore, (2) can be immediately generalized; indeed, one can replace the local L∞

norm by another one. For instance, using the Lp norm (for 1 ≤ p < ∞) one obtains the

following definition introduced by Calderón and Zygmund in 1961, see [4].

Definition 2. Let p ∈ [1,+∞); a function f : IRd → IR in Lp
loc belongs to T p

α(x0) if

∃R,C > 0 and a polynomial P of degree less than α such that

∀r ≤ R,

(

1

rd

∫

B(x0,r)

|f(x) − P (x− x0)|
pdx

)1/p

≤ Crα. (3)

The p-exponent of f at x0 is hp
f (x0) = sup{α : f ∈ T p

α(x0)}.

One immediately checks that this notion is weaker than Hölder regularity: If f ∈

Cα(x0), then, ∀p, f ∈ T p
α(x0). The drawbacks of the Cα(x0) criterion of smoothness

disappear when one considers this notion of regularity; for instance, the Hölder exponent

of a characteristic function 1Ω only takes the value 0 along the boundary of Ω, whereas

the p-exponent may change from point to point and take any nonnegative value, thus

opening the way to a multifractal analysis of domains; furthermore, mathematical results

concerning a multifractal analysis based on the p-exponent do not require any uniform

regularity assumption, see [13].

Though Calderón and Zygmund had different motivations (their purpose was to obtain

pointwise regularity results for PDEs), they were already aware that the T p
α(x0) condition

has a better behavior with respect to simple properties (such as continuity under the

action of pseudo-differential operators).

In the following, we will investigate the T p
α(x0) condition in details. But, for now, let

us see how the notion of pointwise regularity can be extended further. It is natural to

replace in (1) the space L∞ by an arbitrary function space; let E be a Banach space of

distributions (perhaps defined modulo PN , the vector space of polynomials of degree at

most N) and satisfying S0 →֒ E →֒ S ′
0 (S0 denotes the Schwartz class of C∞ functions

f such that f and all its partial derivatives have fast decay, and all the moments of f

vanish); we now assume that E is endowed with a semi-norm, which becomes a norm on

E/PN . If B is a ball of IRd, let

‖f‖E,B = inf
f=g on B

‖g‖E . (4)
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Definition 3. Let E be a space of distributions satisfying the above conditions. The

two-microlocal space of order α associated with E is the space Cα
E(x0) defined by:

∃P polynomial, ∃R,C > 0, ∀r ≤ R ‖f − P‖E,B(x0,r) ≤ Crα.

The pointwise regularity exponent of f at x0 associated with E (also called the E-

exponent) is hE
f (x0) = sup{α : f ∈ Cα

E(x0)}.

Remarks.

• One cannot give an a priori bound on the degree of P that would only depend on

α and would insure the existence and uniqueness of P ; indeed it clearly depends on

the space E chosen, as shown by the case E = Lp, where one easily checks that the

condition deg(P ) < α+ d/p is necessary and sufficient to insure this existence and

uniqueness.

• The two-microlocal space associated with L∞ is precisely Cα(x0); if E = Lp, we

obtain the space T p
α+d/p(x0).

• The way we introduce pointwise regularity differs from Y. Meyer’s (Definition 1.1

of [22]). The space E of [22] corresponds to our space Cα
E(x0). Our motivation here

is to emphasisize the duality between the “global” space E (which is usually shift

invariant, Lp for instance), and the corresponding pointwise regularity space Cα
E(x0),

in order to show how properties of the second can be derived from properties of the

first.

• Pointwise regularity differs from the notion of local regularity at x0 which, for

Hölder spaces is defined as follows: f belongs to Cs
loc(x0) if there exists ϕ in D(IRd)

such that ϕ(x0) = 1 and fφ ∈ Cs(IRd). This notion can be extended to scales of

spaces other than Cs. For instance, the case of the Besov spaces Bs,p
p is considered

in [24, 27].

In order to explain where the terminology of two-microlocal space comes from, we

first need to recall the definition of the homogeneous Hölder spaces Ċs(IRd).

If 0 < s < 1 then f ∈ Ċs(IRd) if

∃C > 0 such that ∀x, y ∈ IRd, |f(x) − f(y)| ≤ C|x− y|s.

If s = 1, Ċs(IRd) is the Zygmund class of continuous functions satisfying

∃C > 0 such that ∀x, y ∈ IRd, |f(x+ y) + f(x− y) − 2f(x)| ≤ C|y|.

If s > 1, then f ∈ Ċs(IRd) if for any d-uple β such that |β| = [s], ∂βf ∈ Ċs−[s](IRd).

Finally, if s < 0 then the spaces Ċs(IRd) are defined by recursion on [s] by

f ∈ Ċs(IRd) if f = ∂1f1 + · · · + ∂dfd with fj ∈ Ċs+1(IRd).

The two-microlocal spaces Cs,s′

x0
had been introduced by J.-M. Bony in order to study

the propagation of singularities of the solutions of nonlinear evolution equations, see [2].

Y. Meyer showed that these spaces are exactly of the form defined above: Let s′ > 0; a

distribution f belongs to Cs,−s′

x0
if and only if

∃R,C > 0, ∀r ≤ R ‖f‖Cs−s′ ,B(x0,r) ≤ Crs′

,

see [14, 21].
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Let us now define the corresponding notions which are relevant in multifractal analysis.

The notion of dimension mostly used in multifractal analysis is the Hausdorff dimension.

Let us recall its definition. Let A be a subset of IRd. For each ε > 0, let

Md
ε = inf

R

∑

i

εd
i ,

where R denotes a generic covering of A by balls Bi of diameter εi ≤ ε; then

dim(A) = sup{d : lim
ε→0

Md
ε = +∞} = inf{d : lim

ε→0
Md

ε = 0}.

Definition 4. Let f be a distribution which belongs locally to E. The E-spectrum of

singularities of f is

dE
f (H) = dim({x : hE

f (x) = H}). (5)

If E = L∞, this function is simply called the spectrum of singularities of f and is

denoted by df (H); if E = Lp, it is called the p-spectrum of singularities of f and is

denoted by dp
f (H). Properties of the p-spectrum are investigated in [13].

3. Stability conditions. Before investigating general pointwise regularity criteria and

the corresponding multifractal formalisms, let us come back to the initial problem we

mentioned, i.e. the instability of the Cα(x0) condition. Indeed, the initial motivation of

Calderón et Zygmund was to understand how pointwise regularity conditions are trans-

formed in the resolution of elliptic PDEs, and they introduced the T p
u (x) spaces be-

cause the standard pseudodifferential operators of order 0 are not continuous on Cα(x0),

whereas it is the case for the T p
u (x) spaces. Let us recall how this deficiency of the Cα(x0)

condition can be shown. Consider the simplest possible singular integral operator namely,

in dimension 1, the Hilbert transform; it is the convolution with the principal value of

1/x, i.e. is defined by

Hf(x) = lim
ε→0

∫

Iε(x)

f(y)

x− y
dy,

where Iε(x) = (−∞, x− ε] ∪ [x+ ε,+∞). An immediate computation shows that

H(1[a,b])(x) = log

∣

∣

∣

∣

x− b

x− a

∣

∣

∣

∣

. (6)

Let now (xn)n∈IN be a strictly decreasing sequence such that limn→∞ xn = 0. We can pick

a positive, strictly decreasing sequence an such that f =
∑∞

n=1 an1[xn+1,xn] is arbitrarily

smooth at x0. Nonetheless, (6) implies that

Hf(x) =

∞
∑

n=1

an log

∣

∣

∣

∣

x− xn+1

x− xn

∣

∣

∣

∣

= −a1 log |x− x1| +
∞
∑

n=1

(an − an+1) log |x− xn+1| ,

which is not locally bounded near the origin, and therefore cannot have any Hölder

regularity there. Note that what we really used here is the fact that the Hilbert transform

is not continuous on L∞; the “bad behavior” of the pointwise regularity criterion based

on L∞ follows from the corresponding “bad behavior” of L∞. On the opposite side, we

will see that the continuity of the Hilbert transform on Lp implies its continuity on the

T p
u (x) spaces, as a consequence of Theorem 4.
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Besides the study of PDEs, another motivation appeared recently in completely differ-

ent areas and led to the same concerns. Many signals or images are now stored, denoised

or transmitted via their wavelet coefficients, see [19]. Therefore, if one wants to obtain

information on the local regularity of signals, one needs to be able to characterize in a

robust way their pointwise smoothness by conditions bearing on their wavelet coefficients.

Recall that, in dimension 1, a wavelet basis is of the form 2j/2ψ(2jx − k), j, k ∈ ZZ ,

where ψ and its derivatives up to order r are continuous and have fast decay (one speaks

of r-smooth wavelets), for an r picked large enough.

The wavelet coefficients are

cj,k = 2j

∫

f(x)ψ(2jx− k)dx (7)

(we follow here the standard tradition of using an L1 norm in the definition of the

wavelet coefficients when dealing with Hölder regularity which will simplify formulas

in the following by getting rid of an extra factor 2dj/2 that would constantly come up

otherwise). Instead of indexing the wavelets and wavelet coefficients by couples (j, k), we

will rather use the dyadic intervals λ = [k2−j , (k+1)2−j ], thus writting cλ instead of cj,k.

What can be meant by a characterization “in a robust way”? It is natural to suppose

that the criterion used is not too much perturbed if the size of each wavelet coefficient is

slightly altered. The following definition encapsulates these features.

Definition 5. Let Λ be a discrete set. A norm (or a quasi-norm) on sequences (cλ)

indexed by Λ is robust if it depends only on the moduli |cλ| and if it is an increasing

function in each variable |cλ|.

Another natural requirement is that the criterion used does not depend on the partic-

ular (smooth enough) wavelet basis which is picked. This implies that the infinite matrices

which map a wavelet basis on another one should act in a continuous way on the spaces of

sequences thus defined. Since these infinite matrices are matrices of operators which are

very closely related to the pseudo-differential operators of order 0 considered by Calderón

and Zygmund, see Chapter 7 of [20], we are essentially led back to one of our previous

requirements.

Let us now be more specific about these different stability requirements. We keep the

discussion in dimension 1 for the sake of simplicity. We have met three different continuity

requirements:

• under the action of the Hilbert transform,

• under changes of wavelet bases,

• under the action of pseudodifferential operators of order 0.

How can such conditions be checked, and what is their hierarchy? It is clear that the

first criterion is weaker than the third one. It is also weaker that the second one for the

following reason: If the 2j/2ψ(2jx − k), j, k ∈ ZZ form an orthonormal basis of L2(IR),

and if ψ̃ denotes the Hilbert transform of ψ, then the 2j/2ψ̃(2jx−k), j, k ∈ ZZ also form

an orthonormal basis of L2(IR), simply because the Hilbert transform is an isometry on

L2(IR), and it commutes with translations and dilations (all these properties follow from

the fact that, in the Fourier domain, the Hilbert transform is simply a multiplication
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by ξ/|ξ|, which is of modulus one and is homogeneous of degree 0). The second and the

third conditions do not really compare, but are both implied by a fourth requirement (as

a consequence of Theorem 1 below), which is simpler to check in practice, and which we

now describe.

We come back to the general d-dimensional setting. We start by recalling the form of

d-dimensional wavelet bases.

Definition 6. An r-smooth wavelet basis is composed of 2d − 1 wavelets ψ(i) which

belong to Cr and satisfy the following properties:

• ∀i, ∀α such that |α| ≤ r, ∂αψ(i) has fast decay,

• The set of functions 2dj/2ψ(i)(2jx − k), j ∈ ZZ , k ∈ ZZ
d, i ∈ {1, . . . , 2d − 1} is an

orthonormal basis of L2(IR)d).

Thus any function f in L2(IRd) can be written

f =
∑

c
(i)
j,kψ

(i)(2jx− k) (8)

where

c
(i)
j,k = 2dj

∫

f(x)ψ(i)(2jx− k)dx. (9)

(Note that, in (8) wavelets are not normalized for the L2 norm but for the L∞ norm, and,

accordingly, the normalisation of the wavelet coefficients is in L1 for the same reason as

in (7).)

Wavelets will be indexed by a subset of the set of all dyadic cubes as follows: We can

consider that i takes values among all dyadic subcubes λi of [0, 1)d of width 1/2 except for

[0, 1/2)d; thus, the set of indices (i, j, k) can be relabelled using dyadic cubes: λ denotes

the cube {x : 2jx − k ∈ λi}; we note ψλ(x) = ψ(i)(2jx − k) (an L∞ normalization is

used), and cλ = 2dj
∫

ψλ(x)f(x)dx. We will use the notations c
(i)
j,k or cλ indifferently for

wavelet coefficients. Note that the index λ indicates where the wavelet is localized; for

instance, if the wavelets ψ(i) are compactly supported then ∃C : supp(ψλ) ⊂ Cλ where

Cλ denotes the cube of same center as λ and C times larger; thus the indexation by the

dyadic cubes is more than a simple notation: The wavelet ψλ is “essentially” localized

around the cube λ.

We denote by Λ the set of all dyadic cubes which are used to index wavelets, and by

Λj the subset of Λ composed of the dyadic cubes of width 2−j .

The classes of infinite matrices acting on sequences indexed by λ are defined as follows.

Definition 7. Let γ > 0. An infinite matrixA(λ, λ′) indexed by the dyadic cubes belongs

to Mγ if

|A(λ, λ′)| ≤
C 2−( d

2
+γ)|j−j′|

(1 + (j − j′)2)(1 + 2inf(j,j′)dist(λ, λ′))d+γ
.

The following result was proved by Y. Meyer, see [20].

Theorem 1. If γ > 0, then Mγ is an algebra. Furthermore, if (ψλ) and (ψ̃λ) are two

r-smooth wavelet bases, then the matrix A(λ, λ′) = 〈ψλ|ψ̃λ′〉 belongs to Mγ as soon as

γ < r.



100 S. JAFFARD

We denote by Op(Mγ) the space of operators whose matrix on a γ′-smooth wavelet

basis (for any γ′ > γ) belongs to Mγ . This definition makes sense precisely because

Theorem 1 implies that this notion does not depend on the (smooth enough) wavelet basis

which is used. Pseudodifferential operators of order 0, such as the Hilbert transform in

dimension 1, or the Riesz transforms in higher dimensions, belong to the algebras Op(Mγ)

for any γ, see Chap. 7 of [20]. In practice, in order to check that a criterion based on

wavelet coefficients does not depend on the particular wavelet basis which is chosen, one

checks the stronger requirement that it is invariant under the action of Mγ for a γ large

enough.

Definition 8. Let E be a Banach space (or, more generally, a complete vector space

with a quasi-norm); E is γ-stable if the operators of Op(Mγ) are continuous on E.

A sequence (en)n∈IN is a basis of E if the following condition holds: For any element

f in E, there exists a unique sequence cn such that the partial sums
∑N

n=1 cnen converge

to f in E. It is an unconditional basis if furthermore ∃C > 0, ∀N ≥ 1,

∀(εn)n=1,...,N such that |εn| ≤ 1, ∀(cn)n=1,...,N ,
∥

∥

∥

N
∑

n=1

cnεnen

∥

∥

∥

E
≤ C

∥

∥

∥

N
∑

n=1

cnen

∥

∥

∥

E
.

(10)

Remark. The definition of a basis is usually given in the context of Banach spaces, see

[26, 28]. However it extends immediately to the non-locally convex case, which will be

useful in the following.

If the space E is not separable then, of course, it cannot have a basis in the previous

sense. In this case, the following weaker notion is used.

Definition 9. Assume that E is the dual of a separable space F ; then a sequence (en)

is a weak∗ basis of E if, ∀f ∈ E, there exists a unique sequence cn such that the partial

sums
∑

n≤N cnen converge to f in the weak∗ topology. It is unconditional if furthermore

(10) holds.

The properties of weak∗ bases have been extensively studied by I. Singer, see [26]

and references therein. In both settings, if en is unconditional, then the norm (resp.

quasi-norm) on E induces a norm (resp. quasi-norm) on the sequences (cn)n∈IN by the

formula

‖(cn)n∈IN‖E,w = sup
|εn|≤1

∥

∥

∥

∞
∑

n=1

εncnen

∥

∥

∥

E
, (11)

where the supremum is taken on all sequences |εn| ≤ 1; if the basis is unconditional, then

the sequence norm thus defined clearly is a robust norm. Note that the sequence space

norm associated with a Schauder basis (en) is usually defined by

‖(cn)n∈IN‖ = sup
N∈IN

∥

∥

∥

N
∑

n=1

cnen

∥

∥

∥

E
;

in the unconditional case, the norm we defined is clearly equivalent to this one; we prefer

it because it satisfies obviously the robustness property stated in Definition 5.
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The use of specific bases is important in order to understand fine properties of func-

tions, or stochastic processes. A remarkable example is supplied by Z. Ciesielski’s decom-

position of the Brownian motion on the Schauder basis of [0, 1], see [5]; this basis is com-

posed of the “hat functions” ∆(2jx−k) (Λ is supported on [0, 1] where ∆(t) = inf(t, 1−t));

then,

on [0, 1], B(t) = ξ0t+
∑

j≥0

2j−1
∑

k=0

ξj,k2−j/2∆(2jx− k),

where ξ0 and the ξj,k are I.I.D. normal centered Gaussians. This decomposition has

many remarkable features, and, in particular, allows to derive subtle pointwise properties

of functions; for instance it was used by J.-P. Kahane to obtain the existence of slow

points of the Brownian motion, see [16].

If x0 ∈ IRd, then λj(x0) denotes the unique dyadic cube of width 2−j which contains

x0. Assume that E is a γ-stable space and that wavelets are either an unconditional or a

weak∗ unconditional basis of E. We can easily deduce from (11) a condition satisfied by

the wavelet coefficients of the functions of Cα
E(x0); let us denote by AE

j (x0) the quantity

AE
j (x0) = ‖{dλ}λ∈Λ‖E,w where dλ =

{

cλ if λ ⊂ 3λj(x0),

0 else.

Proposition 1. Let E be a γ-stable complete metric stable space endowed with a norm

or a quasi-norm. Let (ψλ)λ∈Λ be a compactly supported (smooth enough) wavelet basis.

If f ∈ Cα
E(x0), then

∀j ≥ 0, AE
j (x0) ≤ C2−αj . (12)

First note that, if E is γ-stable, any wavelet basis which is γ′-smooth for a γ′ > γ

can be used to characterize the norm in E, and we can use in particular a compactly

supported wavelet basis. Let D be a large enough constant and g be a distribution which

coincides with f(x)−P (x−x0) on B(x0,D2−j). The conclusion of Proposition 1 follows

by applying the wavelet characterization of E and noticing that, if D is large enough and

λ ⊂ 3λj(x0), then the corresponding wavelet coefficients of f and g coincide.

If E = Ċs(IRd), then Y. Meyer proved that the condition given by Proposition 1

characterizes Cα
E(x0), see [14, 21]. Our purpose in the following section is to prove that

it is also the case if E = Lp(IRd).

4. The T p
α(x0) spaces. First, let us extend the definition of T p

α(x0) regularity and show

how it can be defined for exponents p outside of the range (1,+∞). If p = +∞ or if

p ≤ 1 then the Lp spaces do not have the stability properties that we mentioned above

(even the least stringent one, namely the continuity of the Hilbert transform, fails). The

“natural extension” of the Lp spaces outside of the range p ∈ (1,+∞) which has these

stability properties is supplied by the space BMO for p = +∞ and by the real Hardy

spaces Hp for p ≤ 1. These spaces have a robust wavelet characterization (in the sense

supplied by Definition 5) and, as regards Hardy spaces, this characterization has the same

form as the wavelet characterization of Lp. Let us recall the corresponding definitions and

characterizations.
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Definition 10. Let p ≤ 1. A p-atom is a function a(x) supported in a ball B, and such

that

‖a‖∞ ≤ V ol(B)−1/p and ∀α such that |α| ≤ d

(

1

p
− 1

)

,

∫

a(x)xαdx = 0.

A distribution f belongs to Hp if it can be written

f =

∞
∑

n=1

cnan where each an is a p-atom and

∞
∑

n=1

|cn|
p <∞.

The quasi-norm of f in Hp is inf(
∑∞

n=1 |cn|
p) where the infimum is taken on all possible

decompositions of f as a linear combination of p-atoms.

If f ∈ L2
loc and B is a ball, then let

fB =
1

V ol(B)

∫

B

f(x)dx;

a function f belongs to BMO if f ∈ L2
loc and satisfies

‖f‖BMO = sup
B

(

1

V ol(B)

∫

B

|f(x) − fB|2dx

)1/2

<∞,

where the supremum is taken over all balls of IRd.

Note that ‖f‖BMO only is a semi-norm since BMO is defined modulo constant func-

tions. If 0 < p < 1 then Hp is not a locally convex space; ‖f‖Hp is only a quasi-norm,

i.e. satisfies

∃C > 0 : ∀f, g ‖f + g‖ ≤ C(‖f‖ + ‖g‖).

However, ‖f − g‖p defines a distance on Hp.

The wavelet characterizations of these spaces are given by the following theorem, see

[20].

Theorem 2. Let ψλ be a r-smooth wavelet basis with r > sup(0, d( 1
p −1)). A distribution

f belongs to Lp (for 1 < p < +∞) or to Hp (for 0 < p ≤ 1) if and only if its wavelet

coefficients satisfy
(

∑

λ∈Λ

|cλ|
21λ(x)

)1/2

∈ Lp. (13)

A function f belongs to BMO if and only if its wavelet coefficients satisfy

∃C, ∀λ,
∑

λ′⊂λ

2−dj′

|cλ′ |2 ≤ CV ol(λ).

Wavelets are unconditional bases of the spaces Lp and Hp, see Chapter 6 of [20].

They cannot be unconditional bases of BMO since this space is not separable; one can

check this fact as follows: Let ψ(x) be the Haar wavelet (ψ is supported by (0, 1) and

takes values 1 on [0, 1/2) and −1 on [1/2, 1)). Then an easy computation shows that

the BMO semi-norm of the function
∑

akψ(x − k) is equivalent to the l∞ norm of the

sequence ak; therefore a subspace of BMO is isomorphic to l∞. However, wavelets are

weak∗ unconditional bases of BMO (for the H1-BMO duality).

The following definition is the natural extension of T p
u (x0) outside the range p ∈

(1,∞):
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• If p = +∞ we denote by T∞
α (x0) the space Cα

E(x0) with E = BMO

• If 0 < p ≤ 1 we denote by T p
α(x0) the space Cα

E(x0) with E = Hp.

Let p ∈ (0,+∞]; then the p-exponent of f at x0 is hp
f (x0) = sup{u : f ∈ T p

u (x0)}.

The motivations for considering these new types of pointwise conditions are of a

different nature for p = ∞ and for p ≤ 1. If p = +∞, then the T∞
α (x0) condition is the

sharpest condition which is implied by Cα(x0) and can be characterized by a condition

bearing on the moduli of the wavelet coefficients of f ; it is therefore stronger than the

two-microlocal conditions f ∈ Cα,−α(x0) of [8]. In particular, while the two-microlocal

condition can be satisfied by distributions which do not coincide with a function in a

neighbourhood of x0, the T∞
α (x0) wavelet characterization implies that (3) holds for any

p < ∞. If p < 1, then the condition f ∈ Hp
loc, allows to deal with singularities such as

|x−x0|
−a near x0 for a < d/p; therefore using arbitrarily small values of p allows to deal

with singularities of arbitrarily large exponent a, which is needed in several applications,

see [1].

The local square functions at x0 are

Sf (j, x0)(x) =
(

∑

λ⊂3λj(x0)

|cλ|
21λ(x)

)1/2

.

Theorem 3. Let p ∈ (0,∞), α > −d/p and assume that the wavelet basis used is r-

smooth with r > sup(2α, 2α+ 2d( 1
p − 1)); if f ∈ T p

α(x0), then ∃C ≥ 0 such that ∀j ≥ 0,

‖Sf (j, x0)‖p ≤ C2−j(α+d/p) (14)

( if p < 1, then ‖.‖p denotes the Lp quasi-norm). If p = +∞, this condition becomes

∀λ ⊂ 3λj(x0),
(

∑

λ′⊂λ

2−dj′

|cλ′ |2
)1/2

≤ C2−dl/22−αj , (15)

where 2−l is the width of λ and 2−j′

is the width of λ′.

Conversely, if (14) holds (or if (15) holds in the case p = +∞) and if α /∈ IN, then

f ∈ T p
α(x0).

This theorem will be proved in two steps. First, we will show that it holds if the

wavelets used are compactly supported, and afterwards, we will show that the elements

of Mγ are continuous on the space defined by (14); using Theorem 1, this will imply

that the characterization holds for any (smooth enough) wavelet basis. If the wavelets

are compactly supported, then the direct part of the theorem is just a special case of

Proposition 1. Let us now prove the converse part, still in the case of compactly supported

wavelets. We can forget the “low frequency component” of f corresponding to j < 0 in

its wavelet decomposition, since its contribution belongs locally to Cr(IRd) (for r-smooth

wavelets). Let Λj denote the set of dyadic cubes of width 2−j , ∆jf =
∑

λ∈Λj
cλψλ, and

let Pj(x−x0) denote the Taylor polynomial of ∆jf of degree [α] at x0; (14) or (15) imply

that,

if dist(λ, x0) ≤ D2−j , then |cλ| ≤ C2−αj . (16)

Let ρ > 0 be fixed and let J be defined by 2−J ≤ ρ < 2 · 2−J and L be a constant

which will be fixed later, but depends only on the size of the support of the wavelets. If
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j ≤ J + L, then at most C of the ψλ have a support intersecting B = B(x0, ρ) and each

of them satisfies (16). It follows from Taylor’s formula that, if x ∈ B and j ≤ J +L, then

|∆jf(x) − Pj(x− x0)| ≤ Cρ[α]+12j([α]+1−α),

and therefore
J+L
∑

j=0

|∆jf(x) − Pj(x− x0)| ≤ Cρα. (17)

It follows also from (16) that, if |k| ≤ [α] + 1, then, ∀j ≥ 0, |∆
(k)
j f(x0)| ≤ 2(|k|−α)j ;

therefore the series

P (x− x0) =

∞
∑

j=0

Pj(x− x0) =

∞
∑

j=0

∑

|k|<α

∆jf
(k)(x0)

k!
(x− x0)

k

converges and, if |x− x0| ≤ ρ, then

∞
∑

j=J+L

|Pj(x− x0)| ≤ C
∞
∑

j=J+L

∑

|k|<α

2(|k|−α)jρk ≤ Cρα. (18)

Let now gJ(x) =
∑∞

j=J+L ∆jf(x); then

‖gJ1B‖ ≤
∥

∥

∥

∞
∑

j=J+L

∑

λ⊂B(x0,2ρ)

cλψλ

∥

∥

∥

p

where L has been picked large enough so that both functions coincide on B. Using the

wavelet characterization of Lp, the right hand side is bounded by

C
∥

∥

∥

(

∞
∑

j=J+L

∑

λ⊂B(x0,2ρ)

|cλ|
21λ

)1/2∥
∥

∥

p
≤ Sf (J − L, x0) ≤ C2−J(α+d/p). (19)

The required estimate for ‖(f −P (x−x0))1B(x0,ρ)‖p follows immediately from (17), (18)

and (19).

The case p = ∞ is completely similar.

Remark. Assume now that α ∈ IN. We can return to the previous proof and subtract

only Taylor’s expansions of degree α − 1 (i.e. reproduce exactly the same proof with

the convention [α] = α − 1). Then all points of the proof run the same except for the

derivation of (17); indeed, each term of the sum is now bounded by a constant. It follows

that the bound obtained there is Cρα log(1/ρ). Thus, if α ∈ IN and if (14) holds (or if

(15) holds in the case p = +∞) then f satisfies ∃R,C > 0 and a polynomial P of degree

less than α such that

∀r ≤ R,

(

1

rd

∫

|f(x) − P (x− x0)|
pdx

)1/p

≤ Crα log(1/r). (20)

In order to end the proof of the theorem, we still have to show that the following

theorem is true.

Theorem 4. If γ > sup(2α, 2α + 2d( 1
p − 1)), α > 0 and 0 < p ≤ +∞, then T p

α(x0) is

γ-stable.
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Proof. We have to prove that, if A is a matrix in Mγ and if a sequence C = (cλ) satisfies

∀j ≥ 0,
∥

∥

∥

(

∑

λ⊂3λj(x0)

|cλ|
21λ(x)

)1/2∥
∥

∥

p
≤ C2−(α+d/p)j , (21)

then AC satisfies the same estimate. Let us start by introducing a fex notations; if p > 0,

then Ep will denote the sequence space of (cλ) indexed by the dyadic cubes and endowed

with the norm (or quasi-norm)

‖(cλ)‖p =
∥

∥

∥

(

∑

λ∈Λ

|cλ|
21λ(x)

)1/2∥
∥

∥

p
.

If µj (= µj(x0)) denotes the collection of those cubes from Λ which are included in

3λj(x0) and are not included in 3λj+1(x0), then, the µj form a partition of Λ. Let

dj
λ =

{

cλ if λ ⊂ 3λj(x0),

0 else,

and

ej
λ =

{

cλ if λ ∈ µj ,

0 else;

we denote by capital letters the corresponding vectors

C = (cλ)λ∈Λ, Dj = (dj
λ)λ∈Λ, Ej = (ej

λ)λ∈Λ.

Lemma 1. Condition (21) is equivalent to

∀j ≥ 0,
∥

∥

∥

(

∑

λ∈µj

|cλ|
21λ(x)

)1/2∥
∥

∥

p
≤ C2−(α+d/p)j . (22)

Indeed, (22) is weaker than (21) since the sum in (22) bears on less terms. Assume

now that (22) holds; note that Dj =
∑

j′≥j Ej . If the space considered (Lp or Hp) is a

Banach space (i.e. when p ≥ 1), then

‖Dj‖p ≤
∑

j′≥j

‖Ej′‖p ≤ C
∑

j′≥j

2−(α+d/p)j′

≤ C2−(α+d/p)j .

If p < 1, one applies the same argument to ‖Dj‖
p
p, which satisfies the triangular inequality.

Let us return to the proof of Theorem 4. Let Aλ,λ′ be an infinite matrix in Mγ . We

define

c̃λ =
∑

λ′∈Λ

Aλ,λ′cλ′ =
∑

j′

c̃j
′

λ where c̃j
′

λ =
∑

λ′∈µj′

Aλ,λ′cλ′ .

Because of Lemma 1, we only have to estimate the norm of C̃ = (c̃λ) restricted to µj ; for

that, we will estimate the norm of each C̃j′

= (c̃j
′

λ ). Let j and j′ be fixed; if |j − j′| ≤ 3

then, by assumption,

‖(cλ)λ∈µj′
‖p ≤ C2−(α+d/p)j′

.

By continuity of the matrices of Mγ on the space Lp or Hp, it follows that

‖(c̃j
′

λ )‖p ≤ C2−(α+d/p)j′

≤ C2−(α+d/p)j .

In order to deal with the case |j − j′| > 3, we first prove the following lemma.
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Lemma 2. Let Aλ,λ′ be an infinite matrix in Mγ . If |j − j′| > 3, λ ∈ µj and λ′ ∈ µj′

then

Aλ,λ′ = 2−
γ
4
|j−j′|Bλ,λ′ ,

where the matrix Bλ,λ′ (thus defined for λ ∈ µj and λ′ ∈ µj′ and extended by 0 outside

this set of indices) belongs to Mγ/2, and its norm in Mγ/2 is bounded independently of

j, j′ and x0.

Proof. Since the estimates required are symmetric, we can assume that j ≤ j′ (and

therefore that j ≤ j′ − 4).

Denote by 2−l the width of λ and by 2−l′ the width of λ′. Since λ ∈ µj it follows that

l ≥ j − 1; for the same reason, l′ ≥ j′ − 1.

Assume first that l ≤ j+j′

2 ; then |l − l′| = l′ − l ≥ j−j′

2 − 1 so that

2−( d
2
+γ)|l−l′| ≤ 2γ2−( d

2
+ γ

2
)|l−l′|2−

γ
2
|j′−j|;

hence Lemma 2 holds in this case.

If l > j+j′

2 , since λ /∈ 3λj+1(x0), it follows that dist(λ, x0) ≥ 2−j−1; since λ′ ∈

3λj+3(x0), it follows that dist(λ, λ′) ≥ 2−j−2; but inf(l, l′) − (j + 2) ≥ j′+j
2 − (j + 2) =

j′−j
2 − 2. Therefore 2inf(l,l′)dist(λ, λ′) ≥ 2−

j′−j
2

−2 and Lemma 2 follows in this case.

We can now return to the proof of Theorem 4. If F = (fλ) is a vector indexed by the

dyadic cubes, then we denote by Fj the vector

(Fj)λ = fλ if λ ∈ µj

= 0 else.

By hypothesis, ‖Ej‖p ≤ C2−(α+d/p)j . We want to show that ‖(AC)j‖p ≤ C2−(α+d/p)j .

For that, we will estimate the size of each (A(Ej′))j .

Since ‖Ej′‖p ≤ C2−(α+d/p)j′

, by continuity of B on Ep, it follows that ‖B(Ej′)‖p ≤

C2−(α+d/p)j′

. But if λ′ belongs to µj′ and λ belongs to µj , then Lemma 2 implies that

‖(A(Ej′))j‖p ≤ C2−
γ
4
|j−j′|2−(α+d/p)j′

, and therefore, if p ≥ 1, then

‖(AC)j‖ ≤
∑

j′

C2−
γ
4
|j−j′|2−(α+d/p)j′

,

which is bounded by C2−(α+d/p)j as soon as γ/4 > α. The proof for p < 1 is similar: One

considers ‖‖p
p to which the triangular inequality applies. The case p = +∞ is similar and

left to the reader.

Remarks. If p = 2, this characterization boils down to a local l2 condition on the wavelet

coefficients
∑

λ′⊂3λj(x0)

2−d(j′−j)|cλ′ |2 ≤ C2−(2α+d)j (23)

which was previously obtained by Yves Meyer (personal communication) using an alter-

native proof.

If p = +∞, and if 1 ≤ p < +∞, then Theorem 3 improves previous results of,

respectively, [8] and [13]; up to now, the converse part required a uniform regularity

assumption f ∈ Bε,p
p for an ε > 0, which turns out to be unnecessary. Note also that,

if f satisfies (15), then f ∈ T p
α(x0) for any p < ∞. This is in sharp contrast with the
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two-microlocal condition obtained in [8] as a consequence of Cα(x0) regularity which does

not imply any T p
u (x0) regularity result (or even that f locally coincides with a function).

If p 6= 2, then (14) is not a local lp condition on the wavelet coefficients; however, the

embeddings between Sobolev and Besov spaces supply the following conditions which are

easier to use in practice:

If p ≥ 2, then Lp →֒ B0,p
p ; thus if f ∈ T p

α(x0) for p ≥ 2, then
∑

λ′⊂3λj(x0)

2−d(j′−j)|cλ′ |p ≤ C2−pαj .

Similarly, if p ≤ 2, then B0,p
p →֒ Lp; thus if

∑

λ′⊂3λj(x0)

2−d(j′−j)|cλ′ |p ≤ C2−pαj ,

then f ∈ T p
α(x0). Additional results concerning the T p

α conditions can be found in [13, 12].

5. Implications in multifractal analysis. One cannot expect to compute the spec-

trum of singularities of an experimental signal by following the algorithm implicit in

Definition 4 step by step. Indeed, the computation of a regularity exponent leads to nu-

merical instabilities if it jumps from point to point; the determination of the level sets of

a complicated function is also a problem, and finally, computing one Hausdorff dimension

involves considering all possible coverings of the corresponding set, which is not numer-

ically feasible. . . and in the case of a multifractal function, we expect to deal with an

infinite number of such sets! The purpose of the multifractal formalism is to derive the

spectrum of singularities from quantities effectively computable on experimental signals.

Let us consider the setting provided by the T p
α regularity, in which case, we wish to obtain

the p-spectrum. We use the remarkable idea introduced by G. Parisi and U. Frisch in [25]

in the setting of Hölder regularity; it was later adapted using wavelets (see [1, 15]), and

we present a further extension in the T p
α setting: We consider global quantities obtained

by averaging the quantity

Sλ
f (p) =

(

∫

λ

(

∑

λ′⊂λ

|cλ′ |21λ′(x)
)p/2

dx
)1/p

.

In order to keep as much information as possible, one actually computes averages of

(Sλ
f (p))q for all values of the parameter q. One obtains thus the p-structure function

Σp
j (q) =

∑

λ∈Λj

(Sλ
f (p))q.

The behavior of these quantities when j → +∞ is described by the p-scaling function

ηp
f (q) = lim inf

j→+∞

log(2d( q
p
−1)jΣp

j (q))

log(2−j)
.

Thus Σp
j (q) is of the order of magnitude of 2−ηp

f
(q)j in the limit of small scales. The

fundamental idea of the multifractal formalism is to estimate the contribution to Σp
j (q) of

the points x0 where the p-exponent takes the value H. Indeed, if the cube λ contains such

a point then, Theorem 3 asserts that Sλ
f (p) ∼ 2−Hj . Coming back to the definition of the
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dimension, we need about 2dp

f
(H)j such cubes to cover the set {x0 : hp

f (x0) = H} by cubes

of size 2−j ; thus the contribution we look for is, for each value of j, 2−dj2−dp

f
(H)j2−Hpj

= 2−(d−dp

f
(H)j+Hp)j , When j → +∞, the contribution given by the smallest possible

exponent d− dp
f (H) +Hp becomes preponderant; thus, we expect that

ηp
f (q) = inf

H
(d− dp

f (H) +Hq).

If d−dp
f (H) is a convex function, then −ηp

f (q) is the Legendre transform of d−dp
f (H) (in

the sense of convex functions duality, see Chap. 1.3 of [3]). The inversion formula allows

us to recover dp
f (H):

dp
f (H) = inf

q
(Hq − ηp

f (q) + d). (24)

This heuristic argument cannot be turned into a mathematical proof, and indeed, there

exist counterexamples to (24) even when the spectrum of singularities is concave. When

(24) holds, one says that f satisfies the p-multifractal formalism; the following result

shows that it always yields an upper bound for the spectrum.

Theorem 5. Let f ∈ Lp
loc; then

df
p(H) ≤ inf

q 6=0
(d− ηp

f (q) +Hq).

Sketch of proof. It follows from Theorem 3 that

hp
f (x0) = −

d

p
+ lim inf

j→+∞

(

−1

j
log2( sup

λ′∈adj(λ)

Sλ′

f (p))

)

(25)

where adj(λ) denotes the 3d dyadic cubes of same width as λ and such that λ̄ ∩ λ̄′ 6= ∅.

The proof of Theorem 5 is exactly the same as the upper bound for the Hölder spectrum

given in Section 3.2 of [11], since the only property used in [11] is a result similar to (25)

(Theorem 1 of [11]).

Note that, in Theorem 5, no global regularity assumption is needed; this is in contrast

with the result of [11], where such an assumption is needed to insure the validity of the

formula corresponding to (25) (but not in the proof of the upper bound).

When p is positive, the scaling function can be given a function space interpretation.

Definition 11. Let s ∈ IR, p > 0 and q > 0. The oscillation space Os,q
p (IRd) is the set

of functions f which belong locally to Lp and satisfy

∀j ≥ 0,
∑

λ∈Λj

(Sλ
f (p))q ≤ C2(d−sq)j .

It follows from this definition that, if p and q are positive, then

ηp
f (q) = sup{s : f ∈ Os/q,q

p }.

Spaces of this type have been studied in [11, 13]. We intend to expose their properties in

a forthcoming paper. Note that, initially, oscillation spaces were introduced in a different

context: A problem raised by Z. Ciesielski was to determine if the box dimension of

the graph of a function can be deduced from the its wavelet coefficients, see [6, 7], and

the results of these papers pointed towards a positive answer; A. Deliu and B. Jawerth

proposed a formula based on Besov spaces which, unfortunately, turned out to be wrong,
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as shown by A. Kamont and B. Wolnik in [18]. Actually, the answer is given by a particular

kind of oscillation spaces defined as follows: let dλ = supλ′⊂λ |cλ′ |. Then

f ∈ Os,1
∞ (IRd) if ∀j ≥ 0,

∑

λ∈Λj

dλ ≤ C2(d−s)j .

Assume that ∃ε > 0 such that f ∈ Cε(IRd), and denote by δ the upper box dimension of

the graph of f ; then

δ = sup
(

d, d+ 1 − sup{s : f ∈ Os,1
∞ }

)

,

see [9, 10]. A. Kamont solved the problem raised by Z. Ciesielski completely by show-

ing how to derive the lower box dimension of the graph of a function from its wavelet

coefficients, see [17].
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