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Abstract. We study mixed norm spaces that arise in connection with embeddings of Sobolev

and Besov spaces. We prove Sobolev type inequalities in terms of these mixed norms. Applying

these results, we obtain optimal constants in embedding theorems for anisotropic Besov spaces.

This gives an extension of the estimate proved by Bourgain, Brezis and Mironescu for isotropic

Besov spaces.

1. Introduction. Let 1 ≤ p <∞. Denote by W 1
p (Rn) the Sobolev space of all functions

f ∈ Lp(Rn) for which every first-order weak derivative ∂f/∂xk ≡ Dkf exists and also

belongs to Lp(Rn). The classical Sobolev theorem asserts that for any function f in

W 1
p (Rn) (1 ≤ p < n)

‖f‖q∗ ≤ c

n∑

k=1

‖Dkf‖p , q∗ =
np

n− p
. (1.1)

Sobolev proved this inequality in 1938 for p > 1; his method, based on integral rep-

resentations, did not work in the case p = 1. Only at the end of fifties Gagliardo and

Nirenberg gave simple proofs of the inequality (1.1) for all 1 ≤ p < n. The central part

of Gagliardo’s approach [6] was the following lemma.

Lemma 1.1. Let n ≥ 2. Assume that gk ∈ L1(Rn−1) (k = 1, . . . , n) are non-negative

functions on R
n−1. Then
∫

Rn

( n∏

k=1

gk(x̂k)
)1/(n−1)

dx ≤
( n∏

k=1

∫

Rn−1

gk(x̂k)dx̂k

)1/(n−1)

. (1.2)
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As usual, for any vector x ∈ R
n we denote by x̂k the (n− 1)-dimensional vector obtained

from x by removal of its kth coordinate.

Assume that f ∈W 1
1 (Rn). Then for almost all x ∈ R

n and every k = 1, . . . , n

|f(x)| ≤ 1

2

∫

R

|Dkf(x)| dxk ≡ 1

2
gk(x̂k).

Thus, applying (1.2), we immediately obtain the inequality

‖f‖n/(n−1) ≤
1

2

( n∏

k=1

‖Dkf‖1

)1/n

. (1.3)

This yields (1.1) for p = 1.

However, a stronger statement can be derived from (1.2). Let

Vk ≡ L1
x̂k

(Rn−1)[L∞
xk

(R)] (1 ≤ k ≤ n) (1.4)

be a space with the mixed norm

‖f‖Vk
≡

∫

Rn−1

ϕk(x̂k) dx̂k,

where

ϕk(x̂k) = ess supxk∈R
|f(x)|.

Gagliardo’s lemma immediately implies the following theorem.

Theorem 1.2. Assume that f ∈ ∩n
k=1Vk, n ≥ 2. Then f ∈ Ln/(n−1)(Rn) and

‖f‖n/(n−1) ≤
( n∏

k=1

‖f‖Vk

)1/n

.

Since for f ∈W 1
1 (Rn)

‖f‖Vk
≤ 1

2
‖Dkf‖1 (k = 1, . . . , n), (1.5)

then (1.3) follows from Theorem 1.2.

Denote by f∗ the non-increasing rearrangement of a measurable function f. If 1 ≤
q, p < ∞, then the Lorentz space Lq,p(Rn) is defined as the class of all measurable

functions f on R
n such that

‖f‖q,p ≡
(∫ ∞

0

(
t1/qf∗(t)

)p dt

t

)1/p

<∞.

For any fixed q, the Lorentz spaces increase as the secondary index p increases (see Section

2 below).

It is well known that the left-hand side in (1.1) can be replaced by the stronger

Lq∗,p-Lorentz norm. That is, there holds the inequality

‖f‖q∗,p ≤ c

n∑

k=1

‖Dkf‖p

(
1 ≤ p < n, q∗ =

np

n− p

)
(1.6)

(see [20], [21], [22]). For p > 1 this result can be obtained by interpolation (although the

direct proof is simpler). There are numerous proofs of (1.6) in the case p = 1; most of

them are related to rearrangements, properties of level sets, and geometric inequalities.
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A very interesting approach given by Fournier [8] was based on the following refinement

of the Theorem 1.2.

Let Vk be the spaces defined by (1.4).

Theorem 1.3. Assume that f ∈ ∩n
k=1Vk, n ≥ 2. Then f ∈ Ln/(n−1),1(Rn) and

‖f‖n/(n−1),1 ≤
( n∏

k=1

‖f‖Vk

)1/n

. (1.7)

Taking into account (1.5), we immediately obtain (1.6) for p = 1. More exactly, we obtain

the following refinement of the inequality (1.3)

‖f‖n/(n−1),1 ≤ 1

2

( n∏

k=1

‖Dkf‖1

)1/n

. (1.8)

Thus, inequality (1.8) (as well as (1.3)) can be broken down into two successive steps.

The main step is the inequality (1.7). To derive (1.8) from (1.7) we have only to apply

the following simple fact: if a function f ∈ L1(Rn) has a weak derivative Dkf ∈ L1(Rn),

then f ∈ Vk (see (1.5)).

One of our main problems in this paper is to find an analogue of Theorem 1.3 for

more general mixed norm spaces. To clarify this problem we can consider the following

example. Let n = 2 and 1 ≤ r <∞. Assume that

f ∈ L1
y(R)[Lr

x(R)] and f ∈ L1
x(R)[Lr

y(R)].

Which Lorentz space does the function f belong to?

First of all, we study mixed norm spaces related to the Sobolev spaces W 1
p and in-

equality (1.6) for arbitrary 1 ≤ p < n. We have seen that if Dkf ∈ L1(Rn) for some k,

then f ∈ Vk ≡ L1
x̂k

[L∞
xk

]. Suppose now that Dkf ∈ Lp(Rn) for some p > 1; what is the

corresponding space Vk in this case? A similar question arises if a function f belongs to

a Besov space with respect to a separate variable xk. In turn, this question is related to

embeddings of anisotropic Besov spaces.

Studying these problems, we introduce a scale of generalized spaces with mixed norms

similar to the spaces Vk. In particular, the spaces

Lp(Rn−1)[Lr,∞(R)] (1 ≤ p, r <∞)

are contained in this scale.1 First we define ”weak” spaces Λσ.

Let σ ∈ R. Denote by Λσ(R) the space of all measurable functions f such that

‖f‖Λσ ≡ sup
t>0

tσ[f∗(t) − f∗(2t)] <∞. (1.9)

If 0 < σ < ∞ and r = 1/σ, then Λσ(R) = Lr,∞(R). If σ = 0, then Λσ coincides with

the space weak-L∞ introduced in [2]. If σ < 0, then (1.9) is a weak version of Lipschitz

condition for the rearrangement f∗.

The main result of this paper (Theorem 3.1), in particular, states the following.

1Lr,∞ is the space of all measurable functions f such that supt>0
t1/rf∗(t) < ∞.
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Theorem 1.4. Assume that 1 ≤ p < ∞, n ≥ 2 (n ∈ N), and that αk (k = 1, . . . , n) are

positive numbers such that

α ≡ n

( n∑

k=1

1

αk

)−1

≤ n

p
.

Let

σk =
1

p
− αk and Vk ≡ Lp

x̂k
(Rn−1)[Λσk

xk
(R)].

Then
n⋂

k=1

Vk ⊂ Lq∗,p(Rn), q∗ =
np

n− αp
. (1.10)

Observe that we get the optimal constant in the corresponding estimate of the Lorentz

norm in (1.10). The limiting case α = n/p also is included (the definition of L∞,p is given

in the Section 2).

It can be easily proved that if a function f ∈ Lp(Rn) (1 ≤ p < ∞) has a weak

derivative Dkf ∈ Lp(Rn), then f ∈ Lp
x̂k

(Rn−1)[Λ
1/p−1
xk (R)] (see Proposition 3.4 below).

Thus, taking α1 = · · · = αn = 1 and applying (1.10), we immediately get the embedding

W 1
p (Rn) ⊂ Lq∗,p(Rn), q∗ =

np

n− p
(1.11)

(see (1.6)). In a sense, (1.10) can be considered as a main part of (1.11). We emphasize

that the definition of Vk contains no smoothness condition on f .

In the case αk < 1 (k = 1, . . . , n) Theorem 1.4 closely relates to embeddings of Besov

spaces.

We shall consider Besov spaces Bα
p;k(Rn) with respect to separate variables xk and

anisotropic Besov spaces

Bα1,...,αk
p (Rn) =

n⋂

k=1

Bαk

p;k(Rn).

The definitions are given in Sections 2 and 4 below. In the isotropic case α1 = · · · = αk =

α we set Bα
p (Rn) ≡ Bα,...,α

p (Rn).

The following theorem is well known (see [21], [7]).

Theorem 1.5. Let 0 < αk < 1 (k = 1, . . . , n), α = n(
∑n

k=1 1/αk)−1, 1 ≤ p < n/α, and

q∗ = np/(n− αp). Then for every function f ∈ Bα1,...,αn
p (Rn) we have

‖f‖q∗,p ≤ c
n∑

k=1

‖f‖bα
p;k
. (1.12)

Suppose that α1 = · · · = αn = α. Then it follows from (1.12) that

‖f‖q∗ ≤ c‖f‖bα
p
. (1.13)

We have ‖f‖bα
p
→ ∞ as α→ 1, whenever f 6∼ 0. Bourgain, Brezis and Mironescu [3] (see

also [5]) proved that there exists a limiting relation between Sobolev and Besov norms,

that is, for any f ∈W 1
p (Rn),

lim
α→1−0

(1 − α)‖f‖p
bα

p
=

1

p
‖∇f‖p

Lp . (1.14)



MIXED NORMS 145

Later on Bourgain, Brezis and Mironescu [4] found the sharp asymptotic of the best

constant as α→ 1 in the inequality (1.13); namely, they proved that if 1/2 ≤ α < 1 and

1 ≤ p < n/α, then for any f ∈ Bα
p (Rn),

‖f‖p

Lq∗ ≤ cn
1 − α

(n− αp)p−1
‖f‖p

bα
p

(
q∗ =

np

n− αp

)
, (1.15)

where a constant cn depends only on n. In view of (1.14), the classical Sobolev inequality

(1.1) can be considered as a limiting case of (1.15). Note that the proof given in [4]

was quite complicated. Afterwards a simpler proof of this result was given in [19]. It was

observed in [15] that (1.15) can be immediately derived from the rearrangement estimates

obtained in [11].

In this paper we apply Theorem 1.4 to study the behaviour of the constant in (1.12)

as some of the numbers αk tend to 1.

It is easy to prove that if f ∈ Bα
p;k(Rn) (0 < α < 1, 1 ≤ p < ∞), then f ∈ Vk ≡

Lp
x̂k

[Λ
1/p−α
xk ] and

‖f‖Vk
≤ 100[α(1 − α)]1/p‖f‖bα

p;k
. (1.16)

Using Theorem 1.4 and inequality (1.16), we obtain the following result.

Theorem 1.6. Let 1 ≤ p < ∞, n ≥ 2 (n ∈ N), and 1/2 < αk < 1 (k = 1, . . . , n).

Assume that

α ≡ n

( n∑

k=1

1

αk

)−1

<
n

p
.

Let q∗ = np/(n − αp). Then for every function f ∈ Bα1,...,αk
p (Rn) we have that f ∈

Lq∗,p(Rn) and

‖f‖q∗,p ≤ q∗cn

n∏

k=1

[(1 − αk)1/p‖f‖b
αk
p;k

]α/(nαk), (1.17)

where cn is a constant depending only on n .

Observe that (1.10) can be considered as the main part of the embedding

Bα1,...,αk
p ⊂ Lq∗,p. (1.18)

The factors (1−αk)α/(pnαk) appear due to inequality (1.16) in the ”easy” part of (1.18).

We stress again that a function f ∈ Vk may have bad smoothness properties (in

contrast with functions in Besov or Sobolev spaces).

By the known relation between Lebesgue and Lorentz norms, (1.17) yields the in-

equality

‖f‖q∗ ≤ (q∗)1−1/pcn

n∏

k=1

[(1 − αk)1/p‖f‖b
αk
p;k

]α/(nαk). (1.19)

In turn, (1.19) implies (1.15).

Inequalities (1.15) and (1.19) are involved in the following general problem: given a

function f ∈ Lp(Rn), find sharp estimates of its Lq−norm (p < q < ∞) in terms of

partial moduli of continuity of f. This problem was posed by Ul’yanov [24]. Ul’yanov

[24] solved it for n = 1. The complete solution in n-dimensional case was given in [10].

Estimates obtained in [10] are sharp in a stronger sense than the estimate (1.19) which



146 V. I. KOLYADA

is sharp only in the setting of Besov spaces. In particular, the general phenomenon of

”big smoothness” found in [10] has a more complicated form than one given by (1.19)

for the special case of Besov norms. The main result of [10] (Theorem 1) immediately

implies (1.19). However, the proof in [10] (concerning the anisotropic case) is rather long

and complicated. In the isotropic case the problem is much simpler (see [11]).

2. Auxiliary propositions

2.1. Moduli of continuity. For any f ∈ Lp(Rn), 1 ≤ p <∞, and h ∈ R
n, set

Ip(h) =

( ∫

Rn

|f(x+ h) − f(x)|pdx
)1/p

.

The modulus of continuity2 of a function f is defined by

ω(f ; δ)p = sup
|h|≤δ

Ip(h) (0 < δ <∞).

Observe that ω(f ; δ)p is a non-decreasing and subadditive function. In particular, this

implies that

ω(f ; η)p/η ≤ 2ω(f ; δ)p/δ, 0 < δ < η. (2.1)

Let 0 < α < 1 and 1 ≤ p, θ ≤ ∞. The Besov space Bα
p,θ(R

n) consists of all functions

f ∈ Lp(Rn) such that

‖f‖bα
p,θ

≡
( ∫ ∞

0

(
t−αω(f ; t)p

)θ dt

t

)1/θ

<∞

if θ <∞, and

‖f‖bα
p,∞

≡ sup
t>0

t−αω(f ; t)p <∞

if θ = ∞. Set also Bα
p ≡ Bα

p,p.

The following lemma is well known; we outline the proof in order to get the explicit

values of the constants.

Lemma 2.1. Let f ∈ Lp(R), 1 ≤ p <∞. Then

ω(f ; δ)p ≤ 3

δ

∫ δ

0

Ip(h) dh, δ > 0, (2.2)

and for any 0 < α < 1 and any 1 ≤ θ <∞

‖f‖bα
p,θ

≤ 3

(∫ ∞

0

(h−αIp(h))
θ dh

h

)1/θ

. (2.3)

Proof. Let δ > 0 and 0 ≤ t ≤ δ. For any h ∈ [0, δ] we have

Ip(t) ≤ Ip(t− h) + Ip(h).

Integrating with respect to h in [0, δ], and taking into account that the function Ip(u) is

even, we get

δIp(t) ≤ 3

∫ δ

0

Ip(h) dh,

2This modulus of continuity can be called isotropic. In Section 4 we consider also partial
moduli of continuity.



MIXED NORMS 147

which yields (2.2). Now, using (2.2), Hölder’s inequality, and Fubini’s theorem, we have
∫ ∞

0

(
t−αω(f ; t)p

)θ dt

t
≤ 3θ

∫ ∞

0

t−αθ−2

∫ t

0

Ip(h)
θ dh dt =

3θ

αθ + 1

∫ ∞

0

h−αθIp(h)
θ dh

h
.

This implies (2.3).

It is well known that

Bα
p,θ ⊂ Bα

p,η if 1 ≤ θ < η ≤ ∞.

Moreover, the following estimate holds.

Lemma 2.2. Let 1 ≤ p < ∞, 1 ≤ θ < η ≤ ∞, and 0 < α < 1. Then for any function

f ∈ Lp(Rn)

‖f‖bα
p,η

≤ 8[α(1 − α)]1/θ−1/η‖f‖bα
p,θ
. (2.4)

Proof. Denote ω(t) = ω(f ; t)p . First, we have for any t > 0
∫ ∞

t

u−αθω(u)θ du

u
≥ ω(t)θ

∫ ∞

t

u−αθ−1du =
1

αθ
[t−αω(t)]θ.

Next, using (2.1), we get
∫ t

0

u−αθω(u)θ du

u
≥

(
ω(t)

2t

)θ ∫ t

0

u(1−α)θ−1du =
1

2θ(1 − α)θ
[t−αω(t)]θ.

Thus, for any t > 0

t−αω(t) ≤ [θmin(α, 2θ(1 − α))]1/θ‖f‖bα
p,θ

≤ [(2θ + 1)θα(1 − α)]1/θ‖f‖bα
p,θ
.

From here we get (2.4) for η = ∞. If η <∞, then
∫ ∞

0

[t−αω(t)]η
dt

t
≤ 8η−θ[α(1 − α)](η−θ)/θ‖f‖η−θ

bα
p,θ

∫ ∞

0

[t−αω(t)]θ
dt

t
,

which again implies (2.4).

2.2. Rearrangements. Denote by S0(R
n) the class of all measurable and almost every-

where finite functions f on R
n such that for each y > 0,

λf (y) ≡ |{x ∈ R
n : |f(x)| > y}| <∞.

A non-increasing rearrangement of a function f ∈ S0(R
n) is a non-increasing function

f∗ on R+ ≡ (0,+∞) that is equimeasurable with |f |. The rearrangement f∗ can be

defined by the equality

f∗(t) = sup
|E|=t

inf
x∈E

|f(x)|

The following relation holds [23, Ch. 5]:

sup
|E|=t

∫

E

|f(x)|dx =

∫ t

0

f∗(u)du . (2.5)

In what follows we denote

f∗∗(t) =
1

t

∫ t

0

f∗(u)du.
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Assume that 0 < q, p < ∞. A function f ∈ S0(R
n) belongs to the Lorentz space

Lq,p(Rn) if

‖f‖q,p ≡
(∫ ∞

0

(t1/qf∗(t))p dt

t

)1/p

<∞.

For 0 < q <∞, the space Lq,∞(Rn) is defined as the class of all f ∈ S0(R
n) such that

‖f‖q,∞ ≡ sup
t>0

t1/qf∗(t) <∞.

We have the inequality [23, p. 192]

‖f‖q,s ≤
(
q

s

)1/s(
p

q

)1/p

‖f‖q,p (0 < p < s ≤ ∞). (2.6)

The space W (Rn) ≡ weak-L∞(Rn) consists of all functions f ∈ S0(R
n) such that

‖f‖W ≡ sup
t>0

[f∗∗(t) − f∗(t)] <∞. (2.7)

This space was introduced by Bennett, DeVore and Sharpley [2]. It was proved in [2] that

BMO ⊂W.

For a function f ∈ S0(R
n) we consider also the quantity

ω∗(t) ≡ f∗(t) − f∗(2t).

Observe that for any t > 0

1

2
ω∗

(
t

2

)
≤ f∗∗(t) − f∗(t) ≤ 2

t

∫ t

0

ω∗(u) du. (2.8)

The left hand side inequality is immediate since

f∗∗(t) − f∗(t) ≥ 1

t

∫ t/2

0

[f∗(u) − f∗(t)] dt ≥ 1

2
ω∗

(
t

2

)
.

Next, for any t > 0 and any 0 < ε < t
∫ t

ε

ω∗(u) du =

∫ t

ε

f∗(u) du− 1

2

∫ 2t

2ε

f∗(u) du ≥ 1

2

[∫ t

ε

f∗(u) du− tf∗(t)

]
.

This implies the right hand side inequality in (2.8).

Similarly, we have that for any f ∈ S0(R
n) and any t > 0

f∗(2t) ≤ 1

ln 2

∫ ∞

t

f∗(u) − f∗(2u)

u
du. (2.9)

Let 1 ≤ q, p <∞. For a function f ∈ S0(R
n), set

‖f‖∗q,p =

(∫ ∞

0

[t1/q(f∗(t) − f∗(2t))]p
dt

t

)1/p

(2.10)

and

‖f‖∗q,∞ = sup
t>0

t1/q[f∗(t) − f∗(2t)]. (2.11)

It follows from (2.9) and Hardy’s inequality [23, p. 196] that

‖f‖q,p ≤ 21/qq

ln 2
‖f‖∗q,p (1 ≤ q <∞, 1 ≤ p ≤ ∞). (2.12)
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For any 1 ≤ p < ∞ the space L∞,p(Rn) is defined as the class of all functions

f ∈ S0(R
n) such that

‖f‖∞,p ≡
(∫ ∞

0

[f∗∗(t) − f∗(t)]p
dt

t

)1/p

<∞

(see [1], [18]). Set also

‖f‖∗∞,p ≡
(∫ ∞

0

[f∗(t) − f∗(2t)]p
dt

t

)1/p

.

It follows from (2.8) that

1

2
‖f‖∗∞,p ≤ ‖f‖∞,p ≤ 2‖f‖∗∞,p. (2.13)

Recall that the space Λσ(R) (σ ∈ R) is defined as the class of all functions f ∈ S0(R)

such that

‖f‖Λσ ≡ sup
t>0

tσ[f∗(t) − f∗(2t)] <∞.

If 0 < σ <∞ and r = 1/σ, then by (2.9) for any f ∈ S0(R)

‖f‖Λσ ≤ ‖f‖r,∞ ≤ 2σ+1

σ
‖f‖Λσ .

Thus, Λσ(R) = Lr,∞(R). If σ = 0, then Λσ coincides with the space weak-L∞ (see (2.7)

and (2.8)).

The following lemma was obtained in [12, Lemma 5.1]. As it was observed in [12],

this lemma follows by simple arguments contained in [11, Theorem 2]. We give these

arguments here.

Lemma 2.3. Let f ∈ S0(R
n) be a locally integrable function which has all weak derivatives

∂f/∂xk ∈ L1
loc (k = 1, . . . , n). Then

f∗∗(t) − f∗(t) ≤ √
n t1/n(|∇f |)∗∗(t) . (2.14)

Proof. Let x ∈ R
n and t > 0. Denote by Qx(t) the cube centered at x with side length

(2t)1/n. Fix x and set

At = {y ∈ Qx(t) : |f(y)| ≤ f∗(t)}.
Then |At| ≥ t. For any y ∈ At

|f(x)| − f∗(t) ≤ |f(x)| − |f(y)| ≤ |f(x) − f(y)|.
Integrating over At, we have

|f(x)| − f∗(t) ≤ 1

t

∫

At

|f(x) − f(y)| dy ≤ 1

t

∫

Q0(t)

|f(x) − f(x+ h)| dh.

For each h ∈ R
n and almost every x ∈ R

n

f(x+ h) − f(x) =

∫ 1

0

∇f(x+ τh) · h dτ

(see [16, p. 135]). Thus, for almost all x ∈ R
n

|f(x)| − f∗(t) ≤ √
n t1/n−1

∫ 1

0

dτ

∫

Q0(t)

|∇f(x+ τh)|dh.
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Let E ⊂ R
n, |E| = t. Then for all τ ∈ [0, 1], h ∈ Q0(t)

∫

E

|∇f(x+ τh)|dx ≤
∫ t

0

(|∇f |)∗(u)du.

Applying (2.5), we get (2.14).

Observe that estimate (2.14) can be efficiently applied in the study of Sobolev spaces

W 1
p in the case p > 1. In particular, inequality (1.6) for 1 < p < n follows at once from

(2.14) and Hardy’s inequality. In the limiting case p = n estimate (2.14) and Hardy’s

inequality immediately imply that for any function f ∈W 1
n(Rn) (n ≥ 2)

(∫ ∞

0

[f∗∗(t) − f∗(t)]n
dt

t

)1/n

≤ cn‖∇f‖n, (2.15)

i.e., W 1
n(Rn) ⊂ L∞,n(Rn) (see [1], [18]). Observe also that (2.15) can be considered as a

special case of the inequality (2.23) in [11].

Lemma 2.4. Let f ∈ Lp(Rn), 1 ≤ p <∞. Then for any t > 0

f∗∗(t) − f∗(t) ≤ 21/pt−1/pω(f ; t1/n)p. (2.16)

This estimate was first proved by Ul’yanov [24] in the one-dimensional case. A simple

proof in the general case is contained in [11, Theorem 1].

2.3. Hardy type inequality

Lemma 2.5. Let f be a nonnegative non-increasing function on R+. Suppose that β > 0

and 0 < r < 1. Then
∫ ∞

0

tβ−1

(∫ ∞

t

f(u) du

)r

dt ≤ e

(
1 +

r

β

)∫ ∞

0

tβ+r−1f(t)r dt. (2.17)

Proof. We can assume that f is a bounded function with compact support. Since f is

non-increasing, then we have for any A > 1

J ≡
∫ ∞

0

tβ−1

(∫ ∞

t

f(u) du

)r

dt

≤
∫ ∞

0

tβ−1

(∫ At

t

f(u) du

)r

dt+

∫ ∞

0

tβ−1

(∫ ∞

At

f(u) du

)r

dt

≤ (A− 1)rJ∗ +A−βJ,

where

J∗ =

∫ ∞

0

tβ+r−1f(t)r dt.

It follows that

J ≤ Ar+β

Aβ − 1
J∗.

Taking A = (1 + β/r)1/β , we get (2.17).

2.4. Projections and sections. As above, for any vector x ∈ R
n and every k ∈ {1, . . . , n}

we denote by x̂k the (n − 1)-dimensional vector obtained from x by removal of its kth

coordinate. We write also x = (xk, x̂k).
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Let f ∈ S0(R
n) and assume that 1 ≤ k ≤ n. Fix x̂k ∈ R

n−1 and consider the function

of the variable xk

fx̂k
(xk) = f(xk, x̂k), xk ∈ R.

For almost all x̂k ∈ R
n−1 we have fx̂k

∈ S0(R). We set

Rkf(t, x̂k) = (fx̂k
)∗(t), t > 0.

The function Rkf is defined almost everywhere on R+ ×R
n−1. We call it the rearrange-

ment of f with respect to kth variable. It is a measurable function equimeasurable with

|f |.
Let 1 ≤ p <∞, n ≥ 2 (n ∈ N), and σ ∈ R. In this paper we consider the spaces

Vk ≡ Lp
x̂k

(Rn−1)[Λσ
xk

(R)]

with the norm

‖f‖Vk
=

(∫

Rn−1

[ψk(x̂k)]p dx̂k

)1/p

,

where ψk(x̂k) = ‖fx̂k
‖Λσ = supt>0 t

σ [Rkf(t, x̂k) −Rkf(2t, x̂k)].

Let E ⊂ R
n. For every k = 1, . . . , n, denote by Πk(E) the orthogonal projection of E

onto the coordinate hyperplane xk = 0. Further, if x̂k ∈ R
n−1, then by E(x̂k) we denote

the xk−section of E,

E(x̂k) = {xk : (xk, x̂k) ∈ E}.
The Lebesgue measure of a measurable set A ⊂ R

k will be denoted by mesk A.

The following lemma was proved by Loomis and Whitney [17] (it follows also from

Lemma 1.1).

Lemma 2.6. Let E ⊂ R
n be a set of type Fσ. Then

(mesnE)n−1 ≤
n∏

k=1

mesn−1 Πk(E). (2.18)

3. Embeddings of mixed norm spaces

Theorem 3.1. Assume that 1 ≤ p < ∞, n ≥ 2 (n ∈ N), and that αk (k = 1, . . . , n) are

positive numbers such that

α ≡ n

( n∑

k=1

1

αk

)−1

≤ n

p
. (3.1)

Let

σk =
1

p
− αk, Vk ≡ Lp

x̂k
(Rn−1)[Λσk

xk
(R)],

and

q =
np

n− αp
.

Suppose that

f ∈ S0(R
n) and f ∈ V α1,...,αn

p ≡
n⋂

k=1

Vk.
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Then f ∈ Lq,p(Rn) and

‖f‖∗q,p ≤ c

n∏

k=1

‖f‖α/(nαk)
Vk

, (3.2)

where

c = cn

( n∏

k=1

(nαk − α)α/(nαk)
)−1/p

(3.3)

and cn is a constant depending only on n.

Proof. We can suppose that f is a nonnegative continuous function with compact support.

Fix t > 0 and estimate the difference f∗(t) − f∗(2t). We assume that this difference

is positive. It is easy to see that there exist two bounded Fσ−sets in R
n, a set A with

mesnA = t and a set B with mesnB = 2t, such that A ⊂ B,

{x : f(x) > f∗(t)} ⊂ A ⊂ {x : f(x) ≥ f∗(t)}, (3.4)

and

{x : f(x) > f∗(2t)} ⊂ B ⊂ {x : f(x) ≥ f∗(2t)}. (3.5)

Denote

αj(x̂j) = mes1A(x̂j), βj(x̂j) = mes1B(x̂j).

Since f is continuous, then it follows from (3.4) and (3.5) that for all x̂j ∈ Πj(A) (j =

1, . . . , n)

Rjf(αj(x̂j), x̂j) = f∗(t) and Rjf(βj(x̂j), x̂j) = f∗(2t). (3.6)

For every j = 1, . . . , n, denote by Pj the set of all x̂j ∈ Πj(A) such that

βj(x̂j) ≤ 2n+1αj(x̂j). (3.7)

Let Aj = {x ∈ A : x̂j ∈ Pj}. Then

mesnAj ≥ (1 − 2−n)t, j = 1, . . . , n. (3.8)

Indeed, if for some j the opposite inequality was true, then we would have that

mesnB ≥
∫

Πj(A)\Pj

βj(x̂j)dx̂j > 2n+1

∫

Πj(A)\Pj

αj(x̂j)dx̂j = 2n+1 mesn(A \Aj) > 2t,

which is false.

Denote

Ã =

n⋂

j=1

Aj .

By (3.8),

mesn Ã ≥ t

2
. (3.9)

Set

γj = 1 − α

nαj
, j = 1, . . . , n.

Then 0 < γj < 1 and
n∑

j=1

γj = n− 1. (3.10)
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Let Ω be the set of all k ∈ {1, . . . , n} for which

mesn−1 Pk ≥ tγk

2
. (3.11)

Since Πk(Ã) ⊂ Pk, it follows from (3.9), (3.10), and the Loomis-Whitney inequality (2.18)

that Ω 6= ∅.
Denote

ψj(x̂j) = ‖f(·, x̂j)‖Λσj , j = 1, . . . , n.

Let k ∈ Ω. First we suppose that σk ≤ 0. By (3.6) and (3.7), we have for all x̂k ∈ Pk

f∗(t) − f∗(2t) = Rkf(αk(x̂k), x̂k) −Rkf(βk(x̂k), x̂k)

≤ (n+ 1)2|σk|n(αk(x̂k))−σkψk(x̂k). (3.12)

Let

P ′
k = {x̂k ∈ Pk : αk(x̂k) ≤ 4t1−γk}.

Then mesn−1 P
′
k ≥ tγk/4. Indeed, otherwise by (3.11) we would have that

mesnA ≥
∫

Pk\P ′

k

αk(x̂k)dx̂k > t,

which is false.

Taking in (3.12) the infimum over all x̂k ∈ P ′
k , we obtain that if k ∈ Ω and σk ≤ 0,

then

f∗(t) − f∗(2t) ≤ (n+ 1)4|σk|nt(γk−1)σkψ∗
k(tγk/4). (3.13)

Now suppose that for all k ∈ Ω we have σk > 0. Let rk = 1/σk. Applying (3.6) and

(3.7), we have for all x̂k ∈ Pk (k ∈ Ω)

αk(x̂k)[f∗(t) − f∗(2t)]rk ≤ (n+ 1)rk(ψk(x̂k))rk . (3.14)

Taking into account (3.11) and using Lemma 3 of [13], we split Pk into two disjoint

measurable sets Q′
k and Q′′

k such that mesn−1Q
′
k = tγk/2 and

∫

Q′′

k

(ψk(x̂k))rk dx̂k ≤
∫ ∞

tγk /2

(ψ∗
k(u))rkdu. (3.15)

We consider two cases.

First we suppose that there exists k ∈ Ω such that the set A′′
k = {x ∈ Ã : x̂k ∈ Q′′

k}
has measure mesnA

′′
k ≥ t/(4n). Then we fix such k and integrate inequality (3.14) over

Q′′
k . Note that ∫

Q′′

k

αk(x̂k)dx̂k ≥ mesnA
′′
k ≥ t

4n
.

Thus, in virtue of (3.15), we get

f∗(t) − f∗(2t) ≤ 4σk(n+ 1)1+σk t−σk

(∫ ∞

tγk /2

(ψ∗
k(u))rkdu

)1/rk

. (3.16)

Now we suppose that for all k ∈ Ω we have mesnA
′′
k < t/(4n). Set A′ = Ã\(∪k∈ΩA

′′
k).

Then

mesnA
′ ≥ t

4
. (3.17)
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(see (3.9)). We have also

mesn−1 Πj(A
′) ≤ tγj

2
(j = 1, . . . , n). (3.18)

Indeed, Πj(A
′) ⊂ Πj(Ã) ⊂ Pj for any j = 1, . . . , n. By the definition of Ω (see (3.11)),

mesn−1 Pj ≤ tγj

2
for all j 6∈ Ω.

Thus, (3.18) is true for all j 6∈ Ω. Let now j ∈ Ω. Then

Πj(A
′) ⊂ Pj \Q′′

j = Q′
j ;

but mesn−1Q
′
j = tγj/2. Therefore (3.18) holds also for all j ∈ Ω.

Fix k ∈ Ω. Let S be the set of all x = (xk, x̂k) ∈ A′ for which

mes1A
′(x̂k) ≥ t1−γk

4
. (3.19)

By (3.17) and (3.18) we have

mesn S ≥ t

8
. (3.20)

Furthermore, by (3.18),

mesn−1 Πj(S) ≤ tγj

2
(j = 1, . . . , n). (3.21)

It follows from (3.20), (3.21), and the Loomis-Whitney inequality (2.18) that

mesn−1 Πk(S) ≥ tγk

4n−1
. (3.22)

For all x̂k ∈ Πk(S) we have by (3.19)

αk(x̂k) ≥ t1−γk

4
.

Thus, for every x̂k ∈ Πk(S) we obtain from (3.14) and (3.22)

f∗(t) − f∗(2t) ≤ 4σk(n+ 1)t(γk−1)σkψ∗
k(41−ntγk). (3.23)

Note that

ψ∗
k(41−ntγk) ≤ 4nσk t−γkσk

(∫ ∞

4−ntγk

(ψ∗
k(u))1/σk du

)σk

.

Thus, it follows from (3.16) and (3.23) that if σk > 0 for all k ∈ Ω, then there exists

k ∈ Ω such that

f∗(t) − f∗(2t) ≤ 4(n+1)σk(n+ 1)t−σk

(∫ ∞

4−ntγk

(ψ∗
k(u))1/σk du

)σk

.

Combining this with (3.13), we obtain that
∫ ∞

0

[t1/q(f∗(t) − f∗(2t))]p
dt

t
≤ (n+ 1)p

( ∑

σk≤0

4np|σk|

∫ ∞

0

tp(1/q+(γk−1)σk)(ψ∗
k(tγk/4))p dt

t

+ 4n+1
∑

σk>0

∫ ∞

0

tp(1/q−σk)

(∫ ∞

4−ntγk

(ψ∗
k(u))1/σk du

)pσk dt

t

)
.
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Let σk ≤ 0. Since 1/q + (γk − 1)σk = γk/p, we have
∫ ∞

0

tp(1/q+(γk−1)σk)(ψ∗
k(tγk/4))p dt

t
=

4

γk

∫ ∞

0

(ψ∗
k(t))p dt =

4

γk
‖f‖p

Vk
.

Next, suppose that σk > 0 for some k. Applying Lemma 2.5 with r = pσk and β = pαk,

we obtain
∫ ∞

0

tp(1/q−σk)

(∫ ∞

4−ntγk

(ψ∗
k(u))1/σk du

)pσk dt

t

=
4npαk

γk

∫ ∞

0

tpαk

(∫ ∞

t

(ψ∗
k(u))1/σk du

)pσk dt

t

≤ 4npαk+1

αkγk

∫ ∞

0

(ψ∗
k(t))p dt =

4npαk+1

αkγk
‖f‖p

Vk
.

From these estimates we get that

‖f‖∗q,p ≡
(∫ ∞

0

[t1/q(f∗(t) − f∗(2t))]p
dt

t

)1/p

≤ 25n
n∑

k=1

µk‖f‖Vk
, where µk = 4(n+1)αk(αkγk)−1/p. (3.24)

It remains to show that (3.24) can be transformed into multiplicative inequality (3.2).

We apply standard arguments. Set

εk = (µk‖f‖Vk
)−1/αk , ε =

n∏

k=1

εk,

and g(x) = f(ε1x1, . . . , εnxn). It is easy to see that g∗(t) = f∗(εt), ‖g‖∗q,p = ε−1/q‖f‖∗q,p ,

and

‖g‖Vk
= ε−σk

k

(∏

j 6=k

εj

)−1/p

‖f‖Vk
.

Using these relations, applying (3.24) to the function g, and taking into account (3.1),

we easily get that

‖f‖∗q,p ≤ cnε
−α/n ≤ c′n

n∏

k=1

[(αkγk)−1/p‖f‖Vk
]α/(nαk).

This implies (3.2).

Since f ∈ S0(R
n), then by (3.2), (2.12), and (2.13) we have that f ∈ Lq,p.

Remark 3.2. If at least one of the numbers αk tends to 0, then the constant c in (3.2)

tends to infinity. The order of growth of this constant given by (3.3) is optimal. To show

this, consider the following example (for n = 2). Let 1 ≤ p <∞, 0 < α1, α2 < 1/p,

α = 2

(
1

α1
+

1

α2

)−1

, and q =
2p

2 − αp
.

Let f(x, y) = xα1−1/pyα2−1/p if (x, y) ∈ (0, 1)2 and f(x, y) = 0 otherwise. Then

‖f‖V1
= (pα2)

−1/p, ‖f‖V2
= (pα1)

−1/p,
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and

‖f‖q =

(
2

q

)2/q

[(2α1 − α)(2α2 − α)]−1/q.

Denote (see (3.3))

A = [(2α1 − α)α/(2α1)(2α2 − α)α/(2α2)]−1/p.

For all x > 0 we have xx > 1/2. Thus,

‖f‖q =

(
2

q

)2/q

A[(2α1 − α)1−1/(pα2)(2α2 − α)1−1/(pα1)]α/2

=

(
2

q

)2/q

Aαα−1/p[α
1/α1−1/α2

1 α
1/α2−1/α1

2 ]α/(2p)

≥ p1/p

4
A‖f‖α/(2α1)

V1
‖f‖α/(2α2)

V2

(
α

α/(2α1)
1 α

α/(2α2)
2

α

)1/p

.

Next, α/2 ≤ min(α1, α2). Therefore

‖f‖q ≥ A

8
‖f‖α/(2α1)

V1
‖f‖α/(2α2)

V2
.

By (2.12) and (2.6),

‖f‖∗q,p ≥ ln 2

q
‖f‖q,p ≥ ln 2

q

(
q

p

)1/p

‖f‖q.

These estimates yield that the constant in (3.2) is optimal.

Observe that in the case α1 = · · · = αn = α the constant (3.3) equals to cnα
−1/p.

Remark 3.3. Suppose that αk = 1, k = 1, . . . , n.

If p = 1, then σk = 0 (k = 1, . . . , n), q = n/(n− 1), and

Vk = L1
x̂k

[weak-L∞
xk

].

We have from Theorem 3.1

‖f‖n/(n−1),1 ≤ c
( n∏

k=1

‖f‖Vk
B

)1/n

.

This inequality is slightly stronger than the Fournier inequality (1.7). Indeed, the right

hand side of (1.7) contains the norms in the spaces L1
x̂k

[L∞
xk

]. We have proved that the

interior L∞
xk

-norms can be replaced by weaker norms of weak-L∞
xk
.

If 1 < p ≤ n, then σk = 1/p − 1 (k = 1, . . . , n) and Vk = Lp
x̂k

[Λ
1/p−1
xk ]. In this case

Theorem 3.1 asserts that

‖f‖q,p ≤ c
( n∏

k=1

‖f‖Vk

)1/n

, where q =
np

n− p
.

If p = n, then q = ∞ and we have the norm in L∞,n(Rn) at the left hand side.

It is easy to see that these results are closely connected with Sobolev type inequalities

(1.6) and (2.15).
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Proposition 3.4. Let k ∈ {1, . . . , n} and 1 ≤ p <∞. Assume that f ∈ Lp(Rn) and that

f has the weak partial derivative Dkf ∈ Lp(Rn). Then f ∈ Vk ≡ Lp
x̂k

[Λ
1/p−1
xk ] and

‖f‖Vk
≤ 4‖Dkf‖p. (3.25)

Proof. Indeed, by (2.14) and (2.8) we have for almost all x̂k ∈ R
n−1

Rkf(t, x̂k) −Rkf(2t, x̂k) ≤ 4

∫ t

0

(Dkf)∗(u) du ≤ 4t1−1/p

(∫

R

|Dkf(x)|p dxk

)1/p

.

Thus, for almost all x̂k

‖f(·, x̂k)‖
Λ

1/p−1
xk

≤ 4

(∫

R

|Dkf(x)|p dxk

)1/p

.

This implies (3.25).

Recall that

W 1
p (Rn) ⊂ Lq,p(Rn), 1 ≤ p ≤ n, q =

np

n− p
. (3.26)

(see (1.6) and (2.15)). At the same time, by Theorem 3.1
n⋂

k=1

Vk ⊂ Lq,p(Rn) (3.27)

and by Proposition 3.4,

W 1
p (Rn) ⊂

n⋂

k=1

Vk. (3.28)

Thus, we can split (3.26) into two embeddings (3.27) and (3.28). Clearly, (3.27) is the

main part of (3.26).

4. Limiting embeddings. Let f ∈ Lp(Rn) and k ∈ {1, . . . , n}. The partial modulus of

continuity of f in Lp with respect to xk is defined by

ωk(f ; δ)p = sup
0≤h≤δ

(∫

Rn

|f(x+ hek) − f(x)|p dx
)1/p

.

(ek is the kth unit coordinate vector). It is easy to see that

max
k

ωk(f ; δ)p ≤ ω(f ; δ)p ≤
n∑

k=1

ωk(f ; δ)p.

Let 0 < α < 1, k ∈ {1, . . . , n}, and 1 ≤ p, θ < ∞. The Besov space Bα
p,θ;k(Rn) is

defined as the space of all functions f ∈ Lp(Rn) such that

‖f‖bα
p,θ;k

≡
(∫ ∞

0

(
t−αωk(f ; t)p

)θ dt

t

)1/θ

<∞.

Denote also Bα
p,p;k ≡ Bα

p;k.

Let 0 < αk < 1 (k = 1, . . . , n) and 1 ≤ p, θ <∞. Then we set

Bα1,...,αk

p,θ (Rn) =
n⋂

k=1

Bαk

p,θ;k(Rn) (Bα1,...,αk
p ≡ Bα1,...,αk

p,p ).
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In this section we apply Theorem 3.1 to find the asymptotic of the constant in (1.12)

as some of the numbers αk tend to 1.

First we observe that if a function f ∈ Lp(Rn) has a weak derivative Dkf ∈ Lp(Rn),

then

lim
α→1−0

(1 − α)1/θ‖f‖bα
p,θ;k

=

(
1

θ

)1/θ

‖Dkf‖p . (4.1)

The proof is the same as one given in [15, Proposition 2.5].

Next, we prove the following proposition.

Proposition 4.1. Let 0 < α < 1, 1 ≤ p < ∞, and 1 ≤ k ≤ n (n ≥ 2). Assume that

f ∈ Bα
p;k(Rn). Then f ∈ Vk ≡ Lp

x̂k
[Λ

1/p−α
xk ] and

‖f‖Vk
≤ 100[α(1 − α)]1/p‖f‖bα

p;k
. (4.2)

Proof. For a fixed x̂k ∈ R
n−1, denote

fx̂k
(xk) = f(xk, x̂k), xk ∈ R.

For almost all x̂k and any t > 0 we have by (2.16) and (2.8)

f∗x̂k
(t) − f∗x̂k

(2t) ≤ 4t−1/pω(fx̂k
; t)p .

It follows that

‖fx̂k
‖Λσ ≤ 4‖fx̂k

‖bα
p,∞(R) , σ = 1/p− α. (4.3)

Applying Lemma 2.2, we have

‖fx̂k
‖bα

p,∞(R) ≤ 8[α(1 − α)]1/p‖fx̂k
‖bα

p (R). (4.4)

Next, by (2.3),

‖fx̂k
‖p

bα
p (R) ≤ 3p

∫ ∞

0

∫

R

|f(xk, x̂k) − f(xk + h, x̂k)|p dxk
dh

hαp+1
.

Integrating with respect to x̂k, we obtain
∫

Rn−1

‖fx̂k
‖p

bα
p (R) dx̂k ≤ 3p

∫ ∞

0

[h−αωk(f ;h)p]
p dh

h
.

Combining this inequality with (4.3) and (4.4), we get (4.2).

Applying Theorem 3.1 and Proposition 4.1, we obtain the following result.

Theorem 4.2. Let 1 ≤ p < ∞, n ≥ 2 (n ∈ N), and 1/2 < αk < 1 (k = 1, . . . , n).

Assume that

α ≡ n

( n∑

k=1

1

αk

)−1

≤ n

p
.

Let q = np/(n−αp). Then for every function f ∈ Bα1,...,αk
p (Rn) we have that f ∈ Lq,p(Rn)

and

‖f‖∗q,p ≤ c

n∏

k=1

[(1 − αk)1/p‖f‖b
αk
p;k

]α/(nαk), (4.5)

where c ≡ cn is a constant depending only on n .
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Indeed, (3.2), (3.3), and (4.2) immediately yield (4.5) with the constant

c = cn

[ n∏

k=1

(
αk

nαk − α

)α/(nαk)]1/p

.

Since 1/2 < αk < 1 for all k = 1, . . . , n, then we have

αk

nαk − α
≤ 3

n
(k = 1, . . . , n),

which implies that c ≤ 3cn.

As it was already noted in Introduction, inequality (4.5) follows also from [10, Theorem

1]. Nevertheless, it is much simpler to derive (4.5) from Theorem 3.1.

If α < n/p, then by (2.12) and (4.5) we obtain (1.17). In turn, (1.17) and (2.6) imply

(1.19) and (1.15).

Assume that for some k there exists a weak derivative Dkf ∈ Lp(RN ). Then for the

corresponding term in (4.5) we have by (4.1)

(1 − αk)1/p‖f‖b
αk
p;k

→
(

1

p

)1/p

‖Dkf‖p, αk → 1.

We see that (similarly to (3.26)) the embedding Bα1,...,αk
p (Rn) ⊂ Lq,p(Rn) can be split

into two parts. The main part is contained in Theorem 3.1. The factors (1− αk)α/(pnαk)

in (4.5) appear when we apply Proposition 4.1 (i.e., in the ”easy” part of (4.5)).

Remark 4.3. Observe that Maz’ya and Shaposhnikova [19] studied also the behaviour

of the optimal constant in (1.13) as α→ 0. More precisely, they proved that the constant

in (1.15) can be replaced by

cp,nα(1 − α)(n− αp)1−p.

It was shown in [15] that this result (as well as (1.15)) follows from the rearrangement

estimates obtained in [11]. For anisotropic Besov spaces the asymptotic of the constant

in (1.12) in the case when all αk are small can be easily derived from [9, Lemma 5].

Nevertheless, the study of this constant in the general case (when some of the numbers

αk tend to 0 and some of them tend to 1) requires different arguments. We will present

the corresponding result in other paper.
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