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Abstract. We study mixed norm condition numbers for the univariate Bernstein basis for

polynomials of degree n, that is, we measure the stability of the coefficients of the basis in the

lq-sequence norm whereas the polynomials to be represented are measured in the Lp-function

norm. The resulting condition numbers differ from earlier results obtained for p = q.

1. Introduction. In order to approximate a function from a finite dimensional vector

space one should choose a basis for the space which is well conditioned in the sense that

small relative errors in the coefficients of the approximation do not lead to large relative

changes in its function values. In this respect a basis of orthogonal polynomials is a good

choice when the approximating space consists of univariate polynomials. In computer

aided geometric design the Bernstein basis

(1) Bj,n(x) :=

(

n

j

)(

1 + x

2

)j(
1 − x

2

)n−j

, j = 0, . . . , n,

is a popular choice. Although it is not as well conditioned as orthogonal polynomials

it is better conditioned than the power basis and it has the additional properties of

nonnegativity on the interval in question (which will be [−1, 1] in this paper) and form a
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partition of unity so that

(2) Bn
j (x) ≥ 0, x ∈ [−1, 1],

n
∑

j=0

Bn
j (x) = 1, x ∈ R, and

∫ 1

−1

Bn
j (x)dx =

2

n + 1
.

The p-norm condition numbers of linearly independent functions φT = (φ0, . . . , φn)

can be defined by

κp(φ) = S1(φ) ∗ S2(φ)

where S1(φ) = sup
c 6=0

‖φT c‖p

‖c‖p
, S2(φ) = sup

c 6=0

‖c‖p

‖φT c‖p
, 1 ≤ p ≤ ∞.

Here

‖c‖p =

{

(
∑n

j=0|cj |p)1/p if 1 ≤ p < ∞,

max0≤j≤n|cj | if p = ∞,

is the usual lp sequence norm of the vector c = (c0, . . . , cn)T and

‖f‖p =

{

(
∫

Ω
|f(x)|pdx)1/p if 1 ≤ p < ∞,

supx∈Ω|f(x)| if p = ∞,

denotes the standard Lp function norm of f on the domain of definition Ω which can

be a domain in R
s for some positive integer s. The condition number measures in the

p-norm setting how much the relative size of the function can differ from the relative

size of its coefficients. We are interested both in asymptotic estimates in n and s and

in characterizing the extremals, i.e. the functions for which the supremums in S1(φ) and

S2(φ) are obtained. In addition to the examples already mentioned much work has been

carried out on the condition numbers for the univariate B-spline basis [1, 3, 4, 10] and the

Bernstein basis [3, 5, 6, 7, 9] for polynomials of degree ≤ n defined on a simplex in R
s.

It is striking that the number 2n comes up both for B-splines and for the Bernstein

basis in one and several variables.

• For B-splines of degree n de Boor showed in 1973 that the condition number is inde-

pendent of the knots, see [1]. For p = ∞ the lower bound 2n− 1

2

(

1 − 1
n

)

for the condition

number was shown in 1978 in [4]. In fact the lower bound was obtained by representing

the Chebyshev polynomial Tn(x) = cos(n arccos x) in terms of the Bernstein basis on

[−1, 1]. The upper bound (n+1)2n+1 was given in [10] and this is valid for all values of p.

• For the univariate Bernstein basis a 2n upper bound for all p’s was given by Ciesielski

at a conference in 1983 with the proceedings published in 1987, [3]. The exact asymptotic

estimate for the Bernstein basis was shown in [7] and [9] to be of order n−1/(2p)2n. This

was achieved by interpolating the p = ∞ estimate in [4] with p = 1 estimates derived

in [7]1.

• For s-variate triangular Bernstein basis the condition number for p = 2 was deter-

mined exactly and for general p an upper bound of order ns+1/42n was shown in [6]. In [5]

an upper bound was given for p = ∞ which does not depend on the space dimension s.

1This result is based on the conjecture that the extremal polynomial for the supremum S2 has
n distinct roots in (−1, 1). However the proof of the corresponding Theorem 4.2 in [7] contains
a gap as was pointed out to us by J. Domsta. A note with a correct proof of this theorem will
appear in [8].
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In this paper we will consider the univariate Bernstein basis and mixed norms. The

mixed (p, q)-norm condition numbers of linearly independent functions φT = (φ1, . . . , φn)

can be defined by

κp,q(φ) = S1(φ) ∗ S2(φ)

where S1(φ) = sup
c 6=0

‖φT c‖p

‖c‖q
, S2(φ) = sup

c 6=0

‖c‖q

‖φT c‖p
, 1 ≤ p, q ≤ ∞.

We denote the mixed (p, q)-norm condition numbers of the Bernstein basis of degree

n by κn,p,q and the supremums by S1 and S2. Using the interval [−1, 1] to define the

Bernstein basis polynomials is no restriction since the condition number is independent

of the interval we use to define the Bernstein basis polynomials (as long as we use the

whole interval).

Figure 1 shows what is previously known for this condition number. We display 1/p

along the horizontal axis and 1/q along the vertical axis. We know the asymptotic values

along the diagonal 1/p = 1/q for 0 ≤ 1/q ≤ 1. On the diagonal the extremal polynomial

for S1 is simply the constant polynomial f = 1 for any p, while for S2 the extremal

polynomials are known for p = ∞ (the Chebyshev polynomial of degree n) and p = 2

(the Legendre polynomial of degree n). In this paper we do accurate asymptotic esti-

mates for both S1, S2 along the vertical and horizontal axis in Figure 1. With these

values and the values along the diagonal one can obtain values for the whole square by

interpolation.

Fig. 1. Asymptotic behavior of the condition number for the univariate Bernstein basis

The content of this paper is as follows. In Section 2 we determine the first supremum

S1 in the whole square. The value is exact below the diagonal and almost exact in the

upper part of the square. In Section 3 we compute S2 along the vertical line 1/p = 0 in

Figure 1 and show that the Chebyshev polynomial of degree n is extremal on that line.

In Section 4 we attack S2 on the horizontal line q = ∞. For this we need to estimate

the size of dual linear functionals. A precise estimate is quite difficult to obtain and for

the estimates we derive a refinement of the recurrence relation for the dual polynomials

proved by Ciesielski in 1983, see [3].
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Throughout the paper we will make repeated use of Wallis inequality and a version

of Stirling’s inequality:

22n

√

π(n + 1
2 )

≤
(

2n

n

)

≤ 22n

√
πn

, (Wallis’ inequality),(3)

(

z

e

)z√
2πz ≤ Γ(z + 1) ≤

(

z

e

)z√
2πz

(

1 +
1

4z

)

, z ≥ 1, (Stirling’s inequality),(4)

where Γ(z) =
∫ ∞
0

tz−1e−tdt is the gamma function.

2. The first supremum. For the first supremum we can give reasonably sharp lower

and upper bounds and exact values on the bottom horizontal line, the left vertical line

and the diagonal line in Figure 1.

Lemma 1. For the first supremum we have

(5) sup
c 6=0

‖∑n
j=0 cjBj,n‖p

‖c‖q
=

21/p

(n + 1)1/q
, 1 ≤ p ≤ q ≤ ∞,

with equality for c = c∗ and c∗j = 1 all j, while if 1 ≤ q ≤ p ≤ ∞ then

(6) (1/e)1/e 21/p

(n + 1)1/p
≤ (1/p)1/p 21/p

(n + 1)1/p
≤ sup

c 6=0

‖∑n
j=0 cjBj,n‖p

‖c‖q
≤ 21/p

(n + 1)1/p
.

In particular, if p = ∞ then

(7) sup
c 6=0

‖∑n
j=0 cjBj,n‖∞

‖c‖q
= 1, 1 ≤ q ≤ ∞,

with equality for c = c∗ with c∗j = δj,n or c∗j = δj,0 .

Proof. From Hölder’s inequality and (2) we have the well known inequality ([7])

(8)
∥

∥

∥

n
∑

j=0

cjBj,n

∥

∥

∥

p
=

∥

∥

∥

n
∑

j=0

cjB
1/p
j,n B

1−1/p
j,n

∥

∥

∥

p
≤ 21/p

(n + 1)1/p
‖c‖p, 1 ≤ p ≤ ∞,

with equality if cj = 1 for all j. For 1 ≤ p ≤ q ≤ ∞ the classical inequality ‖c‖p ≤
(n + 1)1/p−1/q‖c‖q holds, again with equality for cj = 1 for all j. But then (5) follows.

Consider next the case 1 ≤ q ≤ p ≤ ∞. The upper bound follows by combining (8) with

the classical inequality ‖c‖p ≤ ‖c‖q. For the lower bound we choose one of the polynomials

f = B0,n or f = Bn,n. For such f we have ‖c‖q = 1 and compute

‖Bn,n‖p =

(
∫ 1

−1

(

1 + x

2

)np

dx

)1/p

=

(

1

p

)1/p
21/p

(n + 1/p)1/p
≥

(

1

p

)1/p
21/p

(n + 1)1/p
.

For p = ∞ the upper and lower bound in (6) are equal and we have equality in (7) for

c = c∗ = (δj,0)
n
j=0 or c∗ = (δj,n)n

j=0.

3. The second supremum when p = ∞ and 1 ≤ q ≤ ∞. In this case the value of

the second supremum can be determined exactly.



CONDITION NUMBERS 181

Lemma 2. For 1 ≤ q ≤ ∞ we have

sup
c 6=0

‖c‖q

‖∑n
j=0 cjBj,n‖∞

=
(

n
∑

j=0

γq
j,n

)1/q

,

where γ0,n = 1 and

γi,n :=

(

2n − 1

2i − 1

)

/

(

n − 1

i − 1

)

, i = 1, . . . , n.

Proof. It is well known (see i.e. [4]) that the Bernstein-Bézier form of the Chebyshev

polynomial of degree n is given by

Tn(x) =

n
∑

j=0

(−1)n−jγj,nBj,n(x).

Using this we have shown in [5] that for any sequence c = {cj},

|ci| ≥ γi,n

∥

∥

∥

n
∑

j=0

cjBj,n

∥

∥

∥

∞
, i = 0, 1, · · · , n.

Taking the q-th power and summing gives

‖c‖q ≥
(

n
∑

j=0

γq
j,n

)1/q∥
∥

∥

n
∑

j=0

cjBj,n

∥

∥

∥

∞
.

Equality follows with the choice
∑n

j=0 cjBj,n = f∗ where f∗(x) = Tn(x).

4. The second supremum for q = ∞ and 1 ≤ p ≤ ∞. For q = ∞ it follows from (5)

that the value of the first supremum is equal to 2. Thus

κn,p,∞ = 21/pS2.

We will use a dual functional representation to estimate the second supremum S2.

From a corollary on page 127 in [2] we immediately obtain that the BB-coefficients of

a polynomial f =
∑n

j=0 djBj,n can be written in the form

(9) dj = 〈g(n+1)
j , f〉 :=

∫ 1

−1

g
(n+1)
j (t)f(t)dt, j = 0, . . . , n,

where gj ∈ Π2n+1 is the unique solution of the interpolation problem

(10) Drgj(−1) = 0, Drgj(1) = DrNn−j(1), r = 0, 1, . . . , n

with

(11) Nj(x) = (x + 1)j(x − 1)n−j/n!, j = 0, 1, . . . , n.

We claim that the solution of this problem is given by

(12) gj(x) = Nn−j(x)

∫ x

−1

Nj(t)dt /βj ,

where

Nj(x) = (x + 1)j(x − 1)n−j/n!, βj :=

∫ 1

−1

Nj(t)dt, j = 0, 1, . . . , n.
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Indeed, we have by r-fold differentiation of (12) for any j, r = 0, 1, . . . , n

(13) βjg
(r)
j (x) = N

(r)
n−j(x)

∫ x

−1

Nj(t)dt +

r−1
∑

l=0

(

r

l

)

N
(l)
n−j(x)N

(r−l−1)
j (x).

Since N
(k)
j (−1) = 0 for k < j it can be shown that g

(r)
j (−1) = 0 for j, r = 0, 1, . . . , n.

Similarly for x = 1 we have N
(k)
j (1) = 0 for k < n − j and the sum in (13) vanishes also

for x = 1 and j, r = 0, 1, . . . , n. Thus

βjg
(r)
j (1) = N

(r)
n−j(1)

∫ 1

−1

Nj(t)dt = N
(r)
n−j(1)βj , j, r = 0, 1, . . . , n

and (10) holds. By the preceding considerations we get now for 1 ≤ p ≤ ∞

Lemma 3. We have

(14) κn,p,∞ = 21/p max
0≤j≤n

sup
f∈Πn

|〈g(n+1)
j , f〉|
‖f‖p

,

Proof. By definition of f and (9)

2−1/pκn,p,∞ = sup
(dj) 6=0

max0≤j≤n|dj |
‖∑n

j=0 djBj,n‖p
= sup

f∈Πn

max
0≤j≤n

|〈g(n+1)
j , f〉|
‖f‖p

.

In [7] we estimated the condition number by splitting a polynomial into a sum of a

Legendre polynomial and a remainder term of lower degree. The asymptotic behavior

was then determined by the Legendre term. We could try the same idea here and split

the kernel of the functional into a sum of two polynomials, a Legendre polynomial Pn of

degree n and a remainder polynomial Sn. The contribution to κn,1 from Pn can then be

computed exactly. In this respect note that by (13)

βjg
(n+1)
j (x) =

dn

dxn

[

(x + 1)n(x − 1)n

(n!)2
+ N ′

n−j(x)

∫ x

−1

Nj(t)dt

]

=
2n

n!
Pn(x) +

dn

dxn

[

N ′
n−j(x)

∫ x

−1

Nj(t)dt

]

.

However, the remainder with respect to the Legendre polynomial here is not of lower

degree which makes it difficult to estimate it.

Therefore we use a different approach from [3]. A dual polynomial basis B∗
j,n for the

Bernstein polynomials Bi,n i.e., polynomials B∗
j,n of degree n satisfying

∫ 1

−1

B∗
j,n(t)Bi,n(t) dt = δi,j , 0 ≤ j, i ≤ n

is considered. Comparison of this identity with (9) shows that

(15) g
(n+1)
j (x) = B∗

j,n(x).

In addition to Lemma 3 one can prove
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Lemma 4. For 1/p + 1/p′ = 1,

2−1/pκn,p,∞ = max
0≤j≤n

{

dist(1; span{Bi,n}i6=j)p

}−1

= max
0≤j≤n

sup
f∈Πn

|〈B∗
j,n, f〉|
‖f‖p

≤ max
0≤j≤n

‖B∗
j,n‖p′ .

Proof. The inequality follows immediatly from Hölder’s inequality. By definition

dist(1; span{Bi,n}i6=j)p = inf
(ai)
aj=1

∥

∥

∥

n
∑

i=0

aiBi,n(x)
∥

∥

∥

p
= inf

f∈Πn

〈B∗

j,n,f〉=1

‖f‖p

=

{

sup
f∈Πn

|〈B∗
j,n, f〉|
‖f‖p

}−1

.

Using (15) and maximizing over j the equality parts of the lemma follows from Lem-

ma 3.

In [3] bounds for ‖B∗
j,n‖p were established for the cases p = 1, 2 and ∞ using a

recurrence relation for the dual polynomials. For convenience we prove this recurrence

relation here.

Lemma 5. Suppose
∫ 1

−1
B∗

i,n(t)B∗
j,n(t)dt = δij for 0 ≤ i, j ≤ n. Then B∗

0,0 = 1 and for

n ≥ 1

(16) B∗
j,n =

j

n
B∗

j−1,n−1 +
n − j

n
B∗

j,n−1 +

(

n +
1

2

)

(−1)n−j

(

n

j

)

Pn, j = 0, 1, . . . , n,

where Pn is the Legendre polynomial of degree n normalized so that Pn(1) = 1.

Proof. Suppose f ∈ Πn−1. By duality and degree raising

f =
n−1
∑

j=0

〈f,B∗
j,n−1〉Bj,n−1 =

n−1
∑

j=0

〈f,B∗
j,n−1〉

(

j + 1

n
Bj+1,n +

n − j

n
Bj,n

)

=

n
∑

j=0

〈f,
j

n
B∗

j−1,n−1 +
n − j

n
B∗

j,n−1〉Bj,n =

n
∑

j=0

〈f,B∗
j,n〉Bj,n

and since the Bernstein basis is a basis the polynomial g := B∗
j,n− j

nB∗
j−1,n−1− n−j

n B∗
j,n−1

must be orthogonal to Πn−1. Thus g = cPn for some constant c which can be determined

from the Bernstein basis representation of the Legendre polynomial

Pn =
n

∑

j=0

(−1)n−j

(

n

j

)

Bj,n.

Again by duality

(−1)n−j

(

n

j

)

= 〈B∗
j,n, Pn〉 = 〈g, Pn〉 = 〈cPn, Pn〉 =

c

n + 1
2

.

This determines c and the proof is complete.



184 T. LYCHE AND K. SCHERER

From this one obtains for the quantity Fn := max0≤j≤n‖B∗
j,n‖p′ the recursive inequal-

ity

(17) Fn ≤ Fn−1 +

(

n +
1

2

)(

n

[n/2]

)

‖Pn‖p′ .

For the Lp[−1, 1]-norm of the Legendre polynomial we have

‖Pn‖p ≤
{

21/p(2n + 1)−1/2 if 1 ≤ p ≤ 2,

(n + 1
2 )−1/p if 2 ≤ p ≤ ∞.

Indeed, for 1 ≤ p ≤ 2 we have
∫ 1

−1

|Pn(x)|pdx ≤
(

∫ 1

−1

1dx

)1−p/2(∫ 1

−1

|Pn(x)|2dx

)p/2

= 21−p/2

(

n +
1

2

)−p/2

and for p ≥ 2 we note that
∫ 1

−1
|Pn(x)|pdx ≤

∫ 1

−1
|Pn(x)|2dx = (n+ 1

2 )−1 since |Pn(x)| ≤ 1

for x ∈ [−1, 1]. Combining this with the Wallis inequality (3) the crucial term in (17) has

the asymptotic behavior

(18)

(

n +
1

2

)(

n

[n/2]

)

‖Pn‖p′ ≤
{

2n(n + 1
2 )1/p/

√
πn if 1 ≤ p ≤ 2,

2n+ 1

2
− 1

p (n + 1
2 )1/2/

√
πn if 2 ≤ p ≤ ∞.

By applying this recursively in (17) the resulting bound for Fn and hence by Lemma 4

the upper one for κn,p,∞ would be of the same order. The problem is as we will see that

this bound is not asymptotically sharp in n.

5. Refined estimates for q = ∞. We define for 0 ≤ j ≤ n, n ≥ 0, and 1 ≤ p ≤ ∞ the

quantities

S∗
j,n :=

n − j

n
B∗

j,n−1 +
j

n
B∗

j−1,n−1, n ≥ 1,

Aj,n,p := sup
f∈Πn

|〈B∗
j,n, f〉|
‖f‖p

, An,p = sup
0≤j≤n

Aj,n,p,

Rj,n,p := sup
f∈Πn

|〈S∗
j,n, f〉|
‖f‖p

, Rn,p = sup
0≤j≤n

Rj,n,p, n ≥ 1,

Cn,p := sup
f∈Πn

|〈Pn, f〉|
‖f‖p

,

Dj,n,p := (n + 1/2)

(

n

j

)

Cn,p, Dn,p = sup
0≤j≤n

Dj,n,p,

Ej,n−1,p := (n − 1/2)

(

n

j

)

n − 2j

n
Cn−1,p, En−1,p = sup

0≤j≤n−1
Ej,n−1,p, n ≥ 1.

(19)

Taking inner products with f ∈ Πn in the recurrence (16) we obtain

(20) Aj,n,p = Rj,n,p + (−1)n−jDj,n,p,

or by Lemma 4

(21) Dn,p − Rn,p ≤ 2−1/pκn,p,∞ = An,p ≤ Dn,p + Rn,p.
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Clearly Rj,n,p ≤ supf∈Πn
|〈B∗

j,n−1, f〉|/‖f‖p, but the estimate we obtain from (17), (18)

and (21) is not good enough for a sharp asymptotic estimate. We will show that

(22) lim
n→∞

κn,p,∞
Dn,p

= 21/p.

For this we derive and use a recurrence relation for the quantities S∗
j,n in (19).

Lemma 6. For j = 0, 1, . . . , n, n ≥ 2, and 1 ≤ p ≤ ∞ the following recurrence relations

hold:

S∗
j,n =

j

n
S∗

j−1,n−1 +
n − j

n
S∗

j,n−1 + (−1)n−j+1

(

n − 1

2

)(

n

j

)

n − 2j

n
Pn−1,(23)

Rj,n,p =
j

n
Rj−1,n−1,p +

n − j

n
Rj,n−1,p + (−1)n−j+1Ej,n−1,p.(24)

Moreover,

(25) S∗
0,1 = S∗

1,1 = 1, R0,1,p = R1,1,p = 21−1/p.

Proof. Substituting in (16) we obtain

S∗
j,n =

j

n

[

S∗
j−1,n−1 + (−1)n−j

(

n − 1

2

)(

n − 1

j − 1

)

Pn−1

]

+
n − j

n

[

S∗
j,n−1 + (−1)n+1−j

(

n − 1

2

)(

n − 1

j

)

Pn−1

]

.

For simplification note that

n − j

n

(

n − 1

j

)

− j

n

(

n − 1

j − 1

)

=

(

n − 1

j

)

− j

n

[(

n − 1

j

)

+

(

n − 1

j − 1

)]

=

(

n − 1

j

)

−
(

n − 1

j − 1

)

=

(

n

j

)

n − 2j

n

so that (23) follows.

Since S∗
j,n ∈ Πn−1 we have 〈S∗

j,n, Pn〉 = 0 and we can restrict the supremum to Πn−1:

sup
f∈Πn

|〈S∗
j,n−1, f〉|
‖f‖p

= sup
f∈Πn−1

|〈S∗
j,n−1, f〉|
‖f‖p

, sup
f∈Πn

|〈Pn−1, f〉|
‖f‖p

= sup
f∈Πn−1

|〈Pn−1, f〉|
‖f‖p

.

But then (24) follows. That S∗
0,1 = 1 and S∗

1,1 = 1 follows immediately from the

definition in (19). Now R0,1,p = R1,1,p = supf∈Π1
‖f‖1/‖f‖p ≤ 21−1/p with equality for

f = 1.

Lemma 7. For n ≥ 1 and 1 ≤ p ≤ ∞ we have

(26) Dn,p − R1,p −
n−1
∑

k=1

Ek,p ≤ 2−1/pκn,p,∞ ≤ Dn,p + R1,p +
n−1
∑

k=1

Ek,p.

Proof. By (21) it is enough to show that Rn,p ≤ Rn−1,p + En−1,p. But this follows

immediately from (24).

In order to show (22) we need to show that Dn,p dominates the sum R1,p+
∑n−1

k=1 Ek,p.

We start by estimating Cn,p and Dn,p.
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Lemma 8. For n ≥ 1 and 1 ≤ p ≤ ∞

(27) k−1
n 2−1/p

√
π

(

n +
1

2

)−1/2

≤ Cn,p ≤ 2−1/p
√

π

(

n +
1

2

)−1/2

,

and

(28) k−1
n 2n−1−1/p ≤ Dn,p ≤ kn2n−1/p,

where kn = (1 + 1
2n )1/2.

Proof. By the same argument as in [7] we get

Cn,p =
|〈xn, Pn〉|

infg∈Πn−1
‖xn − g‖p

=
1

‖xn − gp‖p

2n+1

(2n + 1)
(

2n
n

) ,

where gp is defined by ‖xn − gp‖ := infg∈Πn−1
‖xn − g‖p. The exact value of ‖xn − gp‖p

can be determined in cases p = 1, 2,∞. Thus we find

(29) Cn,2 = ‖Pn‖2 = (n + 1/2)−1/2, Cn,1 = Cn,∞ =
4n

(2n + 1)
(

2n
n

) .

For arbitrary p ∈ [1,∞] one could think of applying the Riesz-Thorin theorem to the

linear operator T (f) := 〈Pn, f〉 in the numerator of Cn,p but this operator is only defined

for f ∈ Πn and hence the theorem is not applicable.

Since

‖xn − gp‖p ≤ ‖xn − g∞‖p ≤ 21/p‖xn − g∞‖∞,

‖xn − g1‖1 ≤ ‖xn − gp‖1 ≤ 21−1/p‖xn − gp‖p,

we obtain

(30) 2−1/pCn,∞ ≤ Cn,p ≤ 21−1/pCn,1, 1 ≤ p ≤ ∞.

Wallis inequality gives

Cn,1 = Cn,∞ ≤ 4n
√

π(n + 1
2 )1/2

2(n + 1
2 )4n

=

√
π

2

(

n +
1

2

)−1/2

and

Cn,1 = Cn,∞ ≥ 4n
√

π(n)1/2

2(n + 1
2 )4n

=

√
π

2kn

(

n +
1

2

)−1/2

.

Combining this with (30) proves (27).

Using Wallis inequality and what we already proved

Dn,1 = Dn,∞ ≤ (n +
1

2
)

(

n

[n/2]

)√
π

2

(

n +
1

2

)−1/2

≤
(

n +
1

2

)1/2
2n

√
πn

√
π

2
= 2n−1kn,

Dn,1 = Dn,∞ ≥ (n +
1

2
)

2n

√

π(n + 1
2 )

√
π

2kn

(

n +
1

2

)−1/2

=
2n−1

kn
.

By (30)

2n−1−1/p

kn
≤ 2−1/pDn,∞ ≤ Dn,p ≤ 21−1/pDn,1 ≤ kn2n−1/p.
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Note that ‖B∗
j,n‖ = ‖B∗

n−j,n‖p′ in view of Bj,n(−x) = Bn
n−j(x). Thus one needs to

consider in the following only 0 ≤ j ≤ n/2.

In order to give a sharp estimate for the terms Ek,p in Lemma 7 we consider

j ≤ j∗ := n/2 − γ
√

n, for some 0 < γ <
√

n/2.

Using (4) gives
(

n

j

)

≤
(

n

j∗

)

=
Γ(n + 1)

Γ(j∗ + 1)Γ(n − j∗ + 1)

≤
√

n/2π
√

(n
2 − γ

√
n)(n

2 + γ
√

n)

nn(1 + O(1/n))

(n
2 − γ

√
n)

n
2
−γ

√
n(n

2 + γ
√

n)
n
2
+γ

√
n

=
1

√

2π(n/4 − γ2)

nn(1 + O(1/n))

(n2

4 − γ2n)
n
2

( n
2 − γ

√
n

n
2 + γ

√
n

)γ
√

n

=
1

√

2π(n/4 − γ2)

2n(1 + O(1/n))

(1 − 2γ2

n/2 )
n
2

(

1 − 4γ√
n + 2γ

)γ
√

n

Then we obtain the asymptotic formula
(

n

j

)

≤ e−2γ2

2n

√

πn/2
(1 + O(1/γ

√
n)), j ≤ j∗ ≤ n/2 − γ

√
n.

We use this for k instead of n and γ = k1/4 and observe that then |k−2j
k | ≤ 2k−1/4.

Considering the two cases j ≤ jk := k/2 − γ
√

k and jk ≤ j ≤ k/2 we obtain
(

k − 1

2

)(

k

j

)∣

∣

∣

∣

k − 2j

k

∣

∣

∣

∣

≤
√

2k

π
2k

{

e−2
√

k(1 + O(k−1/4)), if j ≤ jk,

2 k−1/4(1 + O(k−1)), if j ≥ jk.

and consequently by (19)

Ek,p ≤ 21/2−1/p 2k

{

e−2
√

k(1 + O(k−1/4)), if j ≤ jk,

2 k−1/4(1 + O(k−1)), if j ≥ jk.

For k or n sufficiently large that the second case dominates. From this we conclude that

for 1 ≤ p ≤ ∞
Ek,p ≤ 2 k−1/4 Dk,p(1 + O(k−1/4)), k large enough.

Inserting this estimate for Ek,p in (26) we see that the term Dn,p dominates the rest.

Indeed sums of this form can be bounded by

n
∑

k=1

2k

kα
≤

[(n+1)/2]
∑

k=1

2k +
1

[(n + 1)/2]α

n
∑

k=[(n+1)/2]

2k ≤ 21+(n+1)/2 +
2n+1

(n/2)α
.

Thus we can conclude in view of Lemma 8 from (26)

Theorem 9. For 1 ≤ p ≤ ∞ and n large enough,

κn,p,∞ = 21/pDn,p(1 + O(n−1)).

In particular the value of κn,p,∞ is asymptotically up to factor 1/2 equal to 2n.
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