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Abstract. We extend results on constructing semiorthogonal linear spline prewavelet systems

in one and two dimensions to the case of irregular dyadic refinement. In the one-dimensional

case, we obtain sharp two-sided inequalities for the Lp-condition, 1 < p < ∞, of such systems.

1. Introduction. This note is devoted to the Lp-stability of semiorthogonal linear spline

prewavelet systems in one and two dimensions. On regular simplicial partitions resp. for

semiregular refinement of arbitrary partitions, such prewavelet systems have been studied

to great extent, see [2, 8, 3, 14, 9] resp. [15, 4, 5]. Our interest in the case of irregular

dyadic refinement is triggered by recent attempts to theoretically investigate nonlinear

approximation processes and multiresolution analyses where the underlying spatial grid

structures are less regular. Although the restriction to the linear spline case allows for

some simplifications, its separate treatment provides useful insights, and is also justified

by a number of concrete applications to irregular sampling, surface discretization, image

analysis, empirical density function estimation, and to the numerical solution of partial

differential equations by adaptive finite element methods.

Similar studies have recently been undertaken for orthogonal spline systems (in partic-

ular, for the Franklin system) the systematic investigation of which was pioneered in the

early 1970ies by Zbigniew Ciesielski. E.g., Ciesielski, Gevorkjan, and Kamont [1, 6, 7] have

considered Franklin systems on arbitrary 1D partition sequences, and obtained a number

of general results. In particular, in [7] Lp-unconditionality (1 < p < ∞) of Franklin sys-

tems is shown to hold, independently of the grid refinement process. For generalizations

to higher dimensions, see Petrushev [13] and the papers cited therein. Lyche, Morken,
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and Quak [10] have independently introduced prewavelet constructions on arbitrary 1D

partition sequences.

In this paper, semiorthogonal prewavelet systems Ψ are constructed following the

standard lifting scheme used by Stevenson et al. [15, 4] for the semiregular refinement

case. For the 1D case, we present necessary and sufficient conditions for Lp-stability of Ψ

in Proposition 5 (some weaker results have independently been obtained by Mikkelsen,

Oja, and Quak [11, 12]). In 2D, where the results are still incomplete, two quantities seem

to matter: the maximal valence of vertices in the coarse partition (this quantity depends

only on the initially given triangulation since all new vertices have valence 6), and an

upper bound for the ratios |supp φ̃Q|/|supp φ̃P | of the support areas of fine grid nodal

basis functions associated with new vertices Q in a small neighborhood of an old vertex

P . The above quantities enter the estimates for the stability constants to the power p−1,

thus, for p = 1 we have unconditional stability.

2. Notation and definitions. We will consistently use the following notation:

• Throughout this paper, Lp-spaces are defined on R
d, where d ≤ 2. The Lp-norm of

a function f ∈ Lp is denoted by ‖f‖p. We also need scalar products

(f, g) =

∫

Rd

f(x)g(x) dx,

which are well-defined in the appearances below.

• A set F = {fi} ⊂ Lp is called Lp-stable if there exist constants 0 < C1 < C2 < ∞

such that for all sequences {xi} the following two-sided inequality holds:

C1

∑

i

|xi|
p‖fi‖

p
p ≤

∥
∥
∥

∑

i

xifi

∥
∥
∥

p

p
≤ C2

∑

i

|xi|
p‖fi‖

p
p. (1)

This assumes that the summation
∑

i xifi makes sense which is always the case

for the systems under consideration. The optimal constants C1, C2 in (1) will be

called lower and upper Lp-stability constants of F . Note that the weights ‖fi‖
p
p are

a natural choice since if (1) holds with ‖fi‖
p
p replaced by arbitrary weights µi then

taking the coordinate sequences as {xi} shows that C1µi ≤ ‖fi‖
p
p ≤ C2µi for all

i. This shows that if Lp-stability holds with any weighted ℓp coefficient norm then

it also holds with the weights given in (1). Consequently, unless we are interested

in the best possible stability constants resp. in the value of the Lp-condition of F

κp(F ) = inf C2/C1, there is no point in talking about a better choice of weights.

For the remainder of this paper, we will stick to the definition (1). The counterpart

of (1) for p = ∞ reads

C1 sup
i

|xi|‖fi‖∞ ≤
∥
∥
∥

∑

i

xifi

∥
∥
∥
∞

≤ C2 sup
i

|xi|‖fi‖∞,

but, although our results below can easily be extended to p = ∞, we will not go

into this case.

• T and T̃ stand for coarse and dyadically refined fine simplicial partitions of R
d (the

case of bounded polyhedral domains requires some boundary treatment which can

be handled by an extension procedure, we will avoid these technicalities), V and
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Ṽ are the corresponding sets of vertices. We will consistently use the letter P to

indicate that P is an old vertex (i.e., P ∈ V), the letter Q is used for new vertices

(Q ∈ Ṽ\V), and R is used to denote a generic vertex (old or new) in Ṽ. Note that

dyadic refinement means that each edge in T carries exactly one Q, and that for

d = 2 the new T̃ is obtained by inserting new edges connecting the Q belonging to

the same triangle in T . If the position of Q is restricted to the edge midpoint, this

dyadic refinement is called semiregular, otherwise, if there are no restrictions on the

placement of Q on the edges, we call the dyadic refinement irregular. Throughout

this paper, we always have in mind irregular dyadic refinement.

• V and Ṽ are the linear spline spaces on these partitions, their standard bases

(consisting of hat functions of unit L∞ norm associated with the vertices) are

denoted by Φ = {φP } and Φ̃ := {φ̃R}. By ∆̃R we denote the area of the support of

φ̃R (the 1-ring of simplices around R in the fine partition). Recall that nodal bases

are unconditionally Lp-stable, i.e.,
∥
∥
∥

∑

R

cRφ̃R

∥
∥
∥

p

p
≍

∑

R

|cR|
p‖φ̃R‖

p
p ≍

∑

R

|cR|
p∆̃R, 1 ≤ p <∞, (2)

where ≍ stands for a two-sided inequality, with constants that depend on p, at

most, but are independent of T , T̃ (in the following, the letters c, C are used

for generic (positive) constants which may change from formula to formula, and

generally depend on p but not on any other quantities involved).

• In our considerations, the 1-ring in T of an arbitrary P ∈ V is of special interest.

Figure 1 a) shows the notation for d = 2. The number k ≡ kP of simplices attached

2
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Fig. 1. Notation for 1-ring around P , and P -neighborhood of Q

to P is called valence of P . We define the Q-neighborhood ṼP of P ∈ V and its

subset Ṽ∗
P as

ṼP = Ṽ∗
P ∪ {Q′

l : l = 1, . . . , k} , Ṽ∗
P = {Ql : l = 1, . . . , k}.

Finally, we define a P -neighborhood of Q ∈ Ṽ\V by setting

VQ = {P ∈ V : Q ∈ ṼP }.

For d = 2, this neighborhood always consists of 4 vertices (see Figure 1 b)) while

#ṼP = 2k, and #Ṽ∗
P = k depend on the valence. For d = 1, we have always kP = 2,
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ṼP = Ṽ∗
P consists of the two new verticesQ± inserted into the two intervals attached

to the left and right of P , and VQ consists of two old vertices P± (the left and right

endpoints of the interval in T containing Q).

3. Properties of the dual system. We call Θ = {θP : P ∈ V} ⊂ Ṽ a dual system

for the nodal basis Φ if for all P ∈ V

(θP , φP ′) = 0 ∀ P ′ 6= P, (θP , φP ) = 1. (3)

We call Θ a pre-dual system for Φ if only the first property is satisfied. A pre-dual system

can be turned into a dual system by scaling provided that one can show that

(θP , φP ) 6= 0 ∀ P. (4)

We make these distinctions only because we want to avoid the appearance of weird scaling

factors, and prefer to work with θP that are normalized by

θP (P ) = 1 ∀ P. (5)

Following [15, 4], we restrict our attention to finding a dual system of the form

θP = φ̃P −
∑

Q∈Ṽ∗
P

αPQφ̃Q ∀ P, (6)

where αP = {αPQ : Q ∈ Ṽ∗
P } needs to be determined. Obviously, these θP automatically

satisfy (5).

The following proposition is known for semiregular dyadic refinement [15] (d ≤ 3),

and we claim that it also holds for the irregular case and d = 1, 2. This claim will be fully

established for d = 1 while for d = 2 the proof is incomplete.

Proposition 1. There is a unique αP such that the system Θ of the form (6) is pre-dual.

Moreover, we have

(θP , φP ) = (θP , 1) ≍ ‖θP ‖
p
p ≍ ∆̃P , (7)

i.e., Θ is dual to Φ.

Proof. For d = 1 we have k = kP = 2 for all P in V, and a simple calculation gives

θP = φP −
(φP , φP−)

(φ̃Q− , φP−)
φ̃Q− −

(φP , φP+)

(φ̃Q+ , φP+)
φ̃Q+

= φ̃P − α(t−)φ̃Q− − α(t+)φ̃Q+ , (8)

where the auxiliary function α(t) is given by

0 ≤ α(t) :=
t2

(1 + t)
≤

1

2
, 0 ≤ t ≤ 1.

Here, Q± denote the two new vertices inserted into the intervals to the left (−) and right

(+) of P at distance t±d±, where d± = ∆̃Q± is the length of the corresponding intervals

in T . Similarly, P± denote the old vertices immediately to the left resp. right of P . Note

that t± = 1/2 and thus θP (Q±) = −1/6 for semiregular refinement.
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With this, (7) is immediate. Indeed,

(θP , 1) =
1

2
(∆̃P − α(t−)∆̃Q− − α(t+)∆̃Q+)

=
1

2
((t− − α(t−))d− + (t+ − α(t+))d+)

=
t−d−

2(1 + t−)
+

t+d+

2(1 + t+)
≍ (t−d− + t+d+) = ∆̃P ,

with optimal constants 1/4 and 1/2 in the two-sided inequality. The Lp norm of θP can

be estimated in a similar fashion:

‖θP ‖
p
p ≍ ∆̃P + α(t−)p∆̃Q− + α(t+)p∆̃Q+

=

(

1 +
(t−)2p−1

(1 + t−)p

)

t−d− +

(

1 +
(t+)2p−1

(1 + t+)p

)

t+d+ ≍ ∆̃P .

Constants may depend on p, at most.

For d = 2, uniqueness and pre-duality follow from the fact that the k × k matrix

A = (( alm := (φPl
, φ̃Qm

) , l,m = 1, . . . , k ))

is non-singular (for the notation, see Fig. 1 a)). Indeed, we can then uniquely determine

αP by solving the linear system AαP = b, where b is the column vector with the entries

bl = (φPl
, φ̃P ), l = 1, . . . , k. This system is equivalent to (θP , φPl

) = 0, l = 1, . . . , kP .

For the remaining P ′ 6= P which are not among the immediate neighbors Pl of P we

automatically have (θP , φP ′) = 0 since θP (x)φP ′(x) ≡ 0 by the support properties. This

implies that the system {θP } from (6) is pre-dual.

The non-singularity of A follows from the fact that A is columnwise diagonally dom-

inant. To show this, observe that each column of A contains exactly 3 positive non-zero

elements. In the m-th column, these are (φPl
, φ̃Qm

) for l = m−1,m,m+1 (with obvious

modifications if m = 1 or m = k). Since

δm := (φPm
, φ̃Qm

) − (φPm−1
, φ̃Qm

) − (φPm+1
, φ̃Qm

)

=

∫

∆PPmPm+1

(φPm
− φPm+1

)φ̃Qm
dx

︸ ︷︷ ︸

=:δ+
m

+

∫

∆PPmPm−1

(φPm
− φPm−1

)φ̃Qm
dx

︸ ︷︷ ︸

=:δ−
m

,

we establish diagonal dominance if we show that δ+m > 0 for an arbitrarym, independently

of the geometry of the subdivided triangle ∆PPmPm+1 (by symmetry arguments this

implies that δ−m > 0 as well).

Without loss of generality, we will do this for m = 1, and use the notation of Figure

2. Note that the parameters x, y, z denote the relative distance (i.e., distance normalized

by the length of the corresponding coarse edge) of Q1 to P , of Q2 to P , and of Q′
1 to P1,

respectively. Relative distances of a Q to its two related coarse grid vertices always sum

up to 1. What we are able to show is the following lower bound

δ+1 >
∆1

12
, (9)

where the numbers ∆i, i = 1, . . . , 4, stand for the areas of the 4 subtriangles, compare
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Fig. 2. Notation for the proof of (9)

Figure 2. Note that ∆1 = xy∆, ∆3 = (1 − x)z∆, ∆4 = (1 − y)(1 − z)∆, and ∆2 =

∆ − ∆1 − ∆3 − ∆4.

Since the integrand of the integral representing δ+1 is a quadratic polynomial on each

of the subtriangles, we can apply the midpoint rule on each of them. It is easy to see that

the nodal basis function φ̃Q1
vanishes only at 4 of those midpoints (namely, M1, M2, M4,

and M5, where it takes the value 1/2). A straightforward calculation gives the following

values of the linear function g := φP1
− φP2

at these points:

g(M1) =
x

2
, g(M2) =

x+ 1

2
, g(M4) =

x− y

2
, g(M5) =

x+ 1 − 2z

2
.

This leads to (we drop the trivial steps of calculating and simplifying the expressions)

δ+1 =
∆1

12
(2x− y) +

∆2

12
(2x− y + 1 − 2z) +

∆3

12
(2x+ 2 − 2z)

=
∆

12
((2x− y)xy + (2x− y + 1 − 2z)(y + xz − xy − zy) + (2x+ 2 − 2z)(1 − x)z)

=
∆

12
(y + 2z − y2 − 2z2 + xy + xz − xyz + zy2 + 2z2y − 3zy)

=
∆

12
(xy + (1 − y)(y(1 − z) + 2z(1 − z) + xz))

>
xy∆

12
=

∆1

12
> 0, 0 < x, y, z < 1.

Thus, the strict columnwise diagonal dominance of A has been established.

The open question for d = 2 is whether the pre-dual system found can be turned

into a dual system resp. whether the stronger statement (7) holds. Numerical evidence

indicates that this statement holds with moderate constants, probably in the form

∆̃P

9
≤ (θP , φP ) = (θP , 1) ≤

∆̃P

3
.

Similar bounds seem to hold for the Lp-norms of the θP (we have only collected numerical

data for ‖θP ‖
2
2). We also found numerically that αPQm

can become negative but that

|αPQm
| always is bounded well below 1 (the numerical experiments consisted in generating

thousands of randomly shaped and randomly subdivided 1-ring neighborhoods of the

origin).
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Fig. 3. Triangle of special 1-ring refinement (left), and triangulation for counterexamples (k = 8,
right)

In partial cases, e.g., for semiregular dyadic refinement, αP can be found explicitly,

which allows to verify (7) directly. As an example (which will be used to construct coun-

terexamples later), we consider a special 1-ring where all new vertices Qm are inserted at

the same relative distance 0 < t < 1 from P , while the new vertices Q′
m coincide with the

midpoints of the respective edges. This corresponds to the parameter choices x = y = t

and z = 1/2 in our above calculations. The case t = 1/2 corresponds to semiregular

refinement. See Figure 3 (left) for a graphical depiction of the situation (only the triangle

∆PP1P2 is shown). Under these assumptions, we find that αP coincides with a constant

vector, more precisely,

αPQm
= α̃(t) :=

t3

1 + t+ t2
, m = 1, . . . , kP .

Note that for t = 1/2 we get the known value of αPQm
= 1/14. By symmetry and

rotational invariance, the above claim reduces to verifying that we have

I :=

∫

∆PP1P2

θPφ1 dx = 0

for the above constant vector αP . This can be done by computing the values of θP and

of φ1 at the edge midpoints for all 4 subtriangles, and applying the midpoint rule. The

areas of the subtriangles are ∆1 = t2∆, ∆3 = ∆4 = (1− t)∆/2, and ∆2 = t(1− t)∆. We

spare the reader these trivialities.

For short, set α := α̃(t). Using the same midpoint rule, we compute
∫

∆PP1P2

θP dx =
∆

3
((1 − 2α)t2 − 2α

1 − t

2
− 2αt(1 − t))

=
∆

3
(t2 − α(1 + t)) =

t2∆

3(1 + t+ t2)
≍ ∆1,

where the final two-sided inequality holds with constants 1/9 and 1/3, resp., for arbitrary

0 < t < 1. Summing the similar expressions for all triangles ∆PPmPm+1, we clearly get

∆̃P

9
≤ (θP , φP ) = (θP , 1) ≤

∆̃P

3
.

Estimates for the Lp norms of θP can be established analogously.
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4. Stability estimates. Given Φ and its dual system Θ, a straightforward definition

of a semiorthogonal prewavelet system Ψ = {ψQ} in Ṽ is to set

ψQ := φ̃Q −
∑

P∈V

βQP θP , βQP :=
(φ̃Q, φP )

(θP , φP )
= −ψQ(P ), P ∈ V, (10)

where Q ∈ Ṽ\V, see [15].

From now on, we restrict our attention to the special Θ given by (6), and considered

in the previous section. In this case, for each Q only finitely many βQP are non-zero,

which implies the desired local support properties of the ψQ. For d = 1, suppψQ consists

of 3 intervals from T (the one containing Q and its two neighbors Q±), which is obviously

minimal. Similarly, for d = 2 we have

suppψQ ⊂
⋃

P∈VQ

supp θP

(this construction does not lead to the smallest possible support, compare [9, 5]).

The results reported in this section are conditional for d = 2, since we will heavily

rely on the existence and properties of Θ stated in Proposition 1 which have been fully

established only for d = 1. We start with the upper stability estimate.

Proposition 2. Let d = 1, 2. Assume that the pre-dual system Θ satisfies (6) and (4)

(the latter property is not yet established if d = 2), and that Ψ is defined as in (10). Then

for 1 ≤ p <∞ and arbitrary sequences {xQ : Q ∈ Ṽ\V}, we have
∥
∥
∥

∑

Q

xQψQ

∥
∥
∥

p

p
≤ Cp(sup

P
kP )p−1

∑

Q

|xQ|
p‖ψQ‖

p
p. (11)

The dependence of the bound on the values of kp−1
P is essential for d = 2, for d = 1 it

can be dropped since kP = 2 for all P .

Proof. Let d = 2 (d = 1 is similar, see also below). By construction, on any triangle from

T with vertices P1, P2, P3 less than 2(kP1
+ kP2

+ kP3
) ≤ 6 supP kP prewavelets ψQ do

not vanish (more precisely, these are the functions ψQ with Q ∈ ṼP1
∪ ṼP2

∪ ṼP3
). Thus,

we have a pointwise estimate
∣
∣
∣

∑

Q

xQψQ

∣
∣
∣

p

≤ (6 sup
P
kP )p−1

∑

Q

|xQ|
p|ψQ|

p,

from which (11) follows by integration. The counterexample will be given at the end of

this section.

The proof of a lower stability estimate is a bit more involved, and requires the property

(7) of Θ. We need the following lemma.

Lemma 3. Suppose Θ satisfies the properties formulated in Proposition 1.

a) The coefficients βPQ defined in (10) satisfy

βQP ≍
(φ̃Q, φP )

∆̃P

≤ ∆̃Q/∆̃P , P ∈ VQ.
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b) The prewavelets ψQ from (10) satisfy

‖ψQ‖
p
p ≍ ∆̃Q +

∑

P∈VQ

βp
QP ∆̃P .

Proof. a) is an obvious consequence of the definitions (6), (10), and the property (7)

of the dual functions. Concerning b), observe that ψQ is the sum of ≤ 5 terms. This,

together with (7), gives the upper bound

‖ψQ‖
p
p ≤ 5p−1

(

‖φ̃Q‖
p
p +

∑

P∈VQ

βp
QP ‖θP ‖

p
p

)

≤ C
(

∆̃Q +
∑

P∈VQ

βp
QP ∆̃P

)

.

For the lower bound, note that by construction ψQ(P ) = −βQP for P ∈ VQ. Using the

Lp-stability (2) of Φ̃ for ψQ =
∑

R ψQ(R)φ̃R, this gives
∑

P∈VQ

βp
QP ∆̃P ≤ C‖ψQ‖

p
p.

For the remaining term ∆̃Q, we proceed as follows. Again using (2) and then (10), we

have
∆̃Q ≤ C‖φ̃Q‖

p
p ≤ C5p−1

(

‖ψQ‖
p
p +

∑

P∈VQ

βp
QP ‖θP ‖

p
p

)

.

According to (7), we can replace ‖θP ‖
p
p by its upper bound C∆̃P . Together with the

previous estimate, this implies the lower bound in b).

Proposition 4. Suppose Θ satisfies the properties formulated in Proposition 1, and that

Ψ is defined as in (10). Then for 1 ≤ p < ∞ and arbitrary sequences {xQ : Q ∈ Ṽ\V},

we have
∑

Q

|xQ|
p‖ψQ‖

p
p ≤ C(1 + sup

Q
( max
P∈VQ

βp−1
QP ))

∥
∥
∥

∑

Q

xQψQ

∥
∥
∥

p

p
. (12)

The dependence of the constant on the values βp−1
QP cannot be neglected.

Proof. We concentrate on d = 2 (a stronger result for d = 1 is given below). By Lemma

3 we have
∑

Q

|xQ|
p‖ψQ‖

p
p ≤ C

(∑

Q

|xQ|
p∆̃Q +

∑

Q

|xQ|
p

∑

P∈VQ

βp
QP ∆̃P

)

≤ C
∑

Q

|xQ|
p∆̃Q

(

1 +
∑

P∈VQ

βp−1
QP

)

≤ C(1 + sup
Q

max
P

βp−1
QP )‖g̃‖p

p,

where in the last step (2) has been applied to g̃ :=
∑

Q xQφ̃Q ∈ Ṽ . The estimation of

‖g̃‖p
p is similar to what we did for the lower bound in Lemma 3 b): Since g̃(P ) = 0, we

can write

g̃ = g +
∑

P

( ∑

Q∈ṼP

xQβQP

)

θP = g −
∑

P

g(P )θP ,

where g =
∑

Q xQψQ. In the expression on the right-hand side of this equality at most 4

terms are non-zero on any coarse triangle from T . Therefore, we obtain

‖g̃‖p
p ≤ 4p−1

(

‖g‖p
p +

∑

P

|g(P )|p‖θP ‖
p
p

)

≤ C
(

‖g‖p
p +

∑

P

|g(P )|p∆̃P

)

≤ C‖g‖p
p,

where in the last two steps (7) and (2) were used. This shows (12).
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For d = 2, the counterexamples for Proposition 2 and 4 are based on the special,

parameter-dependent refinement of a 1-ring around a vertex P discussed in Section 3.

Figure 3 (right) shows the essential portion of a special triangulation T̃ , with a vertex P

of valence k in the center. The valences of the vertices Pm in the 1-ring around P are 6.

How T̃ looks outside the shown portion is not essential for the result. For simplicity, we

assume k-fold rotational symmetry w.r.t. the center P . The new vertices are inserted at

the edge midpoints, only the points Qm on the edges emanating from P are inserted at

relative distance 0 < t < 1 from P . All shown coarse triangles from T are similar, with

two sides of length k1/2 and the short side of length ≍ k−1/2. Consider the prewavelets

ψQm
. These functions are ”rotational” copies of ψQ1

. The existence of ψQ1
can be shown

by direct examination. To this end, we have to verify (7) at P (which was already done

in Section 3), and at Pm which we leave to the reader.

Note that by construction of the triangulation, all coarse triangles have area ≍ 1.

Thus, given the described placement of the Q points, we have

∆̃P ≍ kt2, ∆̃R ≍ 1 (R 6= P ).

From Lemma 3 we therefore obtain βQP ≤ Ck−1t−2, and, thus,

‖ψQm
‖p

p ≍ (1 + (kt2)−(p−1)). (13)

The lower bound requires that we in addition verify βQmP ≍ k−1t−2 (start from Lem-

ma 3a)).

Thus, if we choose t = k−1/2, and define the (finitely supported) sequence {xQ} by

setting xQ = 1 if Q = Qm, m = 1, . . . , k, and xQ = 0 otherwise, we have
∑

Q

|xQ|
p‖ψQ‖

p
p ≍ k. (14)

On the other hand, because of rotational symmetry g =
∑

Q xQψQ has value

|g(P )| = k|ψQ1
(P )| = kβQ1P ≍ k(φ̃Q1

, φP ) ≍ k.

Using (2), this yields

‖g‖p
p ≥ c|g(P )|p∆̃P ≥ ckp.

Thus, comparing this lower bound with (14), we see that the constant in the upper

stability estimate (11) stated in Proposition 2 cannot be smaller in order than kp−1. This

shows that the valence-dependence of the constant in (11) is essential.

To prove a similar result for the lower bound (12) of Proposition 4, we fix in the

above construction k, and consider g := ψQ1
− ψQ2

for t → 0. From (13) we have for

0 < t < k−1/2 that βQmP ≍ k−1t−2. Thus, the left-hand side in (12) is of the order

βp−1
Q1P ≍ (kt2)−(p−1). On the other hand, since the term involving θP cancels by definition

of g, we can represent g as

g = φ̃Q1
− φ̃Q2

− βQ1Pk
θPk

+ βQ2P3
θP3

+(βQ2P1
− βQ1P1

)θP1
+ (βQ2P2

− βQ1P2
)θP2

.

All coefficients in this representation (and the Lp-norms of the involved functions φ̃Q

and θP ′) are bounded by some constant C which gives ‖g‖p
p ≤ C, independently of t.
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Comparing these findings with (12), we see that in our particular case the constant there

is bounded from below by cβp−1
QmP . Thus, the appearance of such terms in the constant

for the lower stability estimate (12) is essential.

For d = 1, we have stronger results. Obviously, in Lemma 3 we can now establish

βQP ≍
∆̃Q

∆̃P

, P ∈ VQ, ‖ψQ‖
p
p ≍ ∆̃Q(1 +

∑

P∈VQ

βp−1
QP ). (15)

Define the quantity

τ := sup
P

min
Q∈ṼP

βQP ≍ τ ′ := sup
P∈V

min(∆̃Q− , ∆̃Q+)

∆̃P

(16)

(as before, Q± are the new vertices left and right from P ). Note that τ ′ is a somewhat

nonstandard quantitative measure for the irregularity of the refinement from T to T̃ . It

is easy to construct examples of partitions for which τ ′ ≍ τ is significantly smaller than

the constant

τ̄ := sup
P

max
Q∈ṼP

βQP ,

that entered the estimate given in Proposition 4. Note that τ, τ ′ ≥ c > 0 for some absolute

constant c.

Proposition 5. Let d = 1. Suppose that Θ and Ψ are defined by (6) resp. (10). Then

the Lp-condition of Ψ satisfies

κp(Ψ) ≍ τp−1, 1 ≤ p <∞, (17)

with constants independent of T , T̃ .

Proof. For the upper estimate of κp(Ψ) we need the following improvement of Proposition

4: For g ∈ Ṽ of the form g =
∑

Q xQψQ, we have
∑

Q

|xQ|
p‖ψQ‖

p
p ≤ Cτp−1‖g‖p

p. (18)

The counterpart of Proposition 2 for d = 1 is

‖g‖p
p ≤ 3p−1

∑

Q

|xQ|
p‖ψQ‖

p
p

(because in the sum
∑

Q xQψQ at most 3 terms are non-zero for any argument). These

two inequalities give the upper bound in (17).

The proof of (18) heavily relies on the following recovery formula for the coefficients

xQ of g =
∑

Q xQψQ:

xQ = λQ(g) := g(Q) + αP−Qg(P
−) + αP+Qg(P

+), (19)

where . . . , Q−, P−, Q, P+, Q+, . . . denote the vertices immediately to the left and

right from Q. The values αP±Q are defined by (6) and (8), and belong to [0, 1/2]. The

reader can easily verify this expression for xQ by using the explicit formulas for the nodal

values of the prewavelets which follow from the definitions (10), (6), and (8):

ψQ(P±) = −βQP± , ψQ(Q±) = βQP±αP±Q± , (20)
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and ψQ(Q) = 1 + βQP−αP−Q + βQP+αP+Q. Using (20), we obtain λQ(ψQ) = 1 and

λQ(ψQ±) = 0 (on all other ψQ′ the functional λQ vanishes trivially due to the support

properties of ψQ′). This implies (19).

As a preparation, we will show that

‖g‖p
p ≍

∑

Q

|xQ|
p∆̃Q +

∑

P

|g(P )|p∆̃P . (21)

Indeed, by definition of αP±Q via (6) and (8) we have

αP±Q ≤ min

(
1

2
,

(
∆̃P±

∆̃Q

)2)

,

and in conjunction with (19)

|xQ|
p∆̃Q ≤ (1 + α

1− 1
2p

P−Q + α
1− 1

2p

P+Q )p−1∆̃Q(|g(Q)|p + α
1
2

P−Q|g(P
−)|p + α

1
2

P+Q|g(P
+)|p)

≤ 3p−1(|g(Q)|p∆̃Q + |g(P−)|p∆̃P− + |g(P+)|p∆̃P+).

Summation with respect to Q and use of the Lp-stability of Φ̃ gives one direction in (21).

The opposite inequality follows in the same way if (19) is rewritten as

g(Q) = xQ − αP−Qg(P
−) − αP+Qg(P

+),

and used to estimate the terms |g(Q)|p∆̃Q.

We are now in a position to attack (18). Since by (15)
∑

Q

|xQ|
p‖ψQ‖

p
p ≤ C

∑

Q

|xQ|
p∆̃Q(1 + βp−1

QP− + βp−1
QP+),

it is enough to concentrate on the critical terms with βQP+ > τ resp. βQP− > τ (the other

terms are bounded by ≤ Cτp−1|xQ|
p∆̃Q). E.g., let βQP+ > τ for some Q. By definition

of τ we have βQ+P+ ≤ τ , and we can use the identity g(P+) = −(βQP+xQ +βQ+P+xQ+)

together with (15) to estimate as follows:

βp−1
QP+ |xQ|

p∆̃Q = |β
−1/p
QP+ (g(P+) + βQ+P+xQ+)|p∆̃Q

≤ Cβ−1
QP+(|g(P+)|p + βp

Q+P+ |xQ+ |p)∆̃Q

≤ C(|g(P )|p∆̃P+ + τp−1|xQ+ |p∆̃Q+).

With this estimate for the critical terms at hand, the overall result is
∑

Q

|xQ|
p‖ψQ‖

p
p ≤ C

(

τp−1
∑

Q

|xQ|
p∆̃Q +

∑

P

|g(P )|p∆̃P

)

≤ Cτp−1‖g‖p
p,

where (21) was used. This gives (18), and the upper estimate for κp(Ψ) in (17).

For the lower estimate, note that the stability constants C1, C2 in (1) must always

satisfy C1 ≤ 1 ≤ C2 (just take x1 = 1, and xi = 0 for all i 6= 1). Thus, the result follows

if we establish C1 ≤ Cτ1−p, or, equivalently, we find g =
∑

Q xQψQ such that

∑

Q

|xQ|
p‖ψQ‖

p
p ≥ cτp−1‖g‖p

p. (22)
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Moreover, it is enough to consider τ0 ≤ τ , where τ0 is fixed but sufficiently large. By

definition of τ , there exists P ∈ V such that βQ+P , βQ−P ≥ τ/2, where this time

. . . , Q−
1 , P

−, Q−, P, Q+, P+, Q+
1 , . . .

denote the vertices immediately to the left and right from P (the case τ = ∞ requires

some obvious modifications). Set

g = β−1
Q+PψQ+ − β−1

Q−PψQ− .

The coefficients xQ± have been chosen such that g(P ) = 0, moreover, by (20) we compute

g(P+) = βQ+P+/βQ+P . To get an estimate for |g(P+)|p, we use that ∆̃Q+/∆̃P ≥ c0βQ+P

holds for some c0 > 0 according to (15). Thus,

∆̃P+ + ∆̃P > ∆̃Q+ ≥ c0βQ+P ∆̃P ≥
c0τ

2
∆̃P ,

which gives for τ ≥ τ0 := 4/c0

βQ+P+

βQ+P
≤ C

∆̃P

∆̃P+

≤
C

c0τ/2 − 1
≤ Cτ−1.

We conclude that

|g(P+)|p =
∣
∣
∣
βQ+P+

βQ+P

∣
∣
∣

p

≤ Cτ1−p ∆̃P

∆̃P+

,

analogously for |g(P−)|p. Substituting into (21), we obtain

‖g‖p
p ≤ C(β−p

Q+P ∆̃Q+ + β−p
Q−P ∆̃Q− + |g(P+)|p∆̃P+ + |g(P−)|p∆̃P−)

≤ Cτ1−p∆̃P , τ ≥ τ0.

Since τ ≍ τ ′ are bounded away from zero, this estimate holds (with another constant C)

for small τ , too.

On the other hand, by (15) we get

|xQ+ |p‖ψQ+‖p
p ≥ cβ−p

Q+P ∆̃Q+βp−1
Q+P ≥ c∆̃P .

This gives the desired lower bound (22), and completes the proof of Proposition 5.

Proposition 6. Let {Tj , j ≥ 0} be a sequence of partitions of R
1 obtained recursively by

irregular dyadic refinement from T0. Denote by τj ≍ τ ′j the quantities defined in (16) with

T = Tj−1, T̃ = Tj, and by Ψj the associated semiorthogonal prewavelet system, j ≥ 1.

Let Ψ0 := Φ0 be the system of hat functions with respect to T0. Then the multilevel

prewavelet system {Ψ0,Ψ1,Ψ2, . . .}, after normalization with respect to the L2 norm,

forms a Riesz basis in L2(R) if and only if supj≥1 τ
′
j <∞.

This result is an obvious consequence of the L2-stability result of Proposition 5 ap-

plied to each Ψj , and the mutual orthogonality between Ψj with different level indices j.

This Riesz basis criterion could even be useful in practical terms since it allows to effec-

tively control the Riesz bounds of the resulting prewavelet system via the ratios ∆̃Q±/∆̃P

during the refinement process, i.e., when inserting new points. Moreover, the result in-

duces a uniform condition number estimate for stiffness matrices if subsystems of the

above multilevel prewavelet system are used to numerically solve symmetric L2-elliptic

variational problems by the Galerkin method.
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We conjecture that the above condition also characterizes the Lp-unconditionality

(1 < p < ∞) of this multilevel prewavelet system. This needs to be contrasted with the

Lp-unconditionality results for Franklin systems [7] which do not require any conditions

on the refinement process. We do not know whether allowing larger support sizes for the

ψQ in the semiorthogonal case (or replacing semiorthogonality by biorthogonality, see

[16]) would lead to the construction of Lp-stable locally supported prewavelet systems

with no constraints on the irregular dyadic refinement. However, the main open problem

is to close the gaps in the 2D case, where a full proof of the claims in Proposition 1 is

missing.

References

[1] Z. Ciesielski and A. Kamont, Projections onto piecewise linear functions, Functiones and

Approximation, Comment. Math. 25 (1997), 129–143.

[2] C. K. Chui and J. Z. Wang, On compactly supported wavelets and a duality principle,

Trans. Amer. Math. Soc. 330 (1992), 903–915.
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