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Abstract. Karhunen-Loève expansions of Gaussian processes have numerous applications in

Probability and Statistics. Unfortunately the set of Gaussian processes with explicitly known

spectrum and eigenfunctions is narrow. An interpretation of three historical examples enables

us to understand the key role of the Laplacian. This allows us to extend the set of Gaussian

processes for which a very explicit Karhunen-Loève expansion can be derived.

1. Introduction. Karhunen-Loève (or K-L) expansions of Gaussian processes are of

great interest in Statistics and Probability. We shall recall briefly their definition and

give a few examples of their applications in fields as large deviations and small balls

probabilities, Cramér-von Mises type and U- or V-statistics. We will be concerned with

their statistical applications. One of the main problems in this field is the difficulty to

obtain explicit K-L expansions. We give in Section 2 a geometrical interpretation of the

two well-known expansions (1) and (2), in terms of the Green’s function of the Laplacian

on the circle. These two kernels are related to the celebrated Watson’s and Cramér-von

Mises statistics. Thus the interpretation we propose opens the way to generalizations

of these statistics to other manifolds, outlined in Section 3. The key idea is to consider

Green’s function of the Laplacian on a given manifold as the kernel of a U-statistic suited

for a test of uniformity on this manifold. Proposition 3.1 gives an explicit expression for

Green’s function of the Laplacian of compact, 2-point homogeneous spaces as Euclidean

spheres, real complex and quaternion projective spaces. In these spaces an averaging

process applied to the Green’s function K-L expansion (6) enables one to obtain a second

kernel and its K-L expansion, which can be viewed as its zonal or radial part. Thus the

K-L expansions (1) − (2) arise as a particular case of the expansions (6) − (7). The case

of the 2-dimensional unit sphere is discussed in Section 4. We show that the kernel of the
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Anderson-Darling statistic viewed as a V-statistic is the radial part of Green’s function.

The U-statistic whose kernel is Green’s function of the sphere is introduced in Theorem 1.

It is the analogue on the sphere of Watson’s statistic which has been introduced in [Wat61]

for the circle. Interestingly, this new statistic has a simple expression in terms of the

geometrical mean of the sample spacings.

We use the following notations. Let T ⊆ R
n and {X(t) : t ∈ T} denote a centered

Gaussian process on the measure space (T, µ) with covariance function

K(s, t) := EX(s)X(t) such that

∫

T×T

K2(s, t)dµ(s)dµ(t) < ∞.

The Karhunen-Loève expansion is

K(s, t) =

∞∑

k=1

fk(s)fk(t)

λk
or X(t)

(law)
=

∞∑

k=1

ξkfk(t)√
λk

where the ξk are independent N (0, 1) random variables and the sequence {(λk, fk) : k ≥
1} is a complete set of solutions of the integral equation

λk

∫

T

K(s, t)fk(s)dµ(s) = fk(t) with

∫

T

fk(s)fℓ(s)dµ(s) =

{

0 if k 6= ℓ,

1 if k = ℓ.

Interesting by-products of the explicit K-L expansion concern the study of the L2 norm

of X. Firstly (see [SW86] formula (14) p. 212),
∫

T

X2(t)dµ(t)
(law)
=

∞∑

k=1

ξ2
k

λk
so that

E exp

{

iu

∫

T

X2(t)dµ(t)

}

=
∞∏

k=1

(

1 − 2iu

λk

)− 1
2

, (u ∈ R).

Secondly for large deviations one has

P

(∫ 1

0

X2(t)dµ(t) ≥ x2

)

∼ (λ1x2

2 )
n1
2 −1e−

λ1x
2

2

Γ(n1

2 )
∏∞

k=n1+1(1 − λ1

λk

)
as x → ∞

when the smallest eigenvalue λ1 has multiplicity n1 (see [Zol61] p. 204). Finally for the

problem of small balls which is most of the times more involved, see e.g. [LS01] and the

numerous references therein. One of the properties we infer from the K-L expansion is,

as ε → 0,

∞∑

k=1

∣
∣
∣
∣

c(k + d)2

λk
− 1

∣
∣
∣
∣
< ∞ with c > 0, d ∈ R ⇒ log P

(∫ 1

0

X2(t)dµ(t) ≤ ε2

)

∼ − π2

8cε2
.

Statisticians use K-L expansions in the study of two families of statistics: Cramér-von

Mises type statistics and U- or V-statistics. For details, see respectively [SW86], Chapter

5 and [KB94] § 4.3. The statistician rejects the hypothesis

H0: X1, . . . ,Xn are i.i.d. random variables with distribution µ on T

for large values of the V-statistic Sn := 1
n

∑n
i,j K(Xi,Xj), of the U-statistic S′

n :=
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2
n−1

∑n
i<j K(Xi,Xj) or of the Cramér-von Mises type statistic

Tn :=

∫

T

E2
n[X1, . . . ,Xn](t)dµ(t)

where K : T × T → R is a kernel and En an empirical process converging in L2 toward

a centered Gaussian process X. Given the K-L expansion of K or X, under H0,

Sn →
∞∑

k=1

ξ2
k

λk
, S′

n →
∞∑

k=1

ξ2
k − 1

λk
under the degeneracy condition

∫

T

K(x, y)dµ(y) = 0,

or Tn →
∫

T

X2(t)dµ(t) =
∞∑

k=1

ξ2
k

λk
.

This means that the asymptotic distribution of Sn, S′
n and Tn can be obtained from

a K-L expansion. Unfortunately, as mentioned above, very few explicit K-L expansions

useful in Statistics can be derived. We now describe an approach allowing one to obtain

new explicit expansions.

2. The case of the circle revisited. We will revisit the historical examples of the

Watson (U2
n) and Cramér-von Mises (W 2

n) statistics. For further use in Section 4, we also

recall results concerning the Anderson-Darling statistic (A2
n). These three statistics are

widely used to test whether the sample x1, . . . , xn comes from the uniform distribution

on (0, 1). For their definition, see [Dur73], formulas (4.1.7) − (4.1.8) p. 27 and (5.4.2)

p. 36 or [DS86], formulas (4.2) p. 101. Elementary computations enable to express them

in the form of the V-statistics (for which we give the K-L expansion of the kernel)

U2
n =

1

n

n∑

i=1

n∑

j=1

{
(|xi − xj | − 1/2)2

2
− 1

24

}

with the kernel

KU (x1, x2) :=
(|x1 − x2| − 1/2)2

2
− 1

24

=
∞∑

k=1

2 sin(2kπx1) sin(2kπx2) + 2 cos(2kπx1) cos(2kπx2)

4k2π2
;

(1)

W 2
n =

1

n

n∑

i=1

n∑

j=1

{
x2

i − xi + x2
j − xj − |xi − xj |

2
+

1

3

}

with

KW (x1, x2) :=
x2

1 − x1 + x2
2 − x2 − |x1 − x2|

2
+

1

3
=

∞∑

k=1

2 cos(kπx1) cos(kπx2)

k2π2
;(2)

A2
n =

1

n

n∑

i=1

n∑

j=1

{− log[max(xi, xj) − xixj ] − 1} with

KA(x1, x2) := − log[max(x1, x2) − x1x2] − 1 =
∞∑

k=1

(2k + 1)pk(x1)pk(x2)

k(k + 1)
(3)

where pk is a Legendre polynomial, defined by (8).
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The Watson and Cramér-von Mises statistics can be interpreted in terms of the zero-

mean Green function G1 of the Laplacian on the circle S1(R) := {P (x) = Re2iπx : x ∈
R} as follows. Watson’s statistic was introduced in order to test whether the sample

P1 := P (x1), . . . , Pn := P (xn) comes from the uniform distribution on S1(R), on which

the density of the Riemannian measure will be denoted by dP . We fix a north pole

N := P (0), to which corresponds the south pole P (1/2). Let s : P 7→ s · P denote the

reflection in the axis passing through the poles. For x, y ∈ [0, 1], the distance between the

two points P (x) and Q(y) is d(P,Q) = min(2πR|x− y|, 2πR(1−|x− y|)). In this setting,

elementary computations lead to the interesting expressions

2πRKU (x1, x2) = G1(P1, P2),

πR

2
KW

(
d(P1, N)

πR
,
d(P2, N)

πR

)

=
G1(P1, P2) + G1(P1, s · P2)

2

where the function

G1(P1, P2) :=
[πR − d(P1, P2)]

2

4πR
− πR

12

satisfies

(4)

{

(−∆Q)G1(P,Q) = δP − 1
2πR ,

∫

S1(R)
G1(P,Q)dQ = 0.

where δP denotes the Dirac distribution at the point P . In other words, Watson’s kernel

is the zero-mean Green’s function of the Laplacian on S1(R), while Cramér-von Mises

kernel is its radial part obtained by an averaging process. By the radial part of a function

defined on a space with a fixed pole N , we mean the function taking at P the average

value of the function on the sphere centered at N and containing P . In the present case,

on the circle, this sphere consists of two points P and s · P .

3. Generalization to 2-point homogeneous spaces. From [Aub82], Definition (14)

p. 107 (up to the opposite sign convention used for the Laplacian in this reference)

and assertion (e) in Theorem 4.13 p. 108, we know that on any finite dimensional, C∞,

compact manifold M without boundary, there exists a zero-mean Green’s function of

the Laplacian on M . It satisfies (4) in which S1(R) is replaced by M and 2πR changed

into VM , the volume of M . Green’s function is defined up to a constant. We choose the

Green’s function so that its integral equals zero, because this condition corresponds to

the degeneracy condition required from the kernel of a degenerate U-statistic. In the same

way, for statistical purposes, our aim is to obtain explicit expressions, not only existence

results for the Green’s function. For this reason, we are interested by manifolds for which

an explicit expression of Green’s function is available. Among them, the family of compact

2-point homogeneous spaces fulfills this restrictive condition. A 2-point homogeneous

space M is such that given any two pairs of points P1, Q1, P2, Q2 satisfying d(P1, Q1) =

d(P2, Q2), there exists an isometry ι : M → M such that ι(P1) = P2 and ι(Q1) = Q2.

By virtue of Wang’s classification in [Wan52], 2-point homogeneous spaces, compact and

without boundary, are the Euclidean spheres, the real, complex and quaternion projective

spaces, the Cayley plane (this exhaustive list is also given in [Hel00] p. 167). In the sequel,
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M will denote one of these spaces. The Green’s function on M can be computed in terms

of the volume V (r) and the area A(r) of a geodesic ball of radius r.

Proposition 3.1. The zero-mean Green’s function of the Laplacian on M is given by

(5) GM (P1, P2) =
1

VM

∫ δ

d(P1,P2)

VM − V (r)

A(r)
dr − 1

V 2
M

∫ δ

0

V (r)[VM − V (r)]

A(r)
dr

where δ is the diameter of the space.

Proof. We use Theorem 5.27.(ii) p. 316, Chapter ii in [Hel00]. The function

−G(P,Q) := (1/VM )

∫ δ

d(P,Q)

VM − V (r)

A(r)
dr

introduced in this theorem is a Green’s function of the Laplacian. A Green’s function

is defined up to a constant and the one appearing in our expression of GM is such that
∫

M
GM (P,Q)dQ = 0. It is obtained from the equalities

∫

M

G(P,Q)dQ =

∫ δ

0

{∫ δ

r

(
V (ρ) − VM

VMA(ρ)

)

dρ

}

A(r)dr

=

∫∫

[0,δ]×[0,δ]

V (ρ) − VM

VMA(ρ)
A(r)1{r≤ρ}dρdr

=

∫ δ

0

V (ρ) − VM

VMA(ρ)

(∫ ρ

0

A(r)dr

)

dρ =

∫ δ

0

V (ρ)[V (ρ) − VM ]

VMA(ρ)
dρ.

We fix a pole N ∈ M , and denote by (λℓ)ℓ≥1 the increasing sequence of pairwise

distinct positive eigenvalues of the opposite of the Laplacian (−∆M ). Each eigenspace

Eℓ associated to λℓ is of finite dimension, and has an orthonormal basis {fk
ℓ : 0 ≤ k <

dim Eℓ} defined as follows. f0
ℓ is a zonal spherical function, i.e. f0

ℓ (P ) depends only on

r = d(P,N), hence we will write f0
ℓ (P ) = f0

ℓ (r). For each k ≥ 1, fk
ℓ is an associated

spherical function, i.e. of mean zero on each sphere of center N . The K-L expansion of

GM (in a distributional sense) takes the form

(6)
GM (P1, P2) =

∑

ℓ≥1

f0
ℓ (r1)f

0
ℓ (r2)

λℓ

︸ ︷︷ ︸

+
∑

k,ℓ≥1

fk
ℓ (P1)f

k
ℓ (P2)

λℓ

︸ ︷︷ ︸

.

zonal expansion + associated expansion

Given P1, the average of GM (P1, Q) on a sphere of center N and radius r2 has conse-

quently the bilinear expansion

(7) GM
M (r1, r2) =

∑

ℓ≥1

f0
ℓ (r1)f

0
ℓ (r2)

λℓ
.

Furthermore explicit expressions for V (r), A(r), the zonal spherical functions and the

spectrum of the Laplacian can be found for 2-point homogeneous spaces (see [Gra73]

examples 1-4 p. 340-341, [Ask75] p. 65, [Bes78] p. 201). This enables us to envisage the

possibility of constructing a U- and a V-statistic with kernel GM and GM
M respectively.
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Their asymptotic distribution under the null-hypothesis will follow from (6) and (7). In

order to illustrate the kind of results one can obtain from this general approach, we shall

study one case explicitly.

4. The case of the sphere. On the unit sphere S2 = {(x, y, z) ∈ R
3 : x2 + y2 + z2 =

1}, the generic point P (x, y, z) has spherical coordinates (θ, φ) ∈ [0, π] × [0, 2π] with

x = sin θ sinφ, y = sin θ cos φ, z = cos θ. The Riemannian measure is dP = sin θdθdφ.

The Laplacian of f : P 7→ f(θ, φ) is given by ∆f = (sin θ)−1∂θ(sin θ∂θf) + (sin θ)−2∂2
φf.

The distance from P (θ, φ) to the north pole N(0, 0) is r = d(P,N) = θ. The area and

volume of a geodesic ball of radius r are given by A(r) = 2π sin r and V (r) = 2π(1−cos r)

respectively. Furthermore, δ = π and VM = V (π) = 4π. The equality (5) leads to

G2(P,Q) =
log 2 − 1 − log(1 − cos[d(P,Q)])

4π

where d(P,Q) is the distance between P and Q measured on the sphere. For each ℓ ∈ N,

−ℓ(ℓ + 1) is an eigenvalue of the Laplacian with multiplicity 2ℓ + 1. The zonal and

associated spherical functions are related to the Legendre polynomials and Legendre

functions of the first kind, defined respectively by

(8)
pℓ(x) = (2ℓℓ!)−1 dn

dxn
(x2 − 1)n, (ℓ ∈ N),

pm
ℓ (x) = (−1)m(1 − x2)m/2 dm

dxm
pℓ(x), (1 ≤ m ≤ ℓ, −1 ≤ x ≤ 1).

An orthonormal basis of the eigenspace corresponding to the eigenvalue −ℓ(ℓ+1) is given

by the 2ℓ + 1 functions {fm
ℓ : −ℓ ≤ m ≤ ℓ} defined, for P = (θ, φ), by

f0
ℓ (P ) :=

(
2ℓ + 1

4π

)1/2

pℓ(cos θ), (ℓ ≥ 0),

fm
ℓ (P ) :=

{
(2k + 1)(ℓ − m)!

2π(ℓ + m)!

}1/2

cos(mφ)pm
ℓ (cos θ), (1 ≤ m ≤ ℓ),

fm
ℓ (P ) :=

{
(2k + 1)(ℓ − |m|)!

2π(ℓ + |m|)!

}1/2

sin(|m|φ)p
|m|
ℓ (cos θ), (−ℓ ≤ m ≤ −1).

G2 has in L2 the bilinear expansion

G2(P1, P2) =

∞∑

ℓ=1

f0
ℓ (θ1)f

0
ℓ (θ2)

ℓ(ℓ + 1)
+

∑

m∈Z∗

∞∑

ℓ=|m|

fm
ℓ (P1)f

m
ℓ (P2)

ℓ(ℓ + 1)
.(9)

The average of G2(P1, P2) on the geographical parallel containing P2 is, for 0 < θ1, θ2 < π,

2 log 2 − 1 − log[1 + cos min(θ1, θ2)][1 − cos max(θ1, θ2)]

4π

=
∞∑

ℓ=1

f0
ℓ (θ1)f

0
ℓ (θ2)

ℓ(ℓ + 1)
=

1

4π
KA

(
1 − cos θ1

2
,
1 − cos θ2

2

)

(see the last formula of § 5.4.4 in [MOS66] p. 239). Hence Anderson-Darling’s kernel is

the radial part of G2, obtained by an averaging process.
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Note that 1 − cos[d(P,Q)] = δ2(P,Q)/2, where δ is the distance measured in R
3. In

view of (9) and [KB94], Theorem 4.3.1 p. 138, we obtain for the U-statistic with kernel

G2 the following result.

Theorem 1. If P1, . . . , Pn is a sample from the uniform distribution on S2, one has the

convergence in law

− n

4π
log

(
eg2

n

4

)

→
∞∑

ℓ=1

χ2(2ℓ + 1) − (2ℓ + 1)

ℓ(ℓ + 1)

where gn :=
∏

1≤i<j≤n δ(Pi, Pj)
2

n(n−1) is the geometrical mean of the distances between

the points of the sample in R
3, and

{
χ2(2ℓ + 1)

}

ℓ≥1
denotes a sequence of independent

χ2 random variables with (2ℓ + 1) degrees of freedom.

Extensions of this result to other 2-point homogeneous spaces will be discussed in a

forthcoming paper.
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