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Abstract. In this note, I will summarize and make a couple of small additions to some results

which I obtained earlier with David Williams in [1]. Williams and I hope to expand and refine

these additions in a future paper based on work that is still in process.

0. Introduction. The problem under consideration is that of understanding solutions

u : (0,∞) × [0,∞) → R to the boundary value problem

(1) u̇ = 1
2u

′′ + µu′ with u̇(t, 0) = −u′(t, 0),

where u̇ ≡ ∂tu and u′ = ∂xu denote differentiation in, respectively, the time and space

directions. An interesting aspect of equation (1) is the observation that the minimum

principle is absent. That is, just because f ≥ 0, it is not necessarily true that u ≥ 0.

Throughout, we will assume that solutions belong to the class U of u ∈ C1,2
(

(0,∞)×

[0,∞); R
)

(i.e., functions which have one continuous derivative with respect to time and

two continuous derivatives with respect to space, and all these existing and continuous

up to and including the spacial boundary) with the properties that, for each 0 < T1 < T2,

‖u‖C
1,2

b
([T1,T2]×[0,∞)) ≡ sup

(t,x)∈[T1,T2]×[0,∞)

|u(t, x)| ∨ |u̇(t, x)| ∨ |u′′(t, x)| <∞

and u ↾ (0, 1] × [0,∞) is bounded.

The following theorem describes the basic facts about existence and uniqueness of

solutions u ∈ U to (1). In its statement, F is used to denote the class of bounded

functions f : [0,∞) → R which are continuous on (0,∞) but not necessarily at 0.

Theorem 1. If u ∈ U satisfies (1) and, as tց 0, u(t, · ) converges uniformly on compact

subsets of (0,∞), then limtց0 u(t, 0) exists. In fact, for each f ∈ F , there is a unique

2000 Mathematics Subject Classification: 35K05, 35B50, 35B35, 60J25.
The author acknowledges support provided by the Simon’s professorship at M.I.T. and the

NSF grant DMS 0244991.

The paper is in final form and no version of it will be published elsewhere.

[327]



328 D. W. STROOCK

solution uf,µ which satisfies, as tց 0, the initial conditions u(t, 0) → f(0) and u(t, · ) →

f uniformly on compact subsets of (0,∞).

The essential ingredient in the proof of Theorem 1 is the introduction of the function

(2) Jµ(x) =

{

2e−2x if µ ≥ −1,

2e2µx if µ ≤ −1.

The role played by Jµ comes from the observation that when u ∈ U satisfies (1), then

integration by parts shows that

d

dt
〈u(t), Jµ〉 = 〈 1

2u
′′(t) + µu′(t), Jµ〉

= 〈u(t), 1
2J

′′
µ − µJ ′

µ〉 −
1
2u

′(t, 0)Jµ(0) + 1
2u(t, 0)J ′

µ(0) − µu(t, 0)Jµ(0)

= 2(µ+ 1)+(〈u(t), Jµ〉 − u(t, 0)) + u̇(t, 0),

where 〈ϕ,ψ〉 ≡
∫

(0,∞)
ϕ(x)ψ(x) dx. Hence,

(3) 〈u(t), Jµ〉 − u(t, 0) = e2(µ+1)+(t−s)
(

〈u(s), Jµ〉 − u(s, 0)
)

for 0 < s ≤ t.

To give an example of how (3) gets used, take t = 1 and note that if, as sց 0, u(s, · ) con-

verges uniformly on compact subsets of (0,∞), then (3) makes it clear that limsց0 u(s, 0)

must exist. That is, (3) leads immediately to the first assertion in Theorem 1. The role

that (3) plays in the second part is that it allows one to formulate (1) as an integral equa-

tion in which (3) makes it possible to hide the boundary condition in an expression which

is less singular than one might have expected. Namely, if g(t, x) = (2πt)−
1
2 exp

(

− x2

2t

)

,

Q0
µ(t, x, y) = e−µx−µ2t

2

(

g(t, x− y) − g(t, x+ y)
)

eµy,

qµ(t, x) =
x

t
g(t, x+ µt),

and hf,µ(t, x) =
∫

(0,∞)
Q0

µ(t, x, y)f(y) dy, then u solves (1) with initial data f ∈ F if and

only if

u(t, x) = hf,µ(t, x) + βf,µ

∫ t

0

e2(µ+1)+τqµ(t− τ, x) dτ +

∫ t

0

qµ(t− τ, x)〈u(τ), Jµ〉 dτ

(4)

where βf,µ ≡ f(0) − 〈f, Jµ〉.

1. The absence of the minimum principle. As we said earlier, solutions to (1) do

not satisfy the minimum principle. In fact, a central result in [1] is the following

Theorem 2. The solution uf,µ is non-negative if and only if f ↾ (0,∞) ≥ 0 and f(0) ≥

〈f, Jµ〉.

The “if” part of Theorem 2 is quite easy. Indeed, because of (3), it is clear that (4)

leads to

〈uf,µ(t), Jµ〉 ≥ 〈hf,µ(t), Jµ〉 +

∫ t

0

〈qµ(t− τ), Jµ〉〈uf,µ(τ), Jµ〉 dτ.
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Hence, there cannot be a last t > 0 at which 〈uf,µ(t), Jµ〉 ≥ 0, and so, again by (3),

uf,µ(t, 0) ≥ 0 for all t ≥ 0. But, because

uf,µ(t, x) = hf,µ(t, x) +

∫ t

0

qµ(t− τ, x)uf,µ(τ, 0) dτ,

this means that uf,µ ≥ 0 everywhere. The argument which justifies the “only if” assertion

is much more involved. Namely, it relies on the probabilistic interpretation of solutions to

(1). To describe this interpretation, let {B(t) : t ≥ 0} be a standard, R-valued Brownian

motion, set Lµ(t) = max{(B(s) + µs)− : s ∈ [0, t]}, Xµ(t) = B(t) + µt + Lµ(t) and

Ψµ(t) = Lµ(t) − t.1 Then, t  Xµ(t) is “reflecting Brownian motion with drift µ”

and, because X0 = 0, Ψµ(t) will be strictly positive for t in the interval (0, ζµ), where

ζµ ≡ inf{t > 0 : Ψµ(t) = 0} is strictly positive with probability 1. Moreover, if u ∈ U

is a solution to (1), then t ∈ (0,∞) 7→ u
(

Ψµ(t ∧ ζµ),Xµ(t ∧ ζµ)
)

∈ R will be a local

martingale. Hence, if uf,µ ≥ 0, then t  uf,µ

(

Ψµ(t ∧ ζµ),Xµ(t ∧ ζµ)
)

is a non-negative

supermartingale, and so

f(0) = lim
tց0

E
[

uf,µ(Ψµ(t ∧ ζµ),Xµ(t ∧ ζµ)
]

≥ lim
tր∞

E
[

uf,µ(Ψµ(t ∧ ζµ),Xµ(t ∧ ζµ)
)]

≥ E
[

f
(

Xµ(ζµ)
)

, ζµ <∞
]

.

Thus, we will be done once we show that2

(5) E
[

f
(

Xµ(ζµ)
)

, ζµ <∞
]

= 〈f, Jµ〉.

To prove (5), we use the following lemma.

Lemma 1. If µ < −1, then, for every f ∈ F ,

‖uf,µ‖u ≤ ( sup
x∈(0,∞)

|f(x)|) ∨
|f(0) − 〈f, Jµ〉|

1 − 〈1, Jµ〉
<∞,

and limt→∞ uf,µ(t, · ) = 0 uniformly on compact subsets of [0,∞) if f(0) = 〈f, Jµ〉. If

µ ≥ −1 and f(0) = 〈f, Jµ〉, then ‖uf,µ‖u ≤ ‖f‖u.
3

Proof. Although all but the very first of these assertions are covered by the results in [1],

we will prove them all here, by a slightly different line of reasoning.

To begin with, suppose that µ < −1, and set A = (supx∈(0,∞) |f(x)|) ∨
|f(0)−〈f,Jµ〉|

1−〈1,Jµ〉
.

Then A ± f(x) ≥ 0 on (0,∞) and (A ± f)(0) ≥ 〈A ± f, Jµ〉 ≥ 0. Hence, by Theorem 1,

A± uf,µ = uA±f,µ ≥ 0.

Next, again assume that µ < −1 and, in addition, that f(0) = 〈f, Jµ〉. In this case

(4) leads to

〈uf,µ(t), Jµ〉 = 〈hf,µ(t), Jµ〉 +

∫ t

0

〈qµ(t− τ), Jµ〉〈uf,µ(τ), Jµ〉 dτ.

1For the reader who has looked at [1], it may be helpful to point out that the Ψµ(t) here is
−1 times the Φt there.

2Note that ζµ < ∞ ⇒ Xµ(ζµ) ∈ (0,∞).
3‖ · ‖u is the uniform, or supremum, norm.
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Therefore, since
∫

(0,∞)
〈qµ(τ), Jµ〉 dτ < 1,

〈uf,µ(t), Jµ〉 =

∞
∑

m=0

wm(t)

with w0(t) = 〈hf,µ(t), Jµ〉 and wm(t) =

∫ t

0

〈qµ(t− τ), Jµ〉wm−1(τ) dτ,

where the convergence is uniform on [0,∞). Hence, because, by induction on m ≥ 0,

limt→∞ wm(t) = 0 for each m ≥ 0, it follows first that limt→∞〈uf,µ(t), Jµ〉 = 0 and then,

by (4), that uf,µ(t, · ) → 0 uniformly on compacts.

Finally, assume that µ ≥ −1 and that f ∈ F satisfies f(0) = 〈f, Jµ〉. To see that

uf,µ is bounded, set M = ‖f‖u and observe that, because M ± uf,µ = uM±f,µ and that,

because now 〈1, Jµ〉 = 1, M ± f(0) = 〈M ± f, Jµ〉. Hence, by the “if” part of Theorem

2, both M + uf,µ and M − uf,µ are non-negative.

In order to complete the proof of (5), we still need to know that

(6)

µ < −1 ⇒ lim
t→∞

Ψµ(t) = ∞ almost surely,

µ ≥ −1 ⇒ lim
t→∞

Ψµ(t) = −∞ almost surely.

The proof of (6) is based on the “strong law”

(7) lim
t→∞

1

t
sup

τ∈[0,t]

|B(τ)| = 0 almost surely

for Brownian motion. Indeed, if µ 6= −1, then (7) makes it completely obvious that,

depending on whether µ < −1 or µ > 1, as t → ∞, Ψµ(t) tends almost surely to ∞

or −∞. When µ = −1, it is no longer true that Ψµ(t) converges almost surely. Instead,

limt→∞ Ψ−1(t) = ∞ and limt→∞ Ψ−1(t) = −∞ almost surely. A proof of these can be

found in [1], especially part (D) of the final section there.

We now have all the ingredients needed to prove (5). Indeed, if µ < −1 and therefore

uf,µ(t, · ) → 0 boundedly and uniformly on compacts when f(0) = 〈f, Jµ〉, it follows

immediately that, for such f ’s, uf,µ

(

Ψµ(t∧ ζµ),Xµ(t∧ ζµ)
)

is a bounded martingale and,

by (6), limt→∞ uf,µ

(

Ψµ(t ∧ ζµ),Xµ(t ∧ ζµ)
)

= 0 almost surely on {ζµ = ∞}. Hence,

〈f, Jµ〉 = f(0) = lim
t→∞

E
[

uf,µ

(

Ψµ(t ∧ ζµ),Xµ(t ∧ ζµ)
)]

= E
[

f
(

Xµ(ζµ)
)

, ζµ <∞
]

.

That is, we have proved that (5) holds when µ < −1. Similarly, because, for any f ∈ F

which satisfies f(0) = 〈f, Jµ〉, the corresponding uf,µ is bounded, we can repeat the

preceding argument, apply (6) to see that P(ζµ < ∞) = 1 when µ ≥ −1, and thereby

conclude that (5) holds for all µ ∈ R. Finally, as was pointed out just above (5), this also

means that we have completed the proof that uf,µ ≥ 0 ⇒ f(0) ≥ 〈f, Jµ〉.

Before concluding, it may be worth observing that the arguments given allow us to

prove the following statement.

Theorem 3. If µ < −1 and f ∈ F , then uf,µ is always bounded and f(0) = 〈f, Jµ〉 ⇔

limt→∞ uf,µ(t, · ) = 0 uniformly on compacts. On the other hand, if µ ≥ −1 and f ∈ F ,

then f(0) = 〈f, Jµ〉 if and only if uf,µ is bounded. In fact, when µ > −1, then f(0) =

〈f, Jµ〉 whenever t u(t, 0) − 〈u(t), Jµ〉 is bounded.
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Proof. The only part of the case µ < −1 that is not covered by Lemma 1 is the assertion

that f(0) = 〈f, Jµ〉 when uf,µ(t, · ) → 0 uniformly on compacts. However, because uf,µ

is bounded, the argument used to prove (5) shows that f(0) = E
[

f
(

Xµ(ζµ)
)

, ζµ <∞
]

if

uf,µ(t, · ) → 0, which, together with (5), implies that f(0) = 〈f, Jµ〉.

When µ ≥ −1, we have to check that f(0) = 〈f, Jµ〉 when uf,µ is bounded. But,

by the argument with which we proved (5) for µ ≥ −1, we again conclude that f(0) =

E
[

f
(

Xµ(ζµ)
)

, ζµ < ∞
]

, which, by (5), again leads to f(0) = 〈f, Jµ〉. Alternatively, in

the case when µ > −1, one need only observe that, because, by (3), f(0) − 〈f, Jµ〉 =

e−2(µ+1)t
(

u(t, 0 − 〈u(t), Jµ〉
)

, f(0) − 〈f, Jµ〉 must vanish if t  u(t, 0) − 〈u(t), Jµ〉 is

bounded.
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