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Abstract. Brownian motion is the most studied of all stochastic processes; it is also the basis

for stochastic analysis developed in the second half of the 20th century. The fine properties of the

sample path of a Brownian motion have been carefully studied, starting with the fundamental

work of Paul Lévy who also considered more general processes with independent increments

and extended the Brownian motion results to this class. Lévy showed that a Brownian path

in d (d ≥ 2) dimensions had zero Lebesgue measure; he asked for the right Hausdorff measure

function to measure the sample path. This is the starting point for my joint work with Ciesielski

[1] in 1961 which we will summarize in this lecture. We further describe some of the papers

published in the last 40 years which built on the results and methods of [1], focusing only on

those papers which find properties of the sample path of Brownian motion.

1. Introduction. It is a great pleasure for me to participate in this meeting to celebrate

the work of Zbigniew Ciesielski. We first met in Cornell in 1960: both of us were young

men, Zbigniew was 26 and I was 30. We both hoped to learn much from contact with

the Polish probabilist, Mark Kac; we also learned from each other, particularly by our

collaboration on [1], which is paper 13 in the list of Ciesielski publications. This paper

provided precise answers to questions about the trajectory of Brownian motion in R
d

(d ≥ 3). When I puzzled over the appropriate topic to talk about today, I realized that I

had no unpublished results to be enthusiastic about, and then I recalled that the methods

we developed in [1] had led to continued activity in the last 40 years, with hundreds of

citations, including 5 in 2003. So I will pick out a subset of these developments and try

to explain them.

Before embarking on this task, please allow me a few minutes to ponder on the

nature of research in mathematics. We are fortunate in that when we discover a new

theorem with a correct proof, we know that it will be true next year and for the following
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1000 years. Further, if it is a good theorem, it will become a building block for future

research in ways which cannot be foreseen. This feature can only be explained by the

nature of the universe in which we live and operate; it has a logical and self-consistent

character. Mathematicians discover true theorems because they are there; we do not

create truth. I remain convinced that there has to be a transcendent and personal God

who designed and created the universe, including planet Earth, as a reflexion of his own

logically consistent nature. As remarked by the astronomer, Sir James Jeans, “God must

have been a mathematician”.

So let us turn to the question of the trajectory of Brownian motion. The story starts

with an English botanist called Brown who, in the mid-19th century, looked into his

microscope at fine pollen suspended in water. He noticed very erratic movements by the

pollen, which appeared to be moving in all directions. Mr Brown could not explain what

he observed (for this was before any theory of molecules moving in a liquid) but, as

a good scientist, he wrote down what he had observed. Around 1900, Einstein, among

others, provided the explanation that the movement observed by Brown was caused by

many thousands of collisions between the pollen and the molecules of the liquid; a French

physicist, Jean Perrin, about 1910, used careful observations of this movement to estimate

the diameter of a molecule (he got the right answer within a factor of 2). Since movements

are the result of the net impetus from a large number of independent impulses from the

bombardment of molecules, the central limit theorem leads to a reasonable hypothesis

that the increment

[X(t+ h) −X(t)]

should be normally distributed, with mean 0 and variance proportional to h, and that

increments over disjoint time intervals should be independent. With this assumption,

Wiener [2] (1923) proved the existence of a continuous random real function which is

now called the Wiener process and became the mathematical model for 1-dimensional

Brownian motion. Mathematical Brownian motion in R
d is the result of d independent

Wiener processes, one in each coordinate direction. This process has been studied exten-

sively in the 20th century; 21 of Ciesielski’s papers relate to this process or one of its

close relatives. Much of the early work on the fine properties of Brownian motion was

carried out by Paul Lévy [3] who clearly had an intuitive feel for the Brownian demon sit-

ting on the path wondering what to do next. The development of Markov process theory

including the understanding of the strong Markov property came later.

2. Properties established by 1960. By 1960 it was known that the Brownian motion

process was transient for d ≥ 3, recurrent but not point recurrent for d = 2, and hits

points for d = 1.

Connections with classical potential theory had been established by Kakutani; these

were used to prove that, for d = 2, the path hits some points infinitely often though

the trajectory has zero Lebesgue measure, for d = 3 there are some double points but

no points hit 3 times, and for d ≥ 4 the path is simple. For all d, the sample path

is everywhere continuous but nowhere differentiable, in fact the Wiener process has no

points of increase. Local increments in time h are of order
√
h. In fact Lévy [3] had shown
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that there is an exact modulus of continuity

lim
h↓0

[

sup
0≤t≤1

|X(t+ h) −X(t)|
[2h log 1/h]1/2

]

= 1, with probability 1.(1)

This gives the maximum size of increments in small time; not much bigger than the

typical result given by the law of the iterated logarithm, for fixed t

lim sup
h↓0

|X(t+ h) −X(t)|
[2h log log 1/h]1/2

= 1, almost surely.(2)

By 1960, the Frostman theorems linking general potential theory with Hausdorff dimen-

sion had shown that, for d ≥ 2, the trajectory M(r) = {x ∈ R : x = X(t) some t ∈ [0, r]

has dimension 2 a.s., but the Frostman connections are not fine enough to establish the

exact Hausdorff measure of M(r). Recall the definition due to Hausdorff [4] (1919); given

an increasing function h : [0, 1] → R, with h(0+) = 0, and a subset E ⊂ R
d, define

h-m(E) = lim
δ↓0

inf
[

∞
∑

i=1

h(diamCi) : E ⊂
∞
⋃

i=1

Ci; diamCi < δ
]

(3)

Using (3) to prove that h-m(E) ≤ c, we need to show that, for all δ, ǫ > 0 we can

find a cover
⋃

Ci ⊃ E with diamCi < δ and
∑

h(diamCi) < c + ǫ; but to get the

opposite inequality using (3) requires us to consider all small covers. In Hausdorff’s paper

[4] he needs 10 pages of careful analysis to prove this for the classical Cantor set and

h(s) = sα, α = log 2/ log 3. Paul Lévy [5] (1953) became interested in finding the right

h-function to make h-m(M(r)) finite and positive; he used differential equation methods

to show that, for d ≥ 3,

h-m(M(1)) < c a.s. with h(s) = s2 log log(1/s).

Our paper [1] had the main objective of proving that Lévy had the right h-function so

that

h-m(M(1)) ≥ c > 0 a.s. with h(s) = s2 log log(1/s), provided d ≥ 3.

A simple argument will then show the existence of finite positive constants cd, d ≥ 3 for

which

h-m(M(r)) = cdr for all r ≥ 0 a.s.

3. Main idea. The key tool to use is a density theorem. Suppose E ⊂ R
d and there is

a Borel measure µ concentrated on E such that, if B(x, r) denotes a ball centred at x

with radius r,

lim sup
r↓0

µB(x, r)

h(2r)
≤ δ > 0 for all x in E, then h-m(E) ≥ 1

δ
µ(E).(4)

The idea behind (4) is that when we cover E by balls of radius ri small enough (note that

any cover can be replaced by balls with centre in E which are not much larger), then

∑

h(2ri) ≥
1

δ

∑

µB(xi, ri) ≥
1

δ
µ(E)
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The right choice for µ is a measure with closed support M(1), which is spread uniformly

in M(1). We use the occupation measure

µ(A) = |{0 < t < 1;X(t) ∈ A}|(5)

(where |E| denotes the Lebesgue measure of E). For x = X(t), we can run the Brownian

motion forwards and backwards from t so that µB(x, r) = T1(r) + T2(r), where

T1(r) = |{s ∈ [0, t] : X(s) ∈ B(x, r)}| and T2(r) = |{s ∈ [t, 1] : X(s) ∈ B(x, r)}|.
For d ≥ 3, X(t) is transient, so that for almost all t in [0, 1], T1, T2 are independent and

have a distribution asymptotic as r ↓ 0 to the total time spent in a ball of radius r which

we denote

Od(r) = |{t > 0 : |X(t)| < r}| D
= r2Od(1), by scaling.

To apply (4), we only need asymptotic estimates for the large tail P{Od(1) > x}. In fact

we can determine the exact distribution function for Od(r).

P{Od(r) > x} =
∞
∑

s=1

ψd,s exp
(

−pd,s
2r2

x
)

,(6)

where {pd,s} are the positive zeros of the Bessel function Jk(z) with order k = 1
2d − 2,

and {ψd,s} are known constants. Though the result is not needed for this paper, we also

calculated the distribution of the first passage time Pd(r) out of the ball of radius r. We

were astonished to find that, for d ≥ 3, the random variables Od(r) and Pd−2(r) have

identical distributions. Using a Borel-Cantelli argument, we now proved that, for fixed t,

restarting the motion at t,

lim sup
r↓0

µB(Xt, r)

h(2r)
≤ 2 lim sup

Od(r)

4r2 log log 1/r
=

2

p2
d,1

a.s.

and an application of Fubini with (4) now gives

h-mX[0, 1] ≥ cdp
2
d,1 > 0 a.s.(7)

4. Later developments. The techniques used in [1] have been modified and used many

times in different situations. I can only outline a few of these. First let me mention the

result for planar Brownian motion which required an additional idea due to Dan Ray [6]

(1963). Planar Brownian motion is neighbourhood recurrent, but occupation measure can

be defined as in (5). To get a handle on the distribution of µB(x, r), Ray divides the time

spent into excursions from |x−z| = 1
2r to |x−z| = r and back to |x−z| = 1

2r. The number

N(r) of these which happen before t = 1 is a geometric random variable; the excursions

are independent and during each excursion the time spent in B(x, r) is a random variable

whose expectation is of order r2. As r decreases to zero N(r) increases and satisfies a law

of the iterated logarithm. This allows Ray to prove that, for x = X(t), 0 < t < 1,

lim sup
r↓0

µB(x, r)

φ(r)
=

1

2
a.s.(8)

with φ(s) = s2 log(1/s) log log log(1/s). An application of (4) now yields φ-m(M(1)) ≥
c > 0, as before. The density argument (4) has a converse which can be applied to the

“good” points x in M(1) where (8) is true. But (8) is only true for µ-almost all x in
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M(1). So to get a good upper bound we need to construct a cover for the bad points

where (8) fails, and show that they do not contribute. This is accomplished in [7] (1964)

to complete the proof that there is a positive constant c such that φ-mM(r) = cr with

φ(s) as in (8).

Let us now look at the zero set Z(t) = {s ∈ [0, t] : X(s) = 0}, where X(t) is a

Weiner process or 1-dimensional Brownian motion. Lévy had shown that there is a “local

time” L(s), determined by X(t), which is non-decreasing, continuous and constant on

the intervals complementary to Z(t). Information obtained by Lévy implied that the

Hausdorff dimension of Z(t) is 1
2 but s1/2-m(Z(t)) = 0. Paul Lévy asked for the correct

measure function f(s) to give 0 < f -m(Z(t)) < ∞ a.s. This problem was solved in

a joint paper with Jim Wendel [8] (1966) by adapting the methods of [1] and using

the observation that the zero set is stochastically the same as the range of a stable

subordinator of index 1
2 ; the jumps in the subordinator correspond to the complementary

intervals of Z. It follows that there is a positive constant c such that f -m(Z(t)) = cL(t) for

all t > 0, where f(s) = s1/2(log log 1/s)1/2. Hawkes [9] (1973) returns to the arguments in

this paper to obtain accurate estimates for the constant cα such that gα-mY [0, s] = cαs,

where gα(u) = uα(log log 1/u)1−α, and Y (t) is a stable subordinator of index α, 0 < α < 1.

I will only mention two more examples out of the many cases where the methods

of [1] produce the exact Hausdorff measure of a random set. Super-Brownian motion

is a measure valued process which can be obtained as a limit of a critical branching

process. Edwin Perkins [10] (1989) obtained the right Hausdorff measure function for the

closed support S(Xt) at time t for d ≥ 3; Perkins & Le Gall [11] (1995) solved the same

problem for d = 2. The result is that, for d ≥ 3, h(s) = s2 log log 1/s; and if d = 2,

h(s) = s2 log 1/s log log log 1/s,

Xt(A) = cdh-m(A ∩ S(Xt)) for all Borel sets A and all t ≥ 0 a.s.

The other example concerns the multiple points on the Brownian path. For d = 3 the path

has double points but no points hit more often. Jean-François Le Gall [10] (1986) uses

“intersection local time” as a measure supported by the double points to show that the

double points in M(1) have finite positive Hausdorff measure for h(s) = s[log log(1/s)]2.

He also solves the same probelm for the set of k-multiple points on a planar Brownian

path.

5. Multifractal questions. Let me now try to answer the question: “Why is it possible

to get a non-random answer when you calculate the exact Hausdorff measure of a random

set such as the range M(t) of a Brownian path in R
d(d ≥ 2)?” Essentially it is because

only the points of typical behaviour contribute. Let me illustrate this by considering

Brownian path variation. For subdivisions (π) of [0, 1], 0 = t0 < t1 < · · · < tn = 1, we

define the mesh σ(π) by σ(π) = max(ti − ti−1). Then

V2(X,π) =

n
∑

i=1

[X(ti) −X(ti−1)]
2

is the square variation. If πk denotes the diadic points j2−k then a martingale argument

shows that the square variation V2(X,πk) converges almost surely to 1 as k → ∞. How-
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ever, Lévy showed that max[V2(X,π)] is unbounded as σ(π) → 0. If Q(δ) denotes the

set of partitions π with σ(π) < δ, and ψ(s) = s2/ log(1/s), the uniform modulus (1)

shows that Vψ(X,π) is bounded for all π. However ψ is not the largest function with this

property. I proved [12] (1973) that

lim
δ↓0

[ sup
π∈Q(δ)

Vφ(X,π)t] = 1, whenever φ(s) = s2/2 log log(1/s).

This φ is the asymptotic inverse for [2u log log(1/u)]1/2 as u ↓ 0. This means that even

though the law of the iterated logarithm (2) is not valid for all t, you can not do any

better when choosing a π with small mesh. This is the reason why the arguments using

upper asymptotic growth at a typical point yield the right answer in Hausdorff measure

arguments, even though there are “bad points” where the growth rate is bigger. To try

to quantify the bad points I collaborated with Steven Orey [13] (1974) to look at the set

where (2) fails. We considered the set

E(α) =

{

t ∈ [0, 1] : lim sup
h↓0

|X(t+ h) −X(t)|
[2h log 1/h]1/2

> α

}

, α > 0.

By (1), E(α) is empty for α > 1, but we prove it is non-empty for 0 ≤ α ≤ 1, and its

Hausdorff dimension dimE(α) = 1−α2. E(α) contains “fast points” for the path, but it

is not possible to choose π with fine mesh to utilize these in calculating the variation.

This result is a precursor to the theory of multifractals developed in the physics

literature in the 1980’s as a means of analyzing special points in the support of a measure

in R
d. Consider the occupation measure defined by (5). It is easy to show that the local

dimension

d(µ, x) = lim
log µB(x, r)

log r
= 2 for all x in M(1), the support of µ;

so the spectrum of local dimension is trivial. The situation for the local time measure of a

Wiener process is more interesting. We noted that L(t) can be obtained as the occupation

measure for a stable subordinator Y of index 1
2 . L(t) = µ[0, t] where

µ(A) = |{s ∈ [0, 1] : Y (s) ∈ A}|.
At a typical point x of Z, the zero set of Wiener process, we have

d(µ, x) = lim
log µ(x− r, x+ r)

log r
=

1

2
,

but this is not true for all x in Z. The spectrum is considered in joint work with Xiaoyu

Hu [15] (1995), where we prove that

d(µ, x) = lim inf
r↓0

log µ(x− r, x+ r)

log r
=

1

2

for all x in Z, but if

Aβ =

{

x ∈ Z : lim sup
r↓0

log µ(x− r, x+ r)

log r
= β

}

,

then Aβ is non-empty with dimAβ = 1
2β − 1

2 for 1
2 ≤ β ≤ 1. This should be interpreted as

meaning there are no dimension-thick points in Z, but there is a spectrum of dimension-

thin points. As in [14], we can obtain a spectrum of the thick points by introducing a
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logarithmic term. This is done in joint work with Narn-Reuih Shieh [16] (1998), where

we show that

dimQβ =
1

2
(1 − β2), where Qβ =

{

x ∈ Z : lim sup
r↓0

µ(x− r, x+ r)

[r log 1/r]1/2
= β

}

.

In a recent series of papers, Dembo, Peres, Rosen and Zeitouni [20] (2000–2002) the

authors obtain a spectrum for both thick points and thin points on a Brownian path by

introducing a logarithmic factor. For example, thick points on the path for d ≥ 3 are

given by

dim

{

x ∈ R
d : lim sup

µB(Xt, r)

r2 log 1/r
= a

}

= 2 − aq2d
2
,

where qd is the first positive zero of the Bessel function Jk(z), with k = 1
2d − 2; so the

set is empty is a > 4/q2d. (This uses the precise form of the tail of Od(r), found in [1].)

The situation for super-Brownian motion is also interesting; again there are no dimen-

sion-thick points in the spectrum, but there are dimension-thin points. In joint work with

Ed Perkins [17] (1998), we show that, a.s.,

lim inf
r↓0

logXtB(x, r)

log r
= 2

for all x in the support S(Xt), but

dim {x ∈ R
d : lim sup

r↓0

logXtB(x, r)

log r
= a} =

8

a
− 2, for 2 ≤ a ≤ 4.

We note that in both [15] and [18] the multifractal formalism used in the physics literature

for finding the dimension spectrum breaks down completely.

These kinds of investigations continue. J. Blath & Peter Morters [19] (2004) introduce

a logarithmic factor to investigate thick points for super-Brownian motion, and W. Konig

with Peter Morters [20] (2002) investigate thick points for Brownian intersection local

times using the structure considered by Le Gall in [10]. That is (more than) enough for

today. One wonders what further developments there may be in the next 40 years, but

most of us will not be alive to learn that.
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