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Abstrat. This paper is a survey of reent results on some problems of supervised learning inthe setting formulated by Cuker and Smale. Supervised learning, or learning-from-examples,refers to a proess that builds on the base of available data of inputs xi and outputs yi,
i = 1, . . . , m, a funtion that best represents the relation between the inputs x ∈ X and theorresponding outputs y ∈ Y . The goal is to �nd an estimator fz on the base of given data
z := ((x1, y1), . . . , (xm, ym)) that approximates well the regression funtion fρ of an unknownBorel probability measure ρ de�ned on Z = X × Y . We assume that (xi, yi), i = 1, . . . , m, areindepent and distributed aording to ρ. We disuss a problem of �nding optimal (in the senseof order) estimators for di�erent lasses Θ (we assume fρ ∈ Θ). It is known from the previousworks that the behavior of the entropy numbers ǫn(Θ, B) of Θ in a Banah spae B plays animportant role in the above problem. The standard way of measuring the error between a targetfuntion fρ and an estimator fz is to use the L2(ρX) norm (ρX is the marginal probabilitymeasure on X generated by ρ). The usual way in regression theory to evaluate the performaneof the estimator fz is by studying its onvergene in expetation, i.e. the rate of deay of thequantity E(‖fρ − fz‖

2
L2(ρX )) as the sample size m inreases. Here the expetation is taken withrespet to the produt measure ρm de�ned on Zm. A more aurate and more deliate way ofevaluating the performane of fz has been pushed forward in [CS℄. In [CS℄ the authors studythe probability distribution funtion

ρ
m{z : ‖fρ − fz‖L2(ρX ) ≥ η}instead of the expetation E(‖fρ−fz‖

2
L2(ρX )). In this survey we mainly disuss the optimizationproblem formulated in terms of the probability distribution funtion.

2000 Mathematis Subjet Classi�ation: 62G05, 62G08.This researh was supported by the National Siene Foundation Grant DMS 0200187.The paper is in �nal form and no version of it will be published elsewhere.
[341]



342 V. N. TEMLYAKOV1. Introdution. Notations. Settings. This paper is a survey of reent results onsupervised learning. Supervised learning, or learning-from-examples, refers to a proessthat builds on the base of available data of inputs xi and outputs yi, i = 1, . . . ,m, afuntion that best represents the relation between the inputs x ∈ X and the orrespondingoutputs y ∈ Y . This is a big area of researh both in nonparametri statistis and inlearning theory. In this paper we on�ne ourselves to reent results obtained in a diretionof further development of the settings and results from the fundamental paper of Cukerand Smale [CS℄. In this paper we illustrate how methods of approximation theory anbe used in learning theory. We begin our disussion with a very brief survey of di�erentsettings that are lose to the setting of our main interest.1. Approximation theory. Reovery of funtions. Deterministi model: given
z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi), i = 1, . . . ,m, f ∈ Θ.Reover f ∈ Θ (�nd an approximant of f). Error of approximation is measured in somenorm ‖ · ‖. Usually it is the Lp norm, 1 ≤ p ≤ ∞, with respet to the Lebesgue measureon a given domain X.2. Statistis. Regression theory.a) Fixed design model: given
z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi) + ǫi, x1, . . . , xm �xed,

ǫi independent identially distributed (i.i.d.), Eǫi = 0, f ∈ Θ.Find an approximant for f (estimator f̂). The unknown funtion f is alled theregression funtion. Error is measured by expetation E(‖f−f̂‖2) of some of the standardnorms.b) Random design model: given
z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi) + ǫi,

x1, . . . , xm random, i.i.d.; ǫi i.i.d. (independent of xi), Eǫi = 0, f ∈ Θ. Find an estimator
f̂ for f . Error is measured by expetation E(‖f − f̂‖2).) Distribution-free theory of regression.Let X ⊂ R

d, Y ⊂ R be Borel sets, ρ be a Borel probability measure on Z = X × Y .For f : X → Y de�ne the error
E(f) := Eρ(f) :=

∫

Z

(f(x) − y)2dρ.Consider ρ(y|x), the onditional (with respet to x) probability measure on Y , and ρX ,the marginal probability measure on X (for S ⊂ X, ρX(S) = ρ(S × Y )). De�ne
fρ(x) :=

∫

Y

ydρ(y|x).The funtion fρ minimizes the error E(f). It is known in statistis as the regressionfuntion of ρ. Given: (xi, yi), i = 1, . . . ,m, independent identially distributed aordingto ρ, |y| ≤M a.e. Find an estimator f̂ for fρ. Error: E(‖fρ − f̂‖2
L2(ρX)). Assume fρ ∈ Θ.



OPTIMAL ESTIMATORS IN LEARNING THEORY 343For a lass Θ onsider
E(Θ,m, f̂) := sup

fρ∈Θ
E(‖fρ − f̂‖2

L2(ρX)), E(Θ,m) := inf
f̂
E(Θ,m, f̂).3. Learning theory. This is a vast area of researh with a wide range of di�erentsettings. In this paper we only disuss a development of a setting from [CS℄. For resultsin other settings we reommend a fundamental book of V. Vapnik [V℄ and a nie surveyon the lassi�ation problem by G. Lugosi [L℄. Our setting is similar to the setting of thedistribution-free regression problem. The goal is to �nd an estimator fz, on the base ofgiven data z = ((x1, y1), . . . , (xm, ym)) that approximates fρ (or its projetion) well withhigh probability. We assume that (xi, yi), i = 1, . . . ,m are independent and distributedaording to ρ. Similarly to the distribution-free theory of regression we measure the errorin the L2(ρX) norm. This di�ers the distribution-free theory of regression and our settingof learning theory from lassial nonparametri statistis. One an �nd a disussion ofrelations between the �xed design model, the random design model, and the distribution-free theory of regression in the reent book [GKKW℄ (see also [VG℄, [BM1℄). Here weonly mention that the problem of learning theory that we disuss in this paper an berewritten in the form

yi = fρ(xi) + ǫi, ǫ := y − fρ(x),lose to the form of the random design model. However, in our setting we are not assumingthat ǫ and x are independent. While the theories of �xed and random design models do notdiretly apply to our setting, they utilize several of the same tehniques we shall enountersuh as the use of entropy and the onstrution of estimators through minimal risk.We note that a standard setting in the distribution-free theory of regression (see[GKKW℄) involves the expetation as a measure of quality of an estimator. An importantnew feature of the setting in learning theory formulated in [CS℄ is the following. Theypropose to study systematially the probability distribution funtion
ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}instead of the expetation. There are several important ingredients in mathematial for-mulation of the learning problem. In our formulation we follow the way that has beomestandard in approximation theory and based on the onept of optimal method.We begin with a lass M of admissible measures ρ. Usually, we impose restritions on

ρ in the form of restritions on the regression funtion fρ: fρ ∈ Θ. Then the �rst step is to�nd an optimal estimator for a given lass Θ of priors (we assume fρ ∈ Θ). In regressiontheory the usual way to evaluate the performane of the estimator fz is by studying itsonvergene in expetation, i.e. the rate of deay of the quantity E(‖fρ − fz‖
2
L2(ρX)) asthe sample size m inreases. Here the expetation is taken with respet to the produtmeasure ρm de�ned on Zm. We note that E(fz)−E(fρ) = ‖fz−fρ‖

2
L2(ρX). As we alreadymentioned above a more aurate and more deliate way of evaluating the performaneof fz has been pushed forward in [CS℄. In this paper we onentrate on a disussion ofresults on the probability distribution funtion.An important question in �nding an optimal fz is the following. How to desribe thelass Θ of priors? In other words, what harateristis of Θ govern, say, the optimal rate



344 V. N. TEMLYAKOVof deay of E(‖fρ − fz‖
2
L2(ρX)) for fρ ∈ Θ? Previous and reent works in statistis andlearning theory (see [B℄, [BM2℄, [BM3℄, [CS℄, [DKPT1℄, [DKPT2℄, [GKKW℄, [KT1℄, [KT2℄,[L℄, [V℄, [VG℄) indiate that the ompatness harateristis of Θ play a fundamental rolein the above problem. It is onvenient for us to express ompatness of Θ in terms ofthe entropy numbers. In this survey we disuss the lassial onept of entropy and theonept of tight entropy. We note that some other onepts of entropy, for instane,entropy with braketing, proved to be useful in the theory of empirial proesses andnonparametri statistis (see [VG℄, [BM2℄, [V℄). There is a onept of V C dimension thatplays a fundamental role in the problem of pattern reognition and lassi�ation [V℄. Thisonept is also useful in desribing ompatness harateristis of sets. We do not disussthis onept here beause we have no new results in this diretion.For a ompat subset Θ of a Banah spae B we de�ne the entropy numbers as follows

ǫn(Θ, B) := inf{ǫ : ∃f1, . . . , f2n ∈ Θ : Θ ⊂ ∪2n

j=1(fj + ǫU(B))}where U(B) is the unit ball of Banah spae B. We denoteN(Θ, ǫ, B) the overing numberthat is the minimal number of balls of radius ǫ needed for overing Θ. The orresponding
ǫ-net is denoted by Nǫ(Θ, B). In the papers [CS℄, [DKPT1℄, [DKPT2℄, [KT1℄ in the mostases the spae C := C(X) of ontinuous funtions on a ompat X ⊂ R

d has beentaken as a Banah spae B. This allowed us to formulate all results with assumptionson Θ independent of ρ. In [KT2℄ and [BCDDT℄ we obtain some results for B = L2(ρX).On the one hand we weaken assumptions on the lass Θ and on the other hand thisresults in the use of ρX in the onstrution of an estimator. Thus, we have a tradeo�between treating wider lasses and building estimators that are independent of ρX . Wenote that in pratie we often do not know the ρX . Thus, it is very desirable to buildestimators independent of ρX . In statistis this type of regression problem is referred toas distribution-free. A reent survey on distribution-free regression theory is provided inthe book [GKKW℄.In Setions 2 and 3 of this paper we always assume that the unknown measure ρsatis�es the ondition |y| ≤ M (or a little weaker |y| ≤ M a.e. with respet to ρX) withsome �xedM . Then it is lear that for fρ we have |fρ(x)| ≤M for all x (for almost all x).Therefore, it is natural to assume that a lass Θ of priors where fρ belongs is embeddedinto the C(X)-ball (L∞-ball) of radius M . We make this assumption in all theorems ofSetions 2 and 3 without formulating the assumption.In [DKPT1℄, [DKPT2℄, [KT1℄ the restritions on a lass Θ have been imposed in thefollowing forms:
(1.1) ǫn(Θ, C) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(C).or
(1.2) dn(Θ, C) ≤ Kn−r, n = 1, 2, . . . , Θ ⊂ KU(C).Here, dn(Θ, B) is the Kolmogorov width. Kolmogorov's n-width for the entrally sym-metri ompat set Θ in the Banah spae B is de�ned as follows

dn(Θ, B) := inf
L

sup
f∈Θ

inf
g∈L

‖f − g‖B



OPTIMAL ESTIMATORS IN LEARNING THEORY 345where infL is taken over all n-dimensional linear subspaes of B. In [KT2℄ we impose aweaker restrition
(1.3) ǫn(Θ, L2(ρX)) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(L2(ρX)).We have already mentioned above that the study of the probability distribution fun-tion ρm{z : ‖fρ − fz‖L2(ρX) ≥ η} is a more di�ult and deliate problem than thestudy of the expetation E(‖fρ − fz‖

2
L2(ρX)). We enounter this di�ulty even at thelevel of formulation of a problem. The reason for this is that the probability distri-bution funtion provides ontrol of two harateristis: η, the error of estimation, and

1 − ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}, the on�dene of the error η. Therefore, we need amathematial formulation of the above disussed problems of optimal estimators.We propose (see [DKPT2℄) to study the following funtion that we all the a-uray on�dene funtion. Let a set M of admissible measures ρ, and a sequene
E := {E(m)}∞m=1 of allowed lasses E(m) of estimators be given. For m ∈ N, η > 0we de�ne

ACm(M,E, η) := inf
Em∈E(m)

sup
ρ∈M

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}where Em is an estimator that maps z → fz. For example, E(m) ould be the lass of allestimators, the lass of linear estimators of the form
fz =

m
∑

i=1

wi(x1, . . . , xm, x)yi,or a spei� estimator. In the ase E(m) is the set of all estimators, m = 1, 2, . . . , wewrite ACm(M, η).In Setion 2 we disuss results on ACm(M,E, η) with M = M(Θ) := {ρ : fρ ∈ Θ}.In this ase we write ACm(M(Θ),E, η) =: ACm(Θ,E, η). Thus Setion 2 is devoted tothe study of priors on fρ in the form fρ ∈ Θ. Sometimes this setting is referred to asproper funtion learning problem.It is lear from the de�nition of E(Θ,m) and ACm(Θ, η) that
(1.4)

∫ ∞

0

ACm(Θ, η1/2)dη ≤ E(Θ,m),and for ρ, Θ satisfying |y| ≤M , Θ ⊂MU(C(X))

(1.5) E(Θ,m) ≤ min
η

(η2 + 4M2
ACm(Θ, η)).One of the important variants of the learning problem formulated in [CS℄ is thefollowing. We now do not impose any restritions on ρ, exept |y| ≤ M a.e. and insteadof estimating the regression funtion fρ we estimate a projetion (fρ)W of fρ onto aompat set W of our hoie. Sometimes this setting is referred to as improper funtionlearning problem. Similarly to the above ase (fρ ∈ Θ) we introdue the orrespondingauray on�dene funtion

AC
p
m(W,E, η) := inf

Em∈E(m)
sup

ρ
ρm{z : E(fz) − E((fρ)W ) ≥ η2}.



346 V. N. TEMLYAKOVIn the ase E(m), m = 1, 2, . . . , is a olletion of all estimators Em : z → fz ∈ W wedrop E from the notation. We note that in the ase of onvex W we have for any f ∈W

‖f − (fρ)W ‖2
L2(ρX) ≤ E(f) − E((fρ)W ).We disuss related results in Setion 3.In Setion 4 we disuss an important statistial problem of how well the empirialerror (risk) of f

Ez(f) :=
1

m

m
∑

i=1

(f(xi) − yi)
2

an approximate the atual error E(f). This problem is related to the onept of theGlivenko-Cantelli sample omplexity.Setion 5 ontains a probabilisti inequality that we use in the disussion in Setion2. This inequality might be of an independent interest.By C and c we denote absolute positive onstants and by C(·), c(·), and A0(·) wedenote onstants that are determined by their arguments. For two nonnegative sequenes
a = {an}

∞
n=1 and b = {bn}

∞
n=1 the relation (order inequality) an ≪ bn means that thereis a number C(a, b) suh that for all n we have an ≤ C(a, b) bn; and the relation an ≍ bnmeans that an ≪ bn and bn ≪ an.2. Prior on fρ in the form fρ ∈ Θ. We begin with the lower estimate of the aurayon�dene funtion from [DKPT2℄. We shall establish lower bounds in terms of a ertainvariant of the Kolmogorov entropy of Θ whih we shall all tight entropy. This type ofentropy has been used to prove lower bounds in approximation theory. Also, a similartype of entropy was used by Yang and Barron [YB℄ in statistial estimation. The entropymeasure that we shall use is in general di�erent from the Kolmogorov entropy, but, forlassial smoothness sets Θ, it is equivalent to the Kolmogorov entropy and therefore ourlower bounds will apply in these lassial settings.For a ompat Θ in a Banah spae B we de�ne the paking numbers as

(2.1) P (Θ, δ) := P (Θ, δ, B) := sup{N : ∃ f1, ..., fN ∈ Θ, δ ≤ ‖fi − fj‖B , ∀i 6= j}.It is well known [P℄ and easy to hek that N(Θ, δ, B) ≤ P (Θ, δ, B). The tight pakingnumbers are de�ned as follows. Let 1 ≤ c1 < ∞ be a �xed real number. We de�ne thetight paking numbers as
(2.2) P̄ (Θ, δ) := P̄ (Θ, δ, c1, B) := sup{N : ∃f1, . . . , fN ∈ Θ, δ ≤ ‖fi−fj‖B ≤ c1δ, ∀i 6= j}.It is lear that P̄ (Θ, δ, c1, B) ≤ P (Θ, δ, B).We let µ be any Borel measure de�ned on X and let M(Θ, µ) denote the set ofall ρ ∈ M(Θ) suh that ρX = µ, |y| ≤ 1. As above M(Θ) = {ρ : fρ ∈ Θ}. Wespeify B = L2(µ) and assume that Θ ⊂ L2(µ). We will use the abbreviated notation
P̄ (δ) := P̄ (Θ, δ, c1, L2(µ)).Let us �x any set Θ and any Borel measure µ de�ned on X. We set M := M(Θ, µ)as de�ned above. We also take 1 < c1 in an arbitrary way but then �x this onstant. Forany �xed δ > 0, we let {fi}

P̄
i=1, with P̄ := P̄ (δ), be a net of funtions satisfying (2.2). To



OPTIMAL ESTIMATORS IN LEARNING THEORY 347eah fi, we shall assoiate the measure
dρi(x, y) := (ai(x)dδ1(y) + bi(x)dδ−1(y))dµ(x),where ai(x) := (1 + fi(x))/2, bi(x) := (1− fi(x))/2 and dδξ denotes the Dira delta withunit mass at ξ. Notie that (ρi)X = µ and fρi

= fi and hene eah ρi is in M(Θ, µ).We have the following theorem.Theorem 2.1 ([DKPT2℄). Let 1 < c1 be a �xed onstant. Suppose that Θ is a subset of
L2(µ) with tight paking numbers P̄ := P̄ (δ). In addition suppose that for δ = 2η > 0,the net of funtions {fi}

P̄
i=0 in (2.2) satis�es ‖fi‖C(X) ≤ 1/4, i = 1, . . . , P̄ . Then for anyestimator fz we have for some i ∈ {1, . . . , P̄}

ρm
i {z : ‖fz − fi‖L2(µ) ≥ η} ≥ min(1/2, (P̄ (2η) − 1)1/2e−8c2

1mη2−3/e),

∀η > 0, m = 1, 2, . . . .The proof of Theorem 2.1 is given in [DKPT2℄. This proof uses the onept of theKullbak-Leibler information. Given two probability measures dP and dQ de�ned onthe same spae and suh that dP is absolutely ontinuous with respet to dQ, we write
dP = gdQ and de�ne

K(P,Q) :=

∫

ln gdP =

∫

g ln gdQ.If dP is not absolutely ontinuous with respet to dQ then K(P,Q) := ∞.It is obvious that
K(Pm, Qm) = mK(P,Q).The use of Kullbak-Leibler information is well known in statistis and goes bak toKullbak, Leibler [KL℄ and Ibragimov, Hasminskii [IH℄.As we already mentioned Theorem 2.1 provides lower estimates for lasses Θ withknown lower estimates for the tight paking numbers P̄ (Θ, δ). We now show how thistheorem an be used in a situation when we know the behavior of paking numbers

P (Θ, δ).Lemma 2.1. Let Θ be a ompat subset of B. Assume that
C1ϕ(δ) ≤ lnP (Θ, δ) ≤ C2ϕ(δ), δ ∈ (0, δ1],with a funtion ϕ(δ) satisfying the following ondition. For any γ > 0 there is Aγ suhthat for any δ > 0

(2.3) ϕ(Aγδ) ≤ γϕ(δ).Then there exists c1 ≥ 1 and δ2 > 0 suh that
ln P̄ (Θ, δ, c1, B) ≥ C3 lnP (Θ, δ), δ ∈ (0, δ2].Proof. For δ > 0 we take the set F := {fi}

P (Θ,δ)
i=1 ⊂ Θ satisfying (2.1). Considering a

lδ-net with l ≥ 1 for overing Θ we obtain that one of the balls of radius lδ ontains atleast P (Θ, δ)/P (Θ, lδ) points of the set F . Denote this set of points by Fl = {fi}i∈Λ(l).Then, obviously, for any i 6= j ∈ Λ(l) we have
δ ≤ ‖fi − fj‖ ≤ 2lδ.



348 V. N. TEMLYAKOVTherefore
ln P̄ (Θ, δ, 2l, B) ≥ lnP (Θ, δ) − lnP (Θ, lδ) ≥ C1ϕ(δ) − C2ϕ(lδ).Speifying γ = C1/(2C2), l = Aγ , and δ2 := δ1/l we ontinue

≥ C1ϕ(δ)/2 ≥
C1

2C2
lnP (Θ, δ), δ ∈ (0, δ2].As a orollary of Theorem 2.1 and Lemma 2.1 we obtain the following theorem.Theorem 2.2. Assume Θ is a ompat subset of L2(µ) suh that Θ ⊂ 1

4U(C(X)) and
(2.4) ǫn(Θ, L2(µ)) ≍ n−r.Then there exist δ0 > 0 and ηm := ηm(r) ≍ m− r

1+2r suh that
(2.5) ACm(M(Θ, µ), η) ≥ δ0 for η ≤ ηmand
(2.6) ACm(M(Θ, µ), η) ≥ Ce−c(r)mη2 for η ≥ ηm.Proof. Condition (2.4) implies

C1(r)δ
−1/r ≤ lnP (Θ, δ) ≤ C2(r)δ

−1/r, δ ∈ (0, δ1].Clearly, the funtion ϕ(δ) = δ−1/r satis�es the ondition (2.3) from Lemma 2.1. Thereforeby Lemma 2.1 we obtain
ln P̄ (Θ, η, c1(r), L2(µ)) ≥ C3(r)η

−1/r, η ∈ (0, δ2(r)],with some c1(r) ≥ 1. It remains to use Theorem 2.1 with ηm a solution of the equation
C3(r)

2
(2η)−1/r − 8c1(r)

2mη2 = 0.It is lear that
ηm ≍ m− r

1+2r .Remark 2.1. Theorem 2.2 holds in the ase Θ ⊂ (M/4)U(C(X)), |y| ≤ M , with on-stants allowed to depend on M .We note that we do not impose diret restritions on the measure µ in Theorem 2.2.However, the assumption (2.4) imposes an indiret restrition. For instane, if µ is aDira measure then we always have ǫn(Θ, L2(µ)) ≪ 2−n. Therefore, Theorem 2.2 doesnot apply in this ase.Let us make some omments on Theorem 2.2. It is lear that the parameter r ontrolsthe size of the ompat Θ. The bigger the r the smaller the ompat Θ. In the statementof Theorem 2.2 the parameter r a�ets the rate of deay of ηm. The quantity ηm is animportant harateristi of the estimation proess. The inequality (2.5) says that thereis no way to estimate fρ from Θ with auray ≤ ηm with high on�dene (> 1 − δ0). Itseems natural that this ritial auray ηm depends on the size of Θ (on parameter r).The inequalities (2.5) and (2.6) give
(2.7) ACm(M(Θ, µ), η) ≥ δ0Ce

−c(r)mη2for all η. The exponent mη2 in this inequality does not depend on the size of Θ. This mayindiate that the form of this exponent is related not to the size of Θ but rather to the



OPTIMAL ESTIMATORS IN LEARNING THEORY 349stohasti nature of the problem. Other argument in support of the above observationis provided by an inequality from Setion 5. We will use that inequality to show that inthe ase of a ompat Θ onsisting of only one funtion we have an analogue of (2.7) inthe ase of linear estimators. Let Θ = {1/2}. Suppose that we are looking for a linearestimator
(2.8) fz =

m
∑

i=1

wi(x1, . . . , xm, x)yiof the regression funtion fρ. Consider the following speial ase of the measure ρ. Let
ρX = µ be any probabilisti measure on X. We de�ne ρ(y|x) as the Bernoulli measure:

ρ(1|x) = ρ(0|x) = 1/2, x ∈ X.Then for the above measure ρ we have fρ(x) ≡ 1/2 ∈ Θ. Then
‖fz − fρ‖L2(µ) ≥

∫

X

|fz − fρ|dµ ≥
∣

∣

∣

∫

X

(fz − fρ)dµ
∣

∣

∣
=

∣

∣

∣

m
∑

i=1

wi(x1, . . . , xm)yi − 1/2
∣

∣

∣
,where

wi(x1, . . . , xm) :=

∫

X

wi(x1, . . . , xm, x)dµ.Using Theorem 5.1 we get
ρm{z : ‖fz − fρ‖L2(µ) ≥ η} ≥ Probz∈Zm

{∣

∣

∣

m
∑

i=1

wi(x1, . . . , xm)yi − 1/2
∣

∣

∣
≥ η

}

≥ exp(−25mη2 − 6.25

m−1
∑

k=1

1/k) ≥ m−6.25 exp(−25mη2 − 1).Therefore, in the ase E(m) is the set of estimators of the form (2.8) we have for Mµ :=

{ρ : fρ = 1/2, ρX = µ}

ACm(Mµ,E, η) ≥ m−6.25 exp(−25mη2 − 1).We now proeed to upper estimates. In order to prove upper estimates we need todeide what should be the form of an estimator fz. In other words we need to speify thehypothesis spae H (see [CS℄, [PS℄) where an estimator fz omes from.The next question is how to build fz ∈ H. In this paper we disuss a standard instatistis method of empirial risk minimization that takes
fz,H = arg min

f∈H
Ez(f),where

Ez(f) :=
1

m

m
∑

i=1

(f(xi) − yi)
2is the empirial error (risk) of f . This fz,H is alled the empirial optimum. We beginwith the following estimate.Theorem 2.3 ([CS℄, [DKPT1,2℄). Assume that Θ satis�es (1.1). Suppose that fρ ∈ Θ.Then for η ≥ A0(M,D, r)m− r

2(1+r)

(2.9) ρm{z : ‖fz,Θ − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).



350 V. N. TEMLYAKOVLet us ompare this theorem with Theorem 2.2. First of all we note that the estimator
Ez : z → fz,Θ does not depend on η. Seondly, this estimator provides an optimalestimate for the probability distribution funtion with the exponentmη2 that mathes theexponent in the lower bound (2.6). However, (2.9) holds for η ≫ m− r

2(1+r) and (2.6) holdsfor η ≫ m− r
1+2r . Thus Theorem 2.3 does not over the range ofm− r

1+2r ≪ η ≪ m− r
2(1+r) .Also, we should point out that Θ satis�es (1.1), whih is stronger than the orrespondingondition (1.3).The key ingredient of the proof of Theorem 2.3 is the following theorem from [CS℄.For a ompat H denote

fH := arg min
f∈H

E(f).Theorem 2.4 ([CS℄). Suppose that H is a ompat subset of C(X) whih is either onvexor fρ ∈ H. Assume that for all f ∈ H, f : X → Y is suh that |f(x)− y| ≤M a.e. Then,for all ǫ > 0

ρm{z : E(fz,H) − E(fH) ≥ ǫ} ≤ N(H, ǫ/(24M), C(X))2 exp

(

−
mǫ

288M2

)

.Theorem 2.5 ([DKPT1,2℄). Let Θ satisfy (1.2). Suppose that fρ ∈ Θ. Then there existsan estimator fz suh that for η ≥ A0(M,K, r)(lnm/m)
r

1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).Theorem 2.5 allows us to build estimators with better auray than in Theorem 2.3:with error ≍ (lnm/m)
r

1+2r instead of error ≍ m− r
2(1+r) . This is done under assumption(1.2) instead of (1.1). We note that ondition (1.2) is stronger than (1.1). By Carl'sinequality [C℄ (1.2) implies (1.1). We now desribe the onstrution of the estimator fzfrom Theorem 2.5. Let {Ln} be a sequene of optimal (near optimal) subspaes for Θ,

dimLn = n. Then for any f ∈ Θ there is a ϕn ∈ Ln suh that ‖f −ϕn‖C(X) ≤ 2Dn−r. Itis lear that ‖ϕn‖C(X) ≤ 3D. We now onsider the set Vn := 3DU(C(X)) ∩ Ln. In otherwords we take as a hypothesis spae the set Vn. We onstrut an estimator for fρ ∈ Θ by
fz := fz,Vn

= arg min
f∈Vn

Ez(f)with n := [( m
ln m )

1
1+2r ]. This onstrution has an advantage over the hoie fz = fz,Θin Theorem 2.3. Building fz,Vn

we optimize over a ball in a �nite dimensional spae Lninstead of optimizing over Θ. We note that the set H, smaller than Θ, that is used as ahypothesis spae is known in statistis under the name sieve [G℄, [BM2℄. In the proof ofTheorem 2.5 we also use Theorem 2.4.Theorem 2.6 ([KT1℄). Let Θ satisfy (1.1). Suppose that fρ ∈ Θ. Then there exists anestimator fz suh that for η ≥ A0(M,D, r)m− r
1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).Comparing this theorem with Theorem 2.2 we see that Theorem 2.6 provides boththe optimal rate of auray ≍ m− r
1+2r and the best estimate of probability distributionfuntion with the exponent mη2. The only thing in Theorem 2.6 that does not math theassumptions of Theorem 2.2 is the following. In Theorem 2.6 we assume that Θ satis�es(1.1) that means we impose restritions in the uniform norm but not in the L2(ρX) norm



OPTIMAL ESTIMATORS IN LEARNING THEORY 351as in Theorem 2.2. Thus, Theorem 2.6 provides an optimal result in the ase of Θ suhthat
ǫn(Θ, C(X)) ≍ ǫn(Θ, L2(µ)) ≍ n−rfor some measure µ.The onstrution of fz in Theorem 2.6 uses ǫ-nets of Θ in the uniform norm. Wehoose ǫ = A

1/2
0 m− r

1+2r and de�ne Vǫ to be a ǫ-net of Θ in the C(X) norm. We onstrutan estimator for fρ ∈ Θ by
fz := fz,Vǫ

= arg min
f∈Vǫ

Ez(f).The set Vǫ is not onvex and we annot laim that fρ ∈ Vǫ. Therefore Theorem 2.4 doesnot apply for this set. In [KT1℄ we used the following theorem in the proof of Theorem 2.6.Theorem 2.7 ([DKPT1,2℄). Let H be a ompat subset of C(X). Assume that for all
f ∈ H, f : X → Y is suh that |f(x) − y| ≤M a.e. Then, for all ǫ > 0

ρm{z : E(fz,H) − E(fH) ≥ ǫ} ≤ N(H, ǫ/(24M), C(X))2 exp

(

−
mǫ

C(M,R)

)

under assumption E(fH) − E(fρ) ≤ Rǫ.Theorem 2.8 ([KT2℄). Assume that Θ satis�es (1.3) with r > 1/2. Suppose also fρ ∈ Θ.Let mη4 ≥ 1. Then there exists an estimator fz suh that
ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ C(M, r) exp(−c(M)mη4).Theorem 2.9 ([KT2℄). Let Θ satisfy (1.3). Suppose that fρ ∈ Θ. Assume that r ∈

(0, 1/2) and mη2+1/r ≥ C1(M,D, r). Then there exists an estimator fz suh that
ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2+1/r).Assume that r = 1/2 and mη4/(1 + (log(M/η))2) ≥ C1(M,D). Then there exists anestimator fz suh that

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ C(M,D) exp(−c(M,D)mη4/(1 + (log(M/η))2)).Theorems 2.8 and 2.9 are lose to Theorem 2.2 in formulation of assumptions. In bothases we impose restritions in the L2(ρX) norm. Combination of Theorems 2.2 and 2.9gives the optimal rate of auray ≍ m− r
1+2r for lasses M(Θ, µ) with

(2.10) ǫn(Θ, L2(µ)) ≍ n−r, r ∈ (0, 1/2).In the ase r > 1/2 Theorems 2.2 and 2.8 do not math. It is an interesting open problem:�nd optimal rate of auray for lasses M(Θ, µ) suh that ǫn(Θ, L2(µ)) ≍ n−r in thease r > 1/2.The above disussed fat that in the ase r ∈ (0, 1/2) for any measure µ the behavior(2.10) of the entropy numbers determines the optimal rate of auray ≍ m− r
1+2r in theestimation problem indiates that it is natural to lassify lasses of priors by the behaviorof their entropy numbers.We now desribe the onstrution of the estimator from Theorem 2.9. Contrary tothe estimators from Theorems 2.3, 2.5, and 2.6 the estimator in Theorem 2.9 dependson η. Here we take fz = f

z,Nη(Θ) with Nη(Θ) := Nη(Θ, L2(ρX)). Proofs of Theorems 2.8and 2.9 are somewhat more diret than the proofs of Theorems 2.3, 2.5, and 2.6. In the



352 V. N. TEMLYAKOVproofs of Theorems 2.8 and 2.9 we use the Bernstein onentration measure inequalityand apply the haining tehnique (boot strapping tehnique, peeling devie). We nowformulate the Bernstein inequality. If ξ is a random variable (a real valued funtion on aprobability spae Z) then denote
E(ξ) :=

∫

Z

ξdρ; σ2(ξ) :=

∫

Z

(ξ − E(ξ))2dρ.The Bernstein inequality says: if |ξ(z) − E(ξ)| ≤M a.e. then for any ǫ > 0

(2.11) Probz∈Zm

{∣

∣

∣

∣

1

m

m
∑

i=1

ξ(zi) − E(ξ)

∣

∣

∣

∣

≥ ǫ

}

≤ 2 exp

(

−
mǫ2

2(σ2(ξ) +Mǫ/3)

)

.We omplete the disussion of Theorem 2.9 by a theorem that is a orollary of Theo-rem 2.2, Remark 2.1, and Theorem 2.9.Theorem 2.10. Let µ be a Borel measure on X. Assume r ∈ (0, 1/2) and Θ is a ompatsubset of L2(µ) suh that
ǫn(Θ, L2(µ)) ≍ n−r, Θ ⊂ (M/4)U(C(X)).Then there exist δ0 > 0 and η−m ≤ η+

m, η−m ≍ η+
m ≍ m− r

1+2r suh that
ACm(M(Θ, µ), η) ≥ δ0 for η ≤ η−mand

C1(Θ,M)e−c1(Θ,M)mη2

≤ ACm(M(Θ, µ), η) ≤ C2(Θ,M)e−c2(Θ,M)mη2+1/rfor η ≥ η+
m.The above theorems give the upper estimates in the following style. For a given lass

M there exist η+
m(M) and positive onstants C, c, a suh that for η ≥ η+

m(M)

ACm(M, η) ≤ Ce−cmηa

.Theorem 2.1 and 2.2 give the lower estimates of the following type. For a given M thereexist δ0(M) > 0 and η−m(M) > 0 suh that for η ≤ η−m(M) one has
ACm(M, η) ≥ δ0(M).These inequalities indiate that the behavior of the auray on�dene funtion hangesdramatially within the ritial interval [η−m(M), η+

m(M)]. It drops from a onstant δ0(M)to an exponentially small quantity C exp(−cmη+
m(M)a). One may also all the interval

[η−m(M), η+
m(M)] the interval of phase transition. Clearly, good estimates for η−m(M) and

η+
m(M) are of great importane. We introdue more terminology in this regard. Supposefor a given lass M there exist a funtion ϕ(M,m) and two onstants C1(M), C2(M)suh that

C1(M)ϕ(M,m) ≤ η−m(M) ≤ η+
m(M) ≤ C2(M)ϕ(M,m).Then we all the funtion ϕ(M,m) the ritial rate of auray. The following theoremis a orollary of Theorem 2.10.Theorem 2.11. Let r ∈ (0, 1/2). Assume Θ is a ompat subset of L2(µ) suh that

ǫn(Θ, L2(µ)) ≍ n−r, Θ ⊂ (M/4)U(C(X)).



OPTIMAL ESTIMATORS IN LEARNING THEORY 353Let M(Θ, µ) := {ρ : fρ ∈ Θ, ρX = µ, |y| ≤ M}. Then the ritial rate of auray existsfor M(Θ, µ) and has the order
ϕ(M(Θ, µ),m) ≍ m− r

1+2r .Results of this setion show that from a theoretial point of view the entropy numbers
ǫn(Θ, L2(ρX)) are the right harateristi of a lass Θ in the problem of estimating theregression funtion fρ. However, the above disussion indiates ertain di�ulties withthe use of the entropy numbers ǫn(Θ, L2(ρX)). As we have mentioned the estimator fzfrom Theorem 2.9 has been built using the η-net of Θ in the L2(ρX) norm. In manyases the measure ρX is unknown. Therefore, we would like to onstrut an estimatorthat does not depend on ρX and provides good estimation for all ρX . This is the maingoal of distribution-free theory of regression. One of the ways out of the above problemwith the use of the harateristi ǫn(Θ, L2(ρX)) is to go through the uniform norm, i.e.to use the harateristi ǫn(Θ, C(X)). Clearly, this narrows the set of lasses of priors
Θ we an work with. Theorem 2.6 shows that we an onstrut an estimator fz thatdoes not depend on ρX and does an optimal (in the sense of order) job for lasses sat-isfying (1.1). From a theoretial point of veiw this estimator is very good. However, itis lear that we have a problem with diret pratial implementation of this estima-tor beause it is built on the base of an ǫ-net of Θ. The estimator from Theorem 2.5is better in the sense of implementation. It is onstruted by least squares method inthe �nite dimensional subspae Ln. Thus in addition to theoretial problem of �ndingoptimal rates of estimation we have a pratial problem of implementation of optimal(near optimal) estimators. We want to understand what harateristis of prior lasses
Θ are suitable for the task of onvenient pratial implementation. It is somewhat learthat the desription of Θ in terms of the entropy numbers does not �t this goal. Indeed,at this point it looks unfeasible to implement algorithms based on ǫ-nets of funtionlasses.Interesting results in this diretion on building estimation shemes with nie imple-mentation properties have been obtained in the reent paper [BCDDT℄. The most impor-tant property of those estimation shemes is universality. It is a very important propertyof an estimation algorithm. We do not disuss the universality property in this paper andrefer the reader to the papers [DKPT1℄, [DKPT2℄, [BCDDT℄, [KT2℄ where this propertyhas been disussed in detail.We present here a result from [KT2℄ in a style of Theorem 2.5 with a desription of
Θ in the L2(ρX) norm instead of the C(X) norm. Let B(X) be a Banah spae withthe norm ‖f‖B(X) := supx∈X |f(x)|. Let {Ln}

∞
n=1 be a given sequene of n-dimensionallinear subspaes of B(X) suh that Ln is also a subspae of eah L∞(µ), where µ is aprobability measure on X, n = 1, 2, . . . . Assume that n-dimensional linear subspaes Lnhave the following property: for any probability measure µ on X one has

(2.12) ‖Pµ
Ln

‖B(X)→B(X) ≤ K, n = 1, 2, . . .where Pµ
L is the operator of L2(µ) projetion onto L. For a �nite dimensional linearsubspae L ⊂ L2(ρX) and f ∈ L2(ρX) we denote by d(f, L)L2(ρX) the L2(ρX) distanebetween f and L.



354 V. N. TEMLYAKOVTheorem 2.12 ([KT2℄). Assume that a sequene {Ln}
∞
n=1 satis�es (2.12). For given m,

r > 0 there exists an estimator fz suh that for any ρ satisfying
d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,we get for η ≥ A0(M,K, r)(lnm/m)

r
1+2r

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).The above theorem an be used, in partiular, in the following situation. Let X bea ompat subset of R
d. Let Pn denote the set of all partitions of X into n disjointBorel subsets. Let pn ∈ Pn, n = 1, . . . . De�ne Ln as a subspae of all funtions that arepieewise onstant on the partition pn. The subspaes Ln satisfy (2.12) with K = 1.Thus we an obtain simpler estimators when we replae assumptions on Θ in termsof entropy numbers (a harateristi of nonlinear approximation) by assumptions on Θin terms of approximation by linear subspaes (a harateristi of linear approximation).It is known from works in approximation theory (see surveys [D℄, [T℄) and statistis([DJ℄, [KP℄) that nonlinear approximation is more �exible than linear approximationand provides optimal means of approximation and estimation. The most important inthis regard form of nonlinear approximation is the n-term approximation with regardto a given basis or more generally with regard to a ditionary. We present one result inthis diretion from [DKPT1℄. We will onsider n-term approximations with regard to agiven system Ψ. Assume that the system Ψ = {ψj}

∞
j=1 is a (VP)-system, i.e. satis�es theondition:(VP) There exist three positive onstants Ai, i = 1, 2, 3, and a sequene {nk}

∞
k=1,

nk+1 ≤ A1nk, k = 1, 2, . . . suh that there is a sequene of de la Vallée-Poussin typeoperators Pk with the properties
Pk(ψj) = λk,jψj ,

λk,j = 1 for j = 1, . . . , nk; λk,j = 0 for j > A2nk,

‖Pk‖C(X)→C(X) ≤ A3, k = 1, 2, . . . .Denote
σn(f,Ψ) := inf

k1,...,kn;c1,...,cn

∥

∥

∥
f −

n
∑

j=1

cjψkj

∥

∥

∥

C(X)
,and

σn(Θ,Ψ) := sup
f∈Θ

σn(f,Ψ).Theorem 2.13. Let fρ ∈ Θ and let Θ satisfy the following two onditions.
σn(Θ,Ψ) ≤ C1n

−r, Θ ⊂ C1U(C(X)),

En(Θ,Ψ) := sup
f∈Θ

inf
c1,...,cn

‖f −
n

∑

j=1

cjψj‖C(X) ≤ C2n
−b,where Ψ is the (VP)-system. Then there exists an estimator fz suh that for η ≥

A0(M, r, b)(lnm/m)
r

1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−C(M, r)mη2).



OPTIMAL ESTIMATORS IN LEARNING THEORY 355We note that the trigonometri system and wavelets are (VP)-systems.We now give a onrete example of a lass of priors Θ to demonstrate how the generaltheory developed in this setion works. Let X = [0, 1]d and W s
p , s ∈ N, 1 ≤ p ≤ ∞, bethe Sobolev lass (the unit ball of the Sobolev spae): the set of all funtions g ∈ Lp(X)whose distributional derivatives Dνg, ‖ν‖ℓ1 ≤ s, are also in Lp(X) and

∑

‖ν‖ℓ1
≤s

‖Dνg‖Lp(X) ≤ 1.

Then it is known [BS℄ that for s > d/p one has
ǫn(W s

p , C) ≍ n−r, r := s/d,and
ǫn(W s

p , L2) ≍ n−r.Then by Theorem 2.6
ACm(W s

p , η) ≤ e−c1(M)mη2

, η ≥ η+
m ≍ m− r

1+2r .By Theorem 2.2 and Remark 2.1 with µ - Lebesgue measure we get
ACm(W s

p , η) ≥ δ0, η ≤ η−m ≍ m− r
1+2r ,

ACm(W s
p , η) ≥ Ce−c2(M)mη2

, η ≥ η−m.These results give a very aurate desription of the auray on�dene funtion
ACm(W s

p , η).We omplete this setion by a remark onerning the quantities E(Θ,m) that givethe rate of auray of optimal estimation in the sense of expetation. We have alreadymentioned in the Introdution (see (1.4), (1.5)) how the auray on�dene funtion
ACm(Θ, η) an be used for estimating E(Θ,m) from below and from above. We nowdevelop the ideas of (1.4) and (1.5) to obtain the right order of

E(Θ,m)q := inf
f̂

sup
fρ∈Θ

Eρm(‖fρ − f̂‖q
L2(ρX)), 0 < q <∞.Suppose that a lass Θ is suh that there exists a ritial rate ϕ(Θ,m) := ϕ(M(Θ),m) ofauray for this lass and for any q ∈ (0,∞) we have ACm(Θ, η+

m) ≪ ϕ(Θ,m)q. Thenon one hand for any fz
Eρm(‖fρ − fz‖

q
L2(ρX)) ≥

∫ ∞

0

ACm(Θ, η1/q)dη ≥ δ0(η
−
m)q ≫ ϕ(Θ,m)q.On the other hand for η = η+

m there exists fz suh that
Eρm(‖fρ − fz‖

q
L2(ρX)) ≤ (η+

m)q + (2M)q
ACm(Θ, η+

m) ≪ ϕ(Θ,m)q.In partiular, this implies that for any 0 < q <∞ we have for 1 ≤ p ≤ ∞, s > d/p

(2.13) E(W s
p ,m)q ≍ m− qr

1+2r , r := s/d.In the ase q = 2 the lower estimate in (2.13) has been obtained by Stone [S℄ in 1982.The orresponding upper estimate and a disussion an be found in [GKKW℄.



356 V. N. TEMLYAKOV3. No prior on fρ. In this setion we brie�y disuss the following setting. We now donot impose any restrition on the unknown measure ρ, exept our standard assumption
|y| ≤ M . In suh a situation we, learly, annot estimate fρ with a nontrivial errorestimate. Instead of estimating fρ we now estimate the L2(ρX) projetion of fρ onto aompatW that we may hoose. This setting is a more general setting than the one fromSetion 2. Indeed, if we know that fρ ∈ Θ then fΘ = (fρ)Θ = fρ. Therefore, the resultsof this setion apply with W = Θ. This remark motivates us to impose restritions on
W in the same style as we did in Setion 2. We begin with the upper estimates. For aompat in L2(ρX) set W denote by fW := (fρ)W the L2(ρX)-projetion of fρ onto W .In other words

fW := arg min
f∈W

E(f).Let us denote
Sr := Sr(X) := {W : ǫn(W, C(X)) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(C(X)}.Theorem 3.1 ([CS℄, [DKPT1℄). Assume thatW∈Sr. Then for η≥A0(M,D, r)m− r

2(1+2r)

ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ exp(−c(M)mη4).Theorem 3.2 ([KT1℄). Assume that W satis�es (1.1). Then we have the following esti-mates
ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C(M,D, r) exp(−c(M)mη4),provided r > 1/2, mη4 ≥ 1;

ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C1(M,D) exp(−c(M,D)mη4/(1 + (log(M/η))2)),provided r = 1/2, mη4/(1 + (log(M/η))2) ≥ C2(M,D);
ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C1(M,D, r) exp(−c(M,D, r)mη2/r),provided r ∈ (0, 1/2), mη2/r ≥ C2(M,D, r).In Theorems 3.1 and 3.2 we hoose the fz,W as the estimator. Theorem 3.2 gives thefollowing upper estimate for the auray on�dene funtion. For W ∈ Sr, r > 1/2 wehave

(3.1) AC
p
m(W,η) ≤ C(M,D, r) exp(−c(M)mη4) for η ≥ m−1/4.Let us ompare this estimate with the orresponding estimate for ACm(Θ, η). Theorem2.6 gives for Θ ∈ Sr

(3.2) ACm(Θ, η) ≤ exp(−c(M)mη2) for η ≫ m− r
1+2r .The estimates (3.1) and (3.2) di�er in two ways. First, the auray ≍ m− r

1+2r in (3.2)depends on r and better for r > 1/2 than the auray ≍ m−1/4 in (3.1) that doesnot depend on r. Seond, the exponent mη2 from (3.2) in the bound for the probabilitydistribution funtion is better than the orresponding exponent mη4 from (3.1). Thefollowing proposition shows that we annot improve (3.1).Proposition 3.1. There exist two positive onstants c1, c2 and a lass W onsisting oftwo funtions 1 and −1 suh that for every m = 2, 3, . . . and m−1/4 ≤ η ≤ 1/2 there are



OPTIMAL ESTIMATORS IN LEARNING THEORY 357two measures ρ0 and ρ1 suh that for any estimator fz ∈W for one of ρ = ρ0 or ρ = ρ1we have
ρm{z : E(fz) − E(fW ) ≥ η2} ≥ c1 exp(−c2mη

4).In the ase η = m−1/4 this proposition has been proved in [KT1℄. The proof inthe general ase m−1/4 ≤ η ≤ 1/2 is similar. Proposition 3.1 indiates that there is aphenomenon of saturation for olletions Sr for r > 1/2.In the ase r ∈ (0, 1/2) Theorem 3.2 gives the estimate
(3.3) AC

p
m(W,η) ≪ exp(−c(M,D, r)mη2/r) for η ≫ m−r/2.Similarly to the above omparison of (3.1) and (3.2) we see that (3.3) is weaker than (3.2).The following proposition from [KT1℄ shows that the auray bound in (3.3) annot beimproved on the whole olletion Sr.Proposition 3.2 ([KT1℄). For any r ∈ [0, 1/2] and for every m ∈ N there is W ⊂

U(L∞([0, 1]) satisfying ǫn(W,L∞) ≤ n−r for n ∈ N suh that for every estimator fz ∈Wthere is a ρ suh that
ρm{z : E(fz) − E((fρ)W ) ≥ m−r/4} ≥ 1/7.We now present two results in the ase ofW satisfying a weaker ondition (1.3) insteadof (1.1).Theorem 3.3 ([KT2℄). Assume thatW satis�es (1.3) with r>1/2. Let mη2(1+max(1/r,1))

≥ A0(M,D, r) ≥ 1. Then there exists an estimator fz ∈W suh that
ρm{z : E(fz) − E(fW ) ≥ η2} ≤ C1(M,D, r) exp(−c1(M)mη4).Theorem 3.4 ([KT2℄). Assume that W satis�es (1.3) with r ∈ (0, 1/2). Let mη2(1+1/r)

≥ A0(M,D, r) ≥ 1. Then there exists an estimator fz ∈W suh that
ρm{z : E(fz) − E(fW ) ≥ η2} ≤ C(M,D, r) exp(−c(M,D, r)mη2+1/r).We now give an idea of proofs of the upper estimates of this setion. This idea providesa motivation for our interest in the problem disussed in the next setion. Let W be ahypothesis spae. Then we have

E(fz,W ) − E(fW ) = E(fz,W ) − Ez(fz,W ) + Ez(fz,W ) − Ez(fW ) + Ez(fW ) − E(fW )

≤ E(fz,W ) − Ez(fz,W ) + Ez(fW ) − E(fW ).Thus we want to estimate
sup
f∈W

|E(f) − Ez(f)|.

4. Estimates for Lz(f). One of important questions disussed in [CS℄, [DKPT1℄,[DKPT2℄, [KT1℄, [KT2℄ is to estimate the defet funtion Lz(f) := Lz,ρ(f) := E(f)−Ez(f)of f ∈W . If ξ is a random variable (a real valued funtion on a probability spae Z) thendenote as above
E(ξ) :=

∫

Z

ξdρ; σ2(ξ) :=

∫

Z

(ξ − E(ξ))2dρ.In this setion it will be onvenient for us to assume that
(4.1) for all f ∈W, f : X → Y is suh that |f(x) − y| ≤M a.e.



358 V. N. TEMLYAKOVTheorem 4.1 ([CS℄). LetW be a ompat subset of C := C(X). Assume that ρ,W satisfy(4.1). Then, for all η > 0

(4.2) ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ N(W,η/(16M), C)2 exp

(

−
mη2

8(4σ2 +M2η/3)

)

.Here σ2 := σ2(W ) := supf∈W σ2((f(x) − y)2).Remark 4.1. In general we annot guarantee that the set {z : supf∈W |Lz(f)| ≥ η} is
ρm-measurable. In suh a ase the relation (4.2) and further relations of this type areunderstood in the sense of outer measure assoiated with the ρm. For instane, for (4.2)this means that there exists ρm-measurable set G suh that {z : supf∈W |Lz(f)| ≥ η} ⊂ Gand (4.2) holds for G.In [CS℄ this theorem has been derived from Bernstein's inequality (2.11). We notethat other variants of this theorem an be found in the literature (see, for instane, [Po℄,[GKKW℄). Theorem 4.1 ontains a fator N(W,η/(16M), C) that may grow exponentiallyfor lasses W satisfying (1.1): N(W,η, C) ≤ 2(D/η)1/r+1. A stronger (in a ertain sense)estimate than (4.2) has been obtained in [KT1℄ under the assumption that W satis�es(1.1).Theorem 4.2 ([KT1℄). Assume that ρ, W satisfy (4.1) and W is suh that
(4.3)

∞
∑

n=1

n−1/2ǫn(W, C) <∞.Then for mη2 ≥ 1 we have
ρm{z : sup

f∈W
|Lz(f)| ≥ η} ≤ C(M, ǫ(W )) exp(−c(M)mη2)with C(M, ǫ(W )) that may depend on M and ǫ(W ) := {ǫn(W, C)}; c(M) may dependonly on M .Theorem 4.3 ([KT1℄). Assume that ρ, W satisfy (4.1) and W is suh that

∞
∑

n=1

n−1/2ǫn(W, C) = ∞.For η > 0 de�ne J := J(η/M) as the minimal j satisfying ǫ2j (W, C) ≤ η/(8M) and
SJ :=

J
∑

j=1

2(j+1)/2ǫ2j−1(W, C).Then for m, η satisfying mη2/S2
J ≥ 480M2 we have

ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, ǫ(W )) exp(−c(M)mη2/S2
J).We formulate two orollaries of Theorem 4.3.Corollary 4.1 ([KT1℄). Assume ρ, W satisfy (4.1) and ǫn(W, C) ≤ Dn−r, r ∈ (0, 1/2).Then for m, η satisfying mη1/r ≥ C1(M,D, r) we have

ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη1/r).



OPTIMAL ESTIMATORS IN LEARNING THEORY 359Corollary 4.2 ([KT1℄). Assume ρ, W satisfy (4.1) and ǫn(W, C) ≤ Dn−r, r ∈ (0, 1/2).Then for m, η, δ ≥ η/(8M) satisfying mη2δ1/r−2 ≥ C1(M,D, r) we have
ρm{z : sup

f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2)where Nδ(W ) is a minimal δ-net of W in the C norm.In [KT2℄ we have proved that it is impossible to have even a weaker form of Theo-rem 4.2 if we use the L2(ρX) norm instead of the uniform norm C. However, it turned outthat we an prove an L2(ρX) analogue of Theorem 4.2 for the δ-net Nδ(W ) of W in the
L2(ρX) norm instead ofW for δ2 ≥ η. The following proposition shows that if we onsiderentropy of W in L2[0, 1) rather than in C[0, 1] then even a fast deay of ǫn(W,L2(ρX))(say, ǫn(W,L2(ρX)) = o(n−r) for every r > 0) does not guarantee nontrivial estimatesfor supf∈W |Lz(f)|. We assume that Y = [−1, 1], and thus, the funtions f ∈ W and fρare uniformly bounded.Proposition 4.1 ([KT2℄). Let N be a non-inreasing mapping (0,+∞) → [1,+∞) suhthat

lim
u→0+

logN(u)/ log(1/u) = +∞.Then there exist a set W ⊂ U(L∞[0, 1)) and a ρ suh that
N(W, ǫ, L2(ρX)) ≤ N(ǫ)and for every m

ρm{z : sup
f∈W

|Lz(f)| ≤ 1/2} = 0.Theorem 4.4 ([KT2℄). Assume that ρ, W satisfy (4.1) and W is suh that
∞
∑

n=1

n−1/2ǫn(W,L2(ρX)) <∞.Let mη2 ≥ 1. Then for any δ satisfying δ2 ≥ η we have for a minimal δ-net Nδ(W ) of
W in the L2(ρX) norm

ρm{z : sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ǫ(W )) exp(−c(M)mη2).Theorem 4.5 ([KT2℄). Assume that ρ, W satisfy (4.1) and
∞
∑

n=1

n−1/2ǫn = ∞, ǫn := ǫn(W,L2(ρX)).Let η, δ be suh that δ2 ≥ η. De�ne J := J(δ) as the minimal j satisfying ǫ2j ≤ δ and
SJ :=

J
∑

j=1

2(j+1)/2ǫ2j−1 , J ≥ 1; S0 := 1.Then for m, η satisfying m(η/SJ)2 ≥ 36M2 we have
ρm{z : sup

f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ǫ(W )) exp(−c(M)m(η/SJ )2),where Nδ(W ) is a minimal δ-net of W in the L2(ρX).



360 V. N. TEMLYAKOVCorollary 4.3 ([KT2℄). Assume ρ, W satisfy (4.1) and ǫn(W,L2(ρX)) ≤ Dn−r, r ∈

(0, 1/2). Then for m, η, δ2 ≥ η satisfying mη2δ1/r−2 ≥ C1(M,D, r) we have
ρm{z : sup

f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2),where Nδ(W ) is a minimal δ-net of W in the L2(ρX).On the base of the above disussion we propose to study the following funtion thatwe all the auray on�dene funtion for the defet funtion. Let a funtion lass Wand a set M of admissible measures ρ be given. For m ∈ N, η > 0 we de�ne
AC

d
m(W,M, η) := sup

ρ∈M
ρm{z : sup

f∈W
|Lz,ρ(f)| ≥ η}.We note that the above funtion is related to the onept of the Glivenko-Cantellisample omplexity of a lass Φ with auray η and on�dene δ:

SΦ(ǫ, δ) := min

{

n : ∀m ≥ n, ∀ρ

ρm

{

z = (z1, . . . , zm) : sup
φ∈Φ

∣

∣

∣

∣

∫

Z

φdρ−
1

m

m
∑

i=1

φ(zi)

∣

∣

∣

∣

≥ η

}

≤ δ

}

.In order to see that we de�ne zi := (xi, yi), i = 1, . . . ,m; φ(x, y) := (f(x) − y)2; Φ :=

{(f(x) − y)2, f ∈ W}. One an �nd a survey of reent results on the Glivenko-Cantellisample omplexity in [M℄.Theorem 4.2 asserts that for W satisfying (4.3) and for M satisfying (4.1) we have
AC

d
m(W,M, η) ≤ C(M, ǫ(W )) exp(−c(M)mη2), η ≥ m−1/2.Corollary 4.1 says that for W satisfying (1.1) with r ∈ (0, 1/2) and for M satisfying (4.1)we have

AC
d
m(W,M, η) ≤ C(M,D, r) exp(−c(M,D, r)mη1/r), η ≫ m−r.It turns out that in some appliations it is more onvenient to have an estimate ofthe AC

d
m-funtion for a minimal δ-net of W instead of W itself. Corollary 4.2 givesthe following estimate under the assumption that W satis�es (1.1) with r ∈ (0, 1/2),

M satis�es (4.1) and δ ≥ η/(8M):
AC

d
m(Nδ(W, C),M, η) ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2).Let now µ be a �xed probability measure on X. Assume W is suh that

∞
∑

n=1

n−1/2ǫn(W,L2(µ)) <∞.Consider M(W,µ) := {ρ satisfying (4.1) : ρX = µ}. Then Theorem 4.4 laims thatfor any µ we have for δ2 ≥ η ≥ m−1/2

AC
d
m(Nδ(W,L2(µ)),M(W,µ), η) ≤ C(M, ǫ(W )) exp(−c(M)mη2).Corollary 4.3 states that for W satisfying ǫn(W,L2(µ)) ≤ Dn−r, r ∈ (0, 1/2) we have for

δ2 ≥ η

AC
d
m(Nδ(W,L2(µ)),M(W,µ), η) ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2).



OPTIMAL ESTIMATORS IN LEARNING THEORY 3615. Lower estimates for the Bernoulli sheme. We onsider in this setion the fol-lowing estimation problem. Let y be a random variable suh that
Prob{y = 1} = Prob{y = 0} = 1/2.Then E(y)=1/2. We begin our disussion with the standard estimator fm :=m−1

∑m
i=1 yi.Then it is well known that

Prob{|fm − 1/2| ≥ ǫ} = 2−m
(

∑

|k−m/2|≥mǫ

Ck
m

)

,where Ck
m are the binomial oe�ients. It is easy to hek that

C1e
−c1mǫ2 ≤

∑

|k−m/2|≥mǫ

Ck
m ≤ C2e

−c2mǫ2

with positive absolute onstants C1, C2, c1, c2.The main goal of this setion is to prove that fm is optimal in a ertain sense amongall linear estimators. We will prove the following theorem.Theorem 5.1. For any ǫ ∈ [0, 1/2], m ≥ 2, and w = (w1, . . . , wm) we have
Prob

{∣

∣

∣

m
∑

i=1

wiyi − 1/2
∣

∣

∣
≥ ǫ

}

≥ exp

(

−cmǫ2 −
c

4

m−1
∑

k=1

1

k

)

with c = 25.We begin with a tehnial lemma.Lemma 5.1. Let ǫ ∈ (0, β], 9n ≥ ǫ−2, wn ∈ [0, 1/n]. Then for ǫ1 := (ǫ−wn/2)(1−wn)−1,
ǫ2 := (ǫ+ wn/2)(1 − wn)−1 one has for c = 25, β = (ln 2)1/2/5

(5.1) exp(−c(n− 1)ǫ21) + exp(−c(n− 1)ǫ22) ≥ 2 exp

(

−cnǫ2 −
c

4(n− 1)

)

.Proof. We onsider separately two ases: I wn ∈ [0, 1/(2n)] and II wn ∈ (1/(2n), 1/n].Case I. Using the onvexity of funtion e−x we obtain for any C > 0

(5.2) exp(−C(n− 1)ǫ21) + exp(−C(n− 1)ǫ22) ≥ 2 exp(−C(n− 1)(ǫ21 + ǫ22)/2).Next,
ǫ21 + ǫ22 = (1 − wn)−2((ǫ− wn/2)2 + (ǫ+ wn/2)2) = (1 − wn)−2(2ǫ2 + w2

n/2).Using the inequality
n− 1

(1 − wn)2
≤ n for wn ∈ [0, 1/(2n)]we get

(5.3) (n− 1)(ǫ21 + ǫ22)/2 ≤ nǫ2 + 1/(16n).Substituting (5.3) into (5.2) we obtain (5.1).Case II. We rewrite
S := exp(−c(n− 1)ǫ21) + exp(−c(n− 1)ǫ22)

= exp(−c(n− 1)ǫ21)(1 + exp(−c(n− 1)(ǫ22 − ǫ21))).



362 V. N. TEMLYAKOVWe have an identity
ǫ22 − ǫ21 = 2wnǫ(1 − wn)−2.Denote an := (n− 1)(1 − wn)−2. We have

(5.4) 1 − 1/n ≤ an/n ≤ n/(n− 1).Let us estimate δ := nǫ2 − (n− 1)ǫ21. We have
δ = ǫ2

(

n

n− 1
(1 − wn)2 − 1

)

an + anwnǫ− anw
2
n/4.Using

n

n− 1
(1 − wn)2 − 1 =

(1 − wn)2

1 − 1/n
− 1 ≥ 1 − wn − 1 = −wnwe get

δ ≥ anwnǫ− anwnǫ
2 − anw

2
n/4.Therefore

S ≥ exp(−cnǫ2 − canw
2
n/4)2 cosh(canwnǫ) exp(−canwnǫ

2).We note that by (5.4)
anw

2
n ≤ ann

−2 ≤ (n− 1)−1.Thus we proeed to estimating cosh(Aǫ) exp(−Aǫ2) with A := canwn. By (5.4) and byour assumption wn > 1/(2n) we get
(5.5) A ≥ c(1 − 1/n)/2 ≥ c/3, n = 3, . . . .It is easy to hek that for the funtion f(x) := cosh(Ax) − exp(Ax2) we have f(0) = 0and f ′(x) ≥ 0 for x2 ≤ (ln 4)/A in the ase A ≥ 8. The latter inequality A ≥ 8 followsfrom (5.5). Therefore,

cosh(Aǫ) exp(−Aǫ2) ≥ 1 if ǫ2 ≤ ln 4/A.By (5.4) we have A ≤ cn/(n − 1) and, hene, for c = 25 and n ≥ 2 we have β2 =

(1/5)2 ln 2 ≤ ln 4/A for all A of the form A = canwn. This ompletes the proof of thelemma.Lemma 5.2. For any ǫ ∈ [0, 1/2], m ≥ 2, and w1 ≥ w2 ≥ · · · ≥ wm ≥ 0, ∑m
i=1 wi = 1 wehave

(5.6) |{Λ ⊆ [1,m] :
∑

i∈Λ

wi ≥ 1/2 + ǫ}| ≥ 2m exp

(

−cmǫ2 −
c

4

m−1
∑

k=1

1

k

)

with c = 25.Proof. Denote
L(ǫ,m,w) :=

{

Λ ⊆ [1,m] :
∑

i∈Λ

wi ≥ 1/2 + ǫ
}

.Then for any ǫ ∈ [0, 1/2], m, w we have |L(ǫ,m,w))| ≥ 1. Therefore, (5.6) obviously holdsfor m ≤ 6, ǫ ∈ [0, 1/2] and for any m > 6, ǫ ∈ [β, 1/2], β = (ln 2)1/2/5.We �rst establish Lemma 5.2 for ǫ ∈ [0, (9m)−1/2]. We will use a simple property ofthe Rademaher funtions {ri(t)}.
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i=1 |ci| = 1. Then
mes

{

t :
∣

∣

∣

n
∑

i=1

ciri(t)
∣

∣

∣
≤ 2(9n)−1/2

}

≤ 1 − 5/(9n).Proof. Denote
g :=

n
∑

i=1

ciri and E := {t : |g(t)| ≤ 2(9n)−1/2}.Then we have on the one hand
(5.7) ‖g‖2

2 =

n
∑

i=1

c2i ≥ 1/n.On the other hand
(5.8) ‖g‖2

2 ≤ (4/(9n)|E| + (1 − |E|).Comparing (5.7) and (5.8) we get
|E| ≤ 1 − 5/(9n).We ontinue the proof of Lemma 5.2 in the ase ǫ ∈ [0, (9m)−1/2]. We observe that

2−m|L(ǫ,m,w)| = mes
{

t :

m
∑

i=1

wi(ri(t) + 1)/2 ≥ 1/2 + ǫ
}

(5.9)

= mes
{

t :

m
∑

i=1

wiri(t) ≥ 2ǫ
}

.Using Lemma 5.3 we obtain
2−m|L((9m)−1/2,m,w)| ≥ 5/(9m).This inequality ombined with the simple inequality
6

m−1
∑

k=1

1

k
≥ ln(2m), m = 2, 3, . . . ,gives us (5.6) in the ase ǫ ∈ [0, (9m)−1/2].It remains to onsider the ase ǫ ∈ [(9m)−1/2, β]. The proof of this ase goes byindution. As we have already mentioned (5.6) holds for m ≤ 6. So, we assume that(5.6) holds for m − 1 and derive from it (5.6) for m. Denoting w′ := (w1, . . . , wm−1),

w1 := w′(1 − wm)−1 we get
(5.10) L(ǫ,m,w) = {{m} ∪ Λ,Λ ∈ L(ǫ− wm,m− 1, w′)} ∪ L(ǫ,m− 1, w′).Next,

L(ǫ− wm,m− 1, w′) = L((ǫ− wm/2)(1 − wm)−1,m− 1, w1),

L(ǫ,m− 1, w′) = L((ǫ+ wm/2)(1 − wm)−1,m− 1, w1).Using the notations ǫ1 := (ǫ−wm/2)(1−wm)−1, ǫ2 := (ǫ+wm/2)(1−wm)−1 we obtainfrom (5.10)
|L(ǫ,m,w)| = |L(ǫ1,m− 1, w1)| + |L(ǫ2,m− 1, w1)|.



364 V. N. TEMLYAKOVBy the indution assumption we hene get
|L(ǫ,m,w)| ≥ 2m−1 exp

(

−
c

4

m−2
∑

k=1

1

k

)

(

exp(−c(m− 1)ǫ21) + exp(−c(m− 1)ǫ22)
)

.We want to apply Lemma 5.1 with n = m. The assumptions of Lemma 5.1 ǫ ∈ (0, β],
m ≥ (3ǫ)−2 follow from ǫ ∈ [(9m)−1/2, β]. Therefore, by Lemma 5.1 we obtain

|L(ǫ,m,w)| ≥ 2m exp

(

−cmǫ2 −
c

4

m−1
∑

k=1

1

k

)

.This ompletes the proof of Lemma 5.2.Theorem 5.2. For any ǫ ∈ [0, 1/2], m ≥ 2, and w = (w1, w2, . . . , wm) we have
∣

∣

∣

{

Λ ⊆ [1,m] :
∣

∣

∣

∑

i∈Λ

wi − 1/2
∣

∣

∣
≥ ǫ

}
∣

∣

∣
≥ 2m exp

(

−cmǫ2 −
c

4

m−1
∑

k=1

1

k

)

with c = 25.Proof. Denote
L′(ǫ,m,w) :=

{

Λ ⊆ [1,m] :
∣

∣

∣

∑

i∈Λ

wi − 1/2
∣

∣

∣
≥ ǫ

}

.Similarly to (5.9) we have
(5.11) 2−m|L′(ǫ,m,w)| = mes

{

t :
∣

∣

∣

m
∑

i=1

wi(ri(t) + 1)/2 − 1/2
∣

∣

∣
≥ ǫ

}

.Denoting s :=
∑m

i=1 wi we ontinue (5.11)
= mes

{

t :

m
∑

i=1

wiri(t) ≥ 1 − s+ 2ǫ
}

+ mes
{

t :

m
∑

i=1

wiri(t) ≤ 1 − s− 2ǫ
}

= mes
{

t :
m

∑

i=1

|wi|ri(t) ≥ 1 − s+ 2ǫ
}

+ mes
{

t :
m

∑

i=1

|wi|ri(t) ≤ 1 − s− 2ǫ
}

=: M1 +M2.Denote a :=
∑m

i=1 |wi| and ui := |wi|/a. In the ase a ≥ 1, s ≥ 1 we have
M1 = mes

{

t :
m

∑

i=1

uiri(t) ≥ (1 − s)/a+ 2ǫ/a
}

≥ mes
{

t :
m

∑

i=1

uiri(t) ≥ 2ǫ
}

.We get the required estimate by Lemma 5.2. In the ase a ≥ 1, s ≤ 1 we get in the sameway as above
(5.12) M2 ≥ mes

{

t :

m
∑

i=1

uiri(t) ≤ −2ǫ
}

.By Lemma 5.2 we omplete the ase.Let 0 < a < 1. Then using s ≤ a we get
(1 − s)/a− 2ǫ/a ≥ −2ǫand, therefore, (5.12) holds also in this ase. It remains to use Lemma 5.2.Theorem 5.2 is now proved.



OPTIMAL ESTIMATORS IN LEARNING THEORY 365Theorem 5.1 is an immediate orollary of Theorem 5.2.I am grateful to Professor Kwapie« for the following remark onerning the proof ofTheorem 5.1.Remark 5.1. One an use the paper [HK℄ in the proof of Theorem 5.1. This gives theestimate
(5.13) Prob

{
∣

∣

∣

m
∑

i=1

wiyi − 1/2
∣

∣

∣
≥ ǫ

}

≥ exp(−cmǫ2 − 6 − ln 8)with c = 128.Also, S. Kwapie« has given an argument how to improve the onstant c in (5.13) from
128 to 24.
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