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1. Introdution. Greedy bases attrated some attention in reent years; mostly, I think,due to the fat that they an be studied both from onrete approximation theory pointof view and from an abstrat Banah spae perspetive. Let (xn)n∈N be a semi-normalisedbasis in a Banah spae X. This means that (xn)n∈N is a Shauder basis in some �xedorder (see [4℄) and is semi-normalised, i.e. 0 < infn∈N ‖xn‖ ≤ supn∈N ‖xn‖ < ∞. For anelement x ∈ X we de�ne the error of the best m-term approximation as follows:

σm(x) = inf
{∥

∥

∥
x −

∑

n∈A

αnxn

∥

∥

∥

}

where the inf is taken over all subsets A ⊂ N of ardinality at most m and all possiblesalars αn. We also de�ne the greedy approximation of x =
∑

n anxn ∈ X as
Gm(x) =

∑

n∈A

anxnwhere A ⊂ N is any set of ardinality m hosen in suh a way that |an| ≥ |al| whenever
n ∈ A and l /∈ A. We say that a semi-normalised basis (xn)n∈N is greedy if there exists aonstant C suh that for all m = 1, 2, . . . and all x ∈ X we have

‖x − Gm(x)‖ ≤ Cσm(x).This notion evolved in the theory of non-linear approximation, see e.g. [10℄, [13℄. Let usreall the followingDefinition 1 ([7℄). A basis (xn)n∈N in a Banah spae X is demorati if there existsa onstant C suh that for all �nite sets A,B ⊂ N of the same ardinality we have
‖
∑

n∈A xn‖ ≤ C‖
∑
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386 P. WOJTASZCZYKThe following haraterisation of greedy bases was proved in [7℄.Theorem 1 ([7℄). A semi-normalised basis (xn)n∈N in a Banah spae X is greedy ifand only if it is a demorati and unonditional basis.From this Theorem one easily obtains that if (xn)n∈N is a greedy basis and (λn)n∈Nis a sequene of numbers suh that 0 < infn∈N |λn| ≤ supn∈N |λn| < ∞ then (λnxn)n∈Nis also a greedy basis.From the approximation theory point of view the main example of a greedy basis isa Haar system in Lp where 1 < p < ∞. Also good wavelet bases in Lp are greedy. For asurvey about greedy bases the reader may onsult [14℄.In this note we investigate if the Haar system is greedy in other rearrangement in-variant spaes besides Lp. Surprisingly, the answer is no, see Theorem 2. In subsequentsetions we investigate Lorentz spaes Lp,q. First we haraterise subsequenes of theHaar system whih are greedy in Lp,q, see Theorem 3. We onlude this note with someproperties of a greedy basis in L2,q if suh a basis exists at all.2. The Haar system in rearrangement invariant spaes. Let us reall that arearrangement invariant spae is a Banah spae (X, ‖.‖) whose elements are (equivalenelasses of) measurable funtions on measure spae (Ω, µ) satisfying:1. if x ∈ X and y is a measurable funtion suh that |y(ω)| ≤ |x(ω)| µ-a.e. then y ∈ Xand ‖y‖ ≤ ‖x‖2. if x ∈ X and y has the same distribution as x (i.e. for all λ ∈ R, µ({ω ∈ Ω : x(ω)

< λ}) = µ({ω ∈ Ω : y(ω) < λ})) then y ∈ X and ‖x‖ = ‖y‖.Clearly the most natural examples of rearrangement invariant spaes are Lp spaes for
1 ≤ p ≤ ∞.In our proof we will need a variant of a basially known Lemma whih will serve as atool to identify the right p.Lemma 1. Let ϕ be a ontinuous inreasing funtion on [0, 1] suh that ϕ(0) = 0 and forsome 0 < c ≤ C < ∞ and some ∆ > 1 we have

cϕ(∆−n)ϕ(∆n−N ) ≤ ϕ(∆−N ) ≤ Cϕ(∆n−N )ϕ(∆−n) (1)for all 0 ≤ n ≤ N . Then there exists α ≥ 0 and onstants 0 < a ≤ A < ∞ suh that
atα ≤ ϕ(t) ≤ Atα for all t ∈ [0, 1]Proof. We write N = n + k and we get

cϕ(∆−n)ϕ(∆−k) ≤ ϕ(∆−n−k) ≤ Cϕ(∆−k)ϕ(∆−n).Indutively we get for arbitrary integer s

csϕ(∆−n)s ≤ ϕ(∆−ns) ≤ Csϕ(∆−n)s.Taking logarithms with the base ∆ we obtain
s log c + s log ϕ(∆−n) ≤ log ϕ(∆−ns) ≤ s log C + s log ϕ(∆−n)so

| log ϕ(∆−ns) − s log ϕ(∆−n)| ≤ sM



GREEDINESS OF THE HAAR SYSTEM 387where M = max{| log c|, | log C|}. This we rewrite as
∣

∣

∣

∣

log ϕ(∆−ns)

ns
− log ϕ(∆−n)

n

∣

∣

∣

∣

≤ M

n
.Thus for all natural n and m we obtain

∣

∣

∣

∣

log ϕ(∆−m)

m
− log ϕ(∆−n)

n

∣

∣

∣

∣

≤
∣

∣

∣

∣

log ϕ(∆−m)

m
− log ϕ(∆−mn)

mn

∣

∣

∣

∣

+

∣

∣

∣

∣

log ϕ(∆−mn)

mn
− log ϕ(∆−n)

n

∣

∣

∣

∣

(2)
≤ M

m
+

M

n
.This implies that the limit limn→∞ log ϕ(∆−n)/n exists; we denote it by β. If we pass tothe limit with n → ∞ in inequality (2) we get

∣

∣

∣

∣

log ϕ(∆−m)

m
− β

∣

∣

∣

∣

≤ M

mwhih we rewrite as
∣

∣

∣

∣

log
ϕ(∆−m)

∆βm

∣

∣

∣

∣

≤ Mwhih gives
c′∆βm ≤ ϕ(∆−m) ≤ C ′∆βmfor m = 1, 2, . . . . Sine ϕ is inreasing we easily get

at−β ≤ ϕ(t) ≤ At−β .Sine learly β ≤ 0 we get the laim.Remark. Let us note that if the funtion ϕ is de�ned on [0,∞) and (1) holds for allintegers N then atα ≤ ϕ(t) ≤ Atα for all t > 0. To see this observe that by Lemma 1 wehave atα ≤ ϕ(t) ≤ Atα for all t ∈ [0, 1] and applying (1) for N = 0 and n = 1, 2, . . . weobtain ϕ(∆−n)ϕ(∆n) ∼ onst. so ϕ(∆n) ∼ (∆n)α. This shows our laim.This Lemma is basially known, see [15℄ or [4, page 60℄.We will be interested in the Haar system on [0, 1]d whih is de�ned as follows. Firstwe de�ne two funtions on R

h0(t) = 1[0,1] =

{

1 when t ∈ [0, 1],

0 otherwise,and
h1(t) = 1[0,1/2) − 1[1/2,1] =















1 when t ∈ [0, 1/2),

−1 when t ∈ [1/2, 1],

0 otherwise.We de�ne E to be the set of all sequenes ε = (ε1, . . . , εd) where εi = 0, 1 and ∑d
i=1 εi > 0.For ε ∈ E we de�ne

hε(t1, . . . , td) = hε1(t1) · · · · · hεd(td).



388 P. WOJTASZCZYKThe system hε
n,k(t) = hε(2nt − k) with ε ∈ E, n ∈ Z and k ∈ Z

d is a Haar waveletbasis in R
d, normalised in L∞. The same system for n = 0, 1, 2, . . . and k ∈ Ln =

{0, 1, . . . , 2n − 1}d and ε ∈ E with the onstant funtion added is a Haar system on
[0, 1]d. The important fat about both those systems is that |hε

n,k| is the harateristifuntion of a dyadi square of sidelength 2−n so of measure 2−nd.Theorem 2. Let X be a rearrangement invariant spae on [0, 1]d. If the Haar systemnormalised in X is a greedy basis in X then X = Lp[0, 1]d for some 1 < p < ∞ (withequivalent norm).Proof. For 0 ≤ t ≤ 1 we de�ne ϕ(t) = ‖1A‖X where A ⊂ [0, 1]d is any set of measure t.Sine X is a rearrangement invariant spae it is really a funtion of t; it is learly aninreasing funtion. Sine X annot equal L∞ (whih does not have any basis) we inferthat ϕ is ontinuous and ϕ(0) = 0. We an assume that ϕ(1) = 1.We de�ne Hε
n.k = (ϕ(2−nd))−1hε

n,k. It is a Haar system normalised in X. For eah
ε ∈ E we have

∥

∥

∥

2nd
−1

∑

k=0

Hε
n,k

∥

∥

∥
= ‖(ϕ(2−nd))−1

1[0,1]d‖ = (ϕ(2−nd))−1. (3)Analogously for N ≥ n we have
∥

∥

∥

2nd
−1

∑

k=0

Hε
N,k

∥

∥

∥
= ϕ(2(n−N)d)(ϕ(2−Nd))−1. (4)Sine the Haar basis is demorati we get onstants 0 < c ≤ C < ∞ suh that

cϕ(2(n−N)d)(ϕ(2−Nd))−1 ≤ (ϕ(2−nd))−1 ≤ Cϕ(2(n−N)d)(ϕ(2−Nd))−1 (5)for all n ≤ N . From Lemma 1 applied for ∆ = 2d we infer that ϕ(t) ∼ t1/p for some
p > 0. Sine X is a Banah spae, from the triangle inequality we get 1 ≤ p < ∞. We willshow that ‖f‖X ∼ ‖f‖p for all f ∈ X. From the density argument it su�es to onsiderfuntions f ≥ 0 of the form

f =

N
∑

j=1

aj1Ijwhere Ij are disjoint and |Ij | = 2−sd for some s ∈ N. For suh an f we an �nd g of theform
g =

N
∑

j=1

2kjd/p
1Ijwith kj ∈ Z suh that g ≤ f ≤ 2d/pg. This implies that ‖g‖X ≤ ‖f‖X ≤ 2d/p‖g‖X and

‖g‖p ≤ ‖f‖p ≤ 2d/p‖g‖p. So it su�es to hek that ‖g‖X ∼ ‖g‖p. Now let us de�ne Kjto be disjoint dyadi ubes of measure 2−sd. Sine both X and Lp are rearrangementinvariant we get ‖g‖ = ‖∑N
j=1 2kjd/p

1Kj
‖ for both norm in X and norm in Lp By ho-mogeneity we an additionally assume that kj ≥ s for j = 1, 2, . . . , N . Now we subdivideeah ube Kj into 2(kj−s)d equal dyadi ubes Kj,r eah of measure 2−kjd. Let hj,r denoteany Haar funtion hε

kj ,k whose support equals Kj,r multiplied by 2kjd/p. Those funtions



GREEDINESS OF THE HAAR SYSTEM 389are normalised in Lp and seminormalised in X. We put
x =

N
∑

j=1

2(kj−s)d

∑

r=1

hj,r. (6)One easily heks that |x| = |g| so ‖x‖X = ‖g‖X and ‖x‖p = ‖g‖p. But x is a sum of
M =

∑N
j=1 2(kj−s)d seminormalised in X Haar funtions. Sine the Haar basis is greedyin X from lemma 1 and (3) we infer that ‖x‖X ∼ M1/p. On the other hand

‖x‖p = ‖g‖p =
(

N
∑

j=1

2kjd|Ij |
)1/p

=
(

N
∑

j=1

2(kj−s)d
)1/p

∼ ‖x‖X . (7)Thus we onlude that ‖.‖X and ‖.‖p are equivalent, whih means that X = Lp withequivalent norm. Sine the Haar system is an unonditional basis in X, the ase p = 1 isnot possible (it is known that the Haar system is not unonditional basis in L1 and eventhat L1 does not have any unonditional basis, see [4℄), so we get 1 < p < ∞.Remark. Using the Remark after Lemma 1 the above proof shows that Theorem 2 alsoholds for symmetri spaes on R
d.Remark. Observe that throughout most of this proof we use only the assumption that

‖
∑

A Hε
n,k‖ ∼ ‖

∑

B Hε
n,k‖ for sets A and B of Haar funtions with disjoint supports and

|A| = |B|. Natural modi�ation of our argument shows that this assumption implies that
X = Lp with 1 ≤ p < ∞. Only to exlude L1 we have to use the Haar funtions withoverlapping supports.Remark. If Haar is one demorati in X on [0, 1] than X = L2[0, 1] with equivalentnorm. To see it observe that ‖h0+h1‖ = ‖21[0,1/2]‖ = 2ϕ(1/2) but also = ‖ϕ(1/2)−1h1,0+

ϕ(1/2)−1h1,1‖ = ϕ(1/2)−1. Comparing we get ϕ(1/2) = 1/
√

2. From (5) with c = C = 1we get indutively ϕ(2−2) = ϕ(2−1)2 et. so ϕ(2−k) = (
√

2)−k whih gives ϕ(t) ∼
√

t.Muh attention was paid in reent years to wavelet bases on R and on R
d. Let usreall (f. [11℄, [2℄) that a funtion Φ ∈ L2(R) is a wavelet if the system Φn,k(x) :=

2n/2Φ(2nx − k) for n, k ∈ Z (alled a wavelet basis) is an orthonormal basis in L2(R).The Haar system is one of suh bases orresponding to the Haar wavelet h1. It is known(f. [11, 2, 12℄) that many natural wavelet bases are unonditional bases in Lp(R) for
1 < p < ∞ equivalent to the Haar system (i.e. the map Φn,k ↔ h1

n,k extends by linearityto an isomorphism of Lp(R)). We haveProposition 1. If there exists a wavelet basis (Φn,k)n,k∈Z equivalent to the Haar basisin Lp(R) for all p, 1 < p < ∞ and greedy in a rearrangement invariant spae X on Rthen X = Lp(R) for some 1 < p < ∞Proof. We know from [7℄ that a greedy basis is unonditional so X has an unonditionalbasis. This implies (see [9, Remark 9.6 and Theorem 1.e.4℄) that the Haar system isunonditional in X and X is an interpolation spae between Lp1
(R) and Lp2

(R) for some
1 < p1 < p2 < ∞. Sine (Φn,k)n,k∈Z is equivalent to (h1

n,k)n,k∈Z in Lp1
(R) and Lp2

(R) weinfer that (Φn,k)n,k∈Z is equivalent to (h1
n,k)n,k∈Z in X. This gives that the Haar systemis greedy in X so by Theorem 2 we get that X = Lp(R) for some p, 1 < p < ∞.



390 P. WOJTASZCZYKRemark. There exists a natural onstrution (wavelet tensor) of a wavelet basis on
R

d, see [11℄. With obvious and trivial modi�ation the above argument extends to themultivariate ase.3. Haar in Lorentz spaes. It is generally the ase that the Haar system is the "best"basis in a rearrangement invariant spae. It is true for example that if a rearrangementinvariant spae X has an unonditional basis then the Haar system is suh a basis. Thissuggests the onjeture that if a rearrangement invariant spae X has a greedy basisthen the Haar system is greedy so by Theorem 2 X equals Lp for some 1 < p < ∞.Unfortunately this is not true. There are examples of rearrangement invariant spaeswith symmetri, so also greedy, basis, see [3℄. Nevertheless we believe that "lassial"rearrangement invariant spaes do not have greedy bases (unless they are Lp-spaes).In this setion we ollet some remarks about Lorentz spaes. We are unable to showthat Lp,q spaes with p 6= q do not have greedy basis (although we onjeture that thisis the ase) but our results below indiate that if suh a basis exists it has to be verystrange.In this and subsequent setions we will onsider only spaes on [0, 1] and the onedimensional Haar system h1
n,k whih to avoid supersripts we will denote by hn,k.Let us �rst reall the de�nition and basi properties of a Lorentz spae Lp,q[0, 1],

1 ≤ p, q < ∞. For a measurable funtion f on [0, 1] by f∗ we denote its non-inreasingrearrangement i.e. a non-inreasing funtion on [0, 1] with the same distribution as |f(x)|.The spae Lp,q[0, 1] is the olletion of all (equivalene lasses of) measurable funtions
f on [0, 1] suh that

‖f‖p,q =

(
∫ 1

0

f∗(x)qx
q

p
−1 dx

)1/q

< ∞ (8)For 1 ≤ q ≤ p the quantity ‖.‖p,q is a norm but for 1 < p < q the triangle inequality isnot satis�ed and ‖.‖p,q is only a quasi-norm. Nevertheless this quasi-norm is equivalent tothe norm. It is also lear that Lp,p = Lp. We have the following ontinuous embeddings:
Lp1,q1

[0, 1] ⊂ Lp1,q2
[0, 1] ⊂ Lp2,q3

[0, 1] (9)whenever q1 ≤ q2 and p1 > p2. It is also known that Lp,q[0, 1] has an unonditionalbasis only when 1 < p < ∞ and 1 ≤ q < ∞. In suh situation the Haar system is anunonditional basis.First we want to hek what subsequenes of the Haar system are greedy in its spanin Lp,q norm.It follows from Proposition 8.10 from [3℄ and Lemma 2.1 from [1℄ that any unondi-tional basis in Lp,q[0, 1], 1 < p < ∞, 1 ≤ q < ∞ has a subsequene equivalent to the unitvetor basis in ℓq. So we haveLemma 2. If (xn)∞n=1 is a greedy basis in Lp,q[0, 1], 1 < p < ∞, 1 ≤ q < ∞ then
‖∑

n∈A xn‖p,q ∼ |A|1/q.Our next aim is to exhibit suh subsequenes in the Haar system.Proposition 2. Let xn = 2n/phn,k(n) for n = 1, 2, . . . and 0 ≤ k(n) < 2n. The sequene
(xn)∞n=1 is in Lp,q[0, 1] equivalent to the unit vetor basis in ℓq.



GREEDINESS OF THE HAAR SYSTEM 391Proof. Let us �x a subsequene of the Haar system of the form hn,l(n) for n = 1, 2, . . .in suh a way that supphn,l(n) = (2−n, 2−n+1) so those Haar funtions have disjointsupports. Using this sequene we de�ne operators Q and S on the Haar system as follows
Q(hn,j) =

{

hn,l(n) if (n, j) = (n, k(n)),

0 otherwise,and
S(hn,j) =

{

hn,k(n) if (n, j) = (n, l(n)),

0 otherwise.One easily heks and it is well known that both operators extend to ontinuous linearoperators on Lp[0, 1] for 1 < p < ∞ so by interpolation they are ontinuous on Lp,q[0, 1].This means that the sequene (xn)∞n=1 is equivalent to the sequene 2n/phn,l(n). In otherwords we an assume that xn has disjoint supports. For q ≤ p we have (below τ denotesthe measure preserving transformation on [0, 1])
∥

∥

∥

∞
∑

n=1

anxn

∥

∥

∥

q

p,q
≤

∥

∥

∥

∞
∑

n=1

an2n/phn,l(n)

∥

∥

∥

q

p,q

= sup
τ

∫ 1

0

∣

∣

∣

∞
∑

n=1

an2n/phn,l(n)(τ(t))
∣

∣

∣

q

t
q

p
−1 dt

= sup
τ

∞
∑

n=1

|an|q
∫ 1

0

|2n/phn,l(n))(τ(t))|qt
q

p
−1 dt

≤
∞
∑

n=1

|an|q sup
n

∫ 2−n

0

2nq/pt
q

p
−1 dt

=

∞
∑

n=1

|an|q.On the other hand we have
∥

∥

∥

∞
∑

n=1

anxn

∥

∥

∥

q

p,q
≥

∞
∑

n=1

|an|q2nq/p

∫ 2−n+1

2−n

t
q

p
−1 dt ≥ C

∞
∑

n=1

|an|q.The ase q > p follows by duality.Lemma 3. Let 0 < j1 < j2 < · · · < js ≤ 2n be a sequene of integers. Then
∥

∥

∥

s
∑

i=1

2n/phn,ji

∥

∥

∥

p,q
=

(

p

q

)1/q

s1/p.Proof. We have
∥

∥

∥

s
∑

i=1

2n/phn,ji

∥

∥

∥

p,q
= 2n/p‖1[0,s2−n]‖p,q = 2n/p

(
∫ s2−n

0

t
q

p
−1 dt

)1/q

= 2n/p

(

p

q
(s2−n)

q

p

)1/q

=

(

p

q

)1/q

s1/p.From the above we obtain



392 P. WOJTASZCZYKTheorem 3. If a subsequene of the Haar system is greedy (in its linear span) in Lp,q[0, 1]with p 6= q, 1 < p < ∞ and 1 ≤ q < ∞, then it is equivalent to the unit vetor basis in ℓq.Proof. From Proposition 2 we see that our subsequene of the Haar system has a sub-sequene equivalent to the unit vetor basis in ℓq so by demoray the sum of any Nelements of our subsequene has the norm ∼ N1/q. If we ompare this with Lemma 3 weinfer that there exists a natural number s suh that for eah n our subsequene ontainsat most s elements from eah level of Haar funtions (hn,j)
2n

−1
j=0 . Applying Proposition 2one more we see that our subsequene is equivalent to the unit vetor basis in ℓq.Now we will de�ne generalised Haar systems on [0, 1]. Suh systems were studied e.g.in [6℄. Let T = {tj}∞j=0 be a sequene of distint points from the interval [0, 1] whihis dense in [0, 1] and suh that t0 = 0 and t1 = 1. By l(tn) we mean the biggest ofthose points t0, t1, . . . , tn−1 whih are < tn and by r(tn) we mean the smallest of thosepoints t0, t1, . . . , tn−1 whih are > tn. The generalised Haar system orresponding to thesequene T is de�ned as follows: h1(t) = 1 and for n > 1 we put

hn(t) =















0 if t ≤ l(tn) or t ≥ r(tn),

(tn − l(tn))−1 if t ∈ (l(tn), tn),

−(r(tn) − tn)−1 if t ∈ (tn, r(tn)).It is known that eah generalised Haar system is an unonditional and greedy basis in
Lp[0, 1] for 1 < p < ∞, see [6℄.Corollary 1. No generalised Haar system is greedy in Lp,q[0, 1] 1 < p < ∞ and 1 ≤
q < ∞, p 6= q.Proof. It was shown in [6, Theorem 3.2℄ that eah generalised Haar system is in Lpequivalent to a subsequene of the dyadi Haar system. The argument given there showsthat the map whih establishes the equivalene is the same for all p's with 1 < p < ∞.By interpolation it implies that the generalised Haar system in Lp,q[0, 1], 1 < p < ∞ and
1 ≤ q < ∞, p 6= q is equivalent to a subsequene of the dyadi Haar system in Lp,q[0, 1].By Theorem 3 it annot be greedy beause Lp,q is not isomorphi to ℓq.4. Greedy bases in Lorentz spaes. In this setion we present some observationswhih suggest that if there exists a greedy basis in Lp,q[0, 1] with p 6= q than it has to berather strange. Sine our results are highly nononlusive we present them only for thesimplest hoie of parameters p, q. It is lear that our Propositions 3 and 4 hold for someother hoies of parameters.Proposition 3. No orthogonal system is a greedy basis in L2,q[0, 1] for 1 ≤ q < ∞,
q 6= 2.Lemma 4. Let (en)∞n=1 be a greedy basis in a Banah spae X suh that ‖∑

n∈A en‖ ∼
|A|1/p for some p, 1 ≤ p < ∞. Then there are onstants 0 < c ≤ C suh that

c‖(an)‖p,∞ ≤
∥

∥

∥

∞
∑

n=1

anen

∥

∥

∥
≤ C‖(an)‖p,1 (10)for all sequenes of salars.



GREEDINESS OF THE HAAR SYSTEM 393This Lemma is basially known (see [8, Theorem 2.5.2℄ or [13, Theorem 3℄). Sine Iwas unable to �nd an exat referene the proof is given for the onveniene of the reader.Proof. Let us assume (to simplify the notation) that |an| ց 0 and put nk = |{n : |an| >

2−k}|. The right hand side inequality for p = 1 is obvious. For p > 1 we have
∥

∥

∥
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∥

∥
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∥

∥
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∞
∑
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∑
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≤ C‖(an)‖p,1.On the other hand for eah N
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∥
aN

N
∑
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∥
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so ‖(an)‖p,∞ ≤ C‖
∑

n anen‖.Now we are ready for the proof of the Proposition. Let (fn)∞n=1 be an orthogonalsystem whih is a greedy basis in L2,q[0, 1] and ‖fn‖2,q = 1 for n = 1, 2, . . . Let us startwith the ase 1 ≤ q < 2 and �x r suh that q < r < 2. We have the ommutative diagram
L2,q[0, 1]

id−−−−→ L2[0, 1]

α





y

x




Σ

ℓq,∞ −−−−→
id

ℓrwhere id denotes the identity embedding. For f =
∑

n anfn we put α(f) = (an)∞n=1. ByLemma 4 α is a ontinuous operator. We de�ne Σ((ξn)∞n=1) =
∑

∞

n=1 ξnfn. It is also aontinuous operator beause
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(

∞
∑
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)1/r

.Clearly id = Σ ◦ id ◦α so it is a ommutative diagram. This however is impossible. It is awell known diret onsequene from the Khinthin inequality that id : L2,q[0, 1] → L2[0, 1]is an isomorphism when restrited to the in�nite dimensional Hilbert spae R spanned bythe Rademaher funtions. This would imply that id◦α(R) is a subspae of ℓr isomorphito a Hilbert spae but it is known that no subspae of ℓr is isomorphi to an in�nitedimensional Hilbert spae. This ontradition proves our laim.



394 P. WOJTASZCZYKFor the ase q > 2 we hoose r suh that q > r > 2 and onsider a dual diagram
L2[0, 1]

id−−−−→ L2,q[0, 1]

α





y

x




Σ

ℓ2 −−−−→
id

ℓrwhere α and Σ are de�ned by the same formulas. Analogously we obtain that they areontinuous and that the diagram is ommutative. This leads to the ontradition exatlyas before.Before we proeed let us introdue some notation. For given N = 1, 2, . . . let In =

[n−1
N , n

N ) for n = 1, 2, . . . , N . By CN we denote the spae of all funtion of the form
f =

∑N
n=1 an1In

.Lemma 5. For a funtion f ∈ CN and 1 < p < ∞ we have
C(log N)

1
p
−

1
q ‖f‖p,q ≤ ‖f‖p ≤ ‖f‖p,q if q < p (11)and

‖f‖p,q ≤ ‖f‖p ≤ C(log N)
1
p
−

1
q ‖f‖p,q if q > p (12)where onstants do not depend on f and N .Proof. Clearly ‖f‖p = N−1/p(

∑N
n=1 |an|p)1/p and easy alulation shows that

‖f‖p,q ∼ N−1/p
(
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∑
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n|qn
q

p
−1

)1/p (13)where as usual |a∗

n| denotes the noninreasing rearrangement of (|an|)N
n=1. For q < p weuse Hölder's inequality to obtain
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(

N
∑
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n−1
)

p−q

p ≤ C‖f‖q
p(log N)

p−q

p . (14)From (13) and (14) we get (11). The inequality (12) is proved analogously.Now we are ready to prove our last observation.Proposition 4. Let (fn)∞n=1 be a greedy basis in L2,q[0, 1]. There exists a onstant C > 0suh that if for some k and eah n = 1, 2, . . . , k we have fn ∈ CN(k), then N(k) ≥ exp k/C.Proof. We will onsider only the ase q < 2, the ase q > 2 is proved analogously. FromLemma 2 we infer that ‖∑k
n=1 ±fn‖2,q ∼ k1/q. It is a well known onsequene of theKhinthine inequality that for any gn in L2 the average over all signs of ‖∑

n ±gn‖2 =
√

∑

n ‖gn‖2
2. So there exists a hoie of signs suh that ‖∑k

n=1 ±fn‖2 ≤
√

∑k
n=1 ‖fn‖2

2.



GREEDINESS OF THE HAAR SYSTEM 395For this hoie of signs from (11) we get
k1/q ≤ C(lnN(k))

1
q
−

1
2

√

√

√

√

k
∑

n=1

‖fn‖2
2

≤ C(lnN(k))
1
q
−

1
2

√

√

√

√

k
∑

n=1

‖fn‖2
2,q

= Ck1/2(ln N(k))
1
q
−

1
2 .This immediately gives the laim.Remark. The above arguments arry over to the situation when CN is a subspae gen-erated by harateristi funtion of a partition of [0, 1] into N sets of measure ∼ N−1.This in partiular implies that if a greedy basis onsists of linear ombinations of Haarfuntions, then in the best ase we need approximately n levels of the Haar funtions towrite �rst n elements of the basis.
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