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Abstract. The standard Merton-Black-Scholes formula for European Option pricing serves

only as approximation to real values of options. More advanced extensions include applications

of Lévy processes and are based on characteristic functions, which are more convenient to use

than the corresponding probability distributions. We found one of the Lewis (2001) general

theoretical formulae for option pricing based on characteristic functions particularly suitable

for a statistical approach to option pricing. By replacing the unknown theoretical characteristic

function with the empirical one the obtained model can be considered as a consistent estimator

of the original Lewis formula. We explore the behaviour of this model on empirical data and

conclude that it is necessary to allow for two additional implied parameters to obtain option

pricing superior to other models reported in the literature.

1. Implied volatility as a cure for inadequacy of the MBS theory. The Merton-
Black-Scholes (MBS) theory of option pricing (Black & Scholes (1973), Merton (1973)),
based on the assumption of Gaussian distribution of logarithmic returns, results in the
famous and well known formula for the value of a European Call option

C0(S,K, v, T, r) = S ·N(d1)−K · exp(−rT )N(d2), (1)

where

d1 =
ln(S/K) +

(
r + v2/2

)
T

v
√
T

, (2)

d2 = d1 − v
√
T (3)

and where N(.) denotes the cumulative distribution function (cdf) of the standard nor-
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Lévy processes.

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc90-0-1 [13] c© Instytut Matematyczny PAN, 2010



14 K. BINKOWSKI AND A. KOZEK

mal distribution. The MBS formulae (1)-(3) reveal principal, but not all factors driving
European Option prices: asset price S, strike price K, volatility (standard deviation) v
of the asset return, time to option expiration T and risk-free interest rates r.

The MBS theory has been from the beginning considered, also by the authors of the
theory, only as approximation to the real value of the option (cf. Field & Jaycobs (1992)).
Deviations of the real option prices from the MBS model are caused by many factors,
including the following ones

• the mood of the market is influenced by hopes and fears generated by news and
resulting in violation of the assumption that logarithmic returns of asset prices
follow normal distribution,

• real market is not perfectly efficient,
• liquidity is always limited, or,
• the conditional volatility of stock returns is not constant.

It has been quickly noticed that by adjusting volatility v in the MBS formula one can
numerically fit quite a large range of values for option prices. Hence, despite its drawbacks,
the standard MBS formula plus a single empirically adjusted parameter v are practically
sufficient to describe the real option price. The adjusted volatility ṽ is called an implied
volatility. Though the implied volatility is varying slower and in a much smaller range
than the real option prices do, yet on real markets it changes over time and depends
both on time to expiration and on strike. This resulted in a significant research aiming
to improve our understanding of the nature of the implied volatility.

2. Recent trends to improve the MBS theory. The behaviour of volatility has
been modeled in a number of ways, we mention here the well known family of ARCH-type
models, cf Engle (1982) and Bollerslev (1986), culminating in a continuous time model
of Heston (1993). Recently, the fluctuations of logarithmic returns are modeled by fairly
general Lévy processes, (cf. Madan & Seneta (1990), Carr, Madan & Chang (1998),
Carr, Geman, Madan & Yor (2003), Barndorff-Nielsen & Halgreen (1977), Barndorff-
Nielsen, Kent & Sørensen (1982), Barndorff-Nielsen & Shephard (2001), Eberlein & Keller
(1995), Boyarchenko & Levendorskĭı (2002)) or various fractal processes (cf. Mandelbrot
& Hudson (2004), Anh, Heyde & Tieng (1999), Dai & Heyde (1996)).

3. The MBS for Lévy processes via characteristic functions. Non-gaussian the-
ories of option pricing do not allow simple explicit formulae like the MBS. Starting with
Merton (1973) remark on his equation (39) on p. 167 and including more recent theories
by Carr et al. (1998), Bakshi & Madan (2000) and Lewis (2001), it became clear that the
MBS formulae and their extensions can be conveniently expressed using characteristic
function of distributions of logarithmic returns. This observation leads to Fourier and
Fast-Fourier Transforms (and also other transforms like in Borovkov & Novikov (2002))
techniques of option price evaluation. This is useful in cases where characteristic function
is easier to calculate than the cdf of the returns. A summary of the approach based on
characteristic functions can be found in Lewis (2001). One of the equivalent formulae
derived in Lewis (2001) appears particularly convenient to our statistical approach.
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4. The Lewis formula. Let us recall Carr et al. (1998) and Bakshi & Madan (2000)
contribution in deriving for the Variance-Gamma (VG) process a valuation for an Euro-
pean Call option in a form similar to the classical MBS formula (1).

C1(S0,K, φT , T, r) = Π1S0 −Ke−rT Π2, (4)

where

Π1 =
1
2

+
1
π

∫ ∞
0

Re
exp(−iu logK)φT (u− i)

iuφT (−i)
du (5)

and

Π2 =
1
2

+
1
π

∫ ∞
0

Re
exp(−iu logK)φT (u)

iu
du, (6)

where φT (u) is a characteristic function of the logarithm of the stock price process XT =
log
(
ST

)
at the expiration of the Call option.

Lewis (2001) extended formulae (4)-(6) onto general Lévy processes. In our project
we work using his formula

C2(S0,K, φT , T, r) =

S0 −
√
S0K

π
e−

rT
2 + wT

2

∫ ∞
0

Re
[
e−iu(log

S0
K +rT+wT )φT

(
−u− i

2

)]
du

u2 + 1
4

, (7)

(cf. eq. (3.11) in Lewis (2001)), where the Mean Martingale Correcting Term (MMCT)
w is determined by a martingale condition

w = −
log
(
φT (−i)

)
T

. (8)

Unlike the ARCH-type discrete time models or the Heston model, the formulae for
option pricing based on characteristic functions do not model explicitly volatility, how-
ever they do so implicitly. The Lévy process behind the formulae can be interpreted as
a Brownian motion with time flying at random speed and driven by a so called subordi-
nating process. Researchers, including Carr et al. (2003), report excellent agreement of
the corresponding models with the observed option prices, however it is fair to note that
all parameters in these models are implied parameters.

5. Empirical and implied parameters. The Lewis formula (7) is particularly useful
for a non-parametric statistical study where the characteristic function can be estimated
based on historical data of daily asset returns. There is here no need to assume any
particular family of infinitely divisible distributions like VG, Hyperbolic or Generalized
Hyperbolic. Instead of estimating parameters of a chosen a priori particular subfamily of
infinitely divisible distributions one can introduce a smaller number of implied parameters
improving our understanding of how the real market prices the options.

In what follows we strictly distinguish between empirical and implied parameters.
Empirical parameters are estimators of the corresponding quantities based on histor-

ical data of stock returns.
Implied parameters are fitted (calibrated) using knowledge of the observed option

prices and, possibly, also historical data of stock returns.
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In the models considered in Section 7 our only empirical parameter is the empirical
characteristic function estimated based on the most recent n = 120 daily returns.

6. Consistency of the Empirical Lewis Formula. In Binkowski & Kozek (2010)
we extended results of Csörgő & Totik (1983) on convergence of empirical characteristic
functions on increasing intervals onto convergence over rectangles increasing to strips in
the complex domain parallel to the real axis. This extension implies that the empirical
Lewis formula is converging to the original value when the sample size of returns grows to
infinity, i.e. that it is a consistent estimator of the theoretical formula (7). Comparison of
the behaviour of this estimator with real option prices presented below in Table 1 shows
however far from excellent average option valuation. In contrast, other models, like in
Carr & Madan (1999), with implied rather than estimated parameters, show excellent
behaviour. This prompts us to allow up to two parameters in (10) to be chosen to fit the
empirical option prices. In agreement with the introduced terminology, these parameters
are referred to as implied parameters. The necessity of allowing implied parameters to be
used along with the empirical ones, suggests that knowledge of the distribution of returns
is not sufficient for getting high precision in recovering real option prices.

7. Five models with empirical and implied parameters. Our assumption that
Xt = log(St) is adequately modeled as a Lévy process implies that in decomposition

XT = X0 +
p∑

j=1

(Xj∆ −X(j−1)∆),

where
T = p∆,

the logarithmic returns Rj = (Xj∆ − X(j−1)∆) are i.i.d. random variables. Hence, and
since X0 is a known present value of log(S0), we get

φT (u) = (φR(u))p, (9)

where R has the same probability distribution as R′js. This allows us to use knowledge
of probability distribution of logarithmic returns over a short period of time to infer the
probability distribution of the logarithm of ST at the option expiry. This is particularly
useful working with historical data: we can estimate a characteristic function of log(ST )
by applying (9) to empirical characteristic function (ECF) of logarithmic returns on short
time intervals of length ∆.

We consider pricing of a European Call option, with time to maturity T and strike
price K, by replacing Lewis formula (7)–(8) with its empirical version

Ĉn(S0,K, ŵn, T, r, p)

= S0 −
√
S0K

π
e−

rT
2 + ŵnT

2

∫ ∞
0

Re
[
e−iu(log

S0
K +rT+ŵnT )φ̂p

n

(
−u− i

2

)]
du

u2 + 1
4

, (10)

where the ECF φ̂n(u) is based on n most recent daily logarithmic returns and p is the
number of days to option expiration. Since T is expressed in years, ∆ is the fraction of the



OPTION PRICING USING ECF 17

year corresponding to one day. The presence of p in (10) may look therefore redundant.
However we will allow p in some of the considered models (labeled below as Models 2 and
4, respectively) to be calibrated to real option prices and hence it is practical to accept
this notation. Whenever ’p’ is considered as a parameter we use notation p̃, while symbol
p will be used to denote the number of days to option expiration.

Let us recall that ŵn in (10) denotes the empirical version of the MMCT w and is
given by

ŵn = − log(φ̂n(−i))
∆

. (11)

In Models 3 and 4, we will replace ŵn with a parameter w̃ which will be calibrated to
option prices.

In our study we consider the following five models.

Model 1: no implied parameters. The parameter ŵ is estimated and the theoretical p
equals the number of days to option expiration. In this model only historical data
of n = 120 of the most recent returns of the asset (here the DAX index) are used.
In this model there are no implied parameters using additional information, like
the real option prices and improving performance of the model.

Model 2: ŵ is estimated and the implied p̃ is calibrated. In this model only one implied
parameter p̃ is allowed. By fitting this parameter to historical option prices we in
fact update the information available in the model about the most recent changes in
the market. If the fitted p̃ is greater than the number of days to expiration p, then
this suggests that the real market time flies slower. Clearly, p̃ < p indicates that the
market time flies faster. Hence, this implied parameter is updating our model with
the most recent information about the behaviour of the subordinating process.

Model 3: w̃ is implied and p equals the number of days to option expiration. By allow-
ing w̃ to be calibrated to the real option prices instead of using the empirical ŵ we
are introducing a kind of test on suitability of the risk neutral martingale measure
introduced via Esscher transform. Since the considered market model is incom-
plete there exist many equivalent martingale measures (Perrakis & Ryan (1984) ,
Eberlein & Jacod (1997), Huang (2004)). However, by allowing w̃ to be calibrated
without any restriction we do not have guarantee that w̃ corresponds to any of the
possible risk neutral measures. Yet, it is safe to interpret w̃ as a parameter which
can via calibration bring the valuation function Ĉn closer to real option prices.

Model 4: implied are both w̃ and p̃. We allow w̃ and p̃ to be jointly calibrated to real
option prices. Following interpretation of these parameters given for Models 3 and
4, respectively, we allow both a small correction to the option price based on histor-
ical data (via w̃) and an update on the actual flow of the market time (via p̃). Our
experiments with DAX index data suggest that this is the best model, i.e. leading
to the best agreement with the real option prices.

Model 5: the VG model with implied 3 parameters of the VG probability distribution.
This is the Carr & Madan (1999) model applied to our present data set. The VG
distributions are parameterized with 3 parameters, which are calibrated to the real
option prices.
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Let us note that typically calibration and estimation result in different and incompat-
ible set of parameters. The fact that in option pricing the calibration gives better results
than estimation of the parameters suggests that historical data are not sufficient for
precise option valuation. The market time may be changing at a different pace than the
subordinator of the Lévy process implies, or, may be, as the market is incomplete, another
equivalent martingale measure should have replaced the popular Esscher transform.

8. The underlying DAX index and ODAX options data. We tested performance
of our models on historical data consisting of Deutsche Boerse AG DAX index (XETRA:
GDAXI, ISIN1:DE0008469008) and European Call Options ODAX (ISIN:DE0008469495)
written on the index, and traded on Eurex. The options data include daily close price,
strike price, and the time to maturity. The strike prices are set at 50 points intervals. The
options have been recorded on Eurex exchange between the 1st of June 2006 and the 17th
of May 2007 (243 business days). The number of maturities change over time and range
from 1 to 6 of the closest ones to expiration. We used the data obtained from the Secu-
rities Industry Research Center of Asia-Pacific (SIRCA Ltd., http://www.sirca.org.au).
Interest rates for this period have been taken from the European Central Bank web site
(http://www.ecb.int/). From the options data set we chose only the most traded options,
i.e. the 3 or 4 strikes nearest to the spot price. There were 2985 such options in our data
set.

9. Precision of option pricing for Models 1-5. Denote by C̄(T,K) the observed
option price (i.e. the daily settlement price) of an option with time T to expiration and
strike K. We used the following option pricing errors to rank the considered five models.
The Mean Absolute Error (MAE):

1
N

N∑
l=1

|C̄(Tl,Kl)− Ĉn(Sl,Kl, ŵn,l, Tl, rl, pl)|,

the relative MAE:

1
N

N∑
l=1

|C̄(Tl,Kl)− Ĉn(Sl,Kl, ŵn,l, Tl, rl, pl)|/|C̄(Tl,Kl)|,

the Root Mean Square Error (RMSE):√√√√ 1
N

N∑
l=1

(C̄(Tl,Kl)− Ĉn(Sl,Kl, ŵn,l, Tl, rl, pl))2,

the relative RMSE:√√√√ 1
N

N∑
l=1

[(C̄(Tl,Kl)− Ĉn(Sl,Kl, ŵn,l, Tl, rl, pl))/C̄(Tl,Kl)]2,

where N is the number of option prices depending on the considered case.

1International Securities Identification Number.
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In Figure 1 we present results of option pricing using models 1-4, for the 1st of June
2006. We used n = 120 prior days to calculate the ECF, i.e. we take φ̂120(u) and ŵ120

given by (11). The spot price was S0 = 5707.59, the interest rate was r = 0.035. We
used four maturities, corresponding in Figure 1 to the four slightly declining horizontal
layers of four points, respectively, and with 4 strikes for each maturity, corresponding
to vertical columns, respectively. Values of strikes are presented on the horizontal axes
and prices of options are on the vertical axes. The black line is the option payoff. Blue
rectangles denote the real ODAX option prices and red circles denote the model prices.
We considered here the following maturities: 18, 53, 109 and 200 days.

200 400 600 800 1000 1200
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300
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500

600

700
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Fig. 1. Prices of options obtained by Models 1-4, for the 1st June 2006.

In Table 1 we present average errors taken over all cases considered for one year
of option pricing. Model 1, with model parameters specified completely by the past 120
returns of the DAX index, performs rather poorly, suggesting that additional information
is needed to improve option pricing quality. Taking into account how little information
was provided to the model, only the underlying returns over past 120 days, it would be
however unfair to disregard this model. This experiment rather shows importance of the
calibration combined with the historical behaviour of the underlying asset.

In Models 2–5, historical option prices have been used for models calibration. Model
2, with calibrated parameter p̃ performs much better than Model 1, even better than
Model 3 with the calibrated parameter w̃. This suggests that it is very important to
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model properly the subordinator and the speed of the market time flow using the most
recent information available via option prices used in calibration. Another correction, in
Model 3, coming via the calibrated w̃, is also significant when compared with Model 1.
It may either suggest usage of an inappropriate martingale transformation, or w̃ can be
considered as another parameter leading to an improved fit to the empirical option prices.
Model 4, using the most recent 120 DAX returns and adjustments p̃ and w̃ calibrated
to option prices performs best. Table 1 shows that Model 4 with 2 implied parameters
outperforms the other four, including Model 5 with 3 implied parameters, considered by
Carr & Madan (1999).

Table 1. Measurement of errors for Models 1-5 for one year of pricing options.

Model 1 Model 2 Model 3 Model 4 Model 5

MAE 36.7306 2.8594 5.2871 0.3306 2.3868

Relative MAE 0.3908 0.0883 0.1172 0.0055 0.0156

RMSE 44.9672 4.0897 8.7297 0.4680 3.3061

Relative RMSE 1.2103 0.9575 0.9893 0.0269 0.0307

Figure 2 shows results of calibration for Model 2. Each point with coordinates (p, p̃)
refers to one maturity: p denotes the true number of days to option expiration while p̃
denotes the value obtained from calibration. There are 774 calibrated p̃. The straight
line represents regression p̃ = α0 + α1p, with coefficients α0 = 3.1510 and α1 = 0.8866.
It shows a linear relationship between those p that are true and those that are implied,
however the figure shows heteroscedasticity of the data and outliers.

Figure 3 shows results of calibration of parameter w̃n in Model 3. It contains a plot
of w̃ versus ŵn. Each point represents one maturity, altogether the 774 calibrated w̃.
The straight line represents regression w̃ = α0 +α1ŵn, with coefficients α0 = 0.1590 and
α1 = 1.1417. Like in Figure 2 we observe heteroscedasticity in the data and outliers, as
well as skewness.

We are not presenting similar plots for Model 4, for which both parameters are cali-
brated jointly. The relation between the empirical MMCT, the number of days to expi-
ration and the implied parameters, is not so straightforward.

Figure 4 presents how the empirical ŵ120 (the black bold line), the maximum (red line)
and the minimum (blue line) of the implied w̃ from Model 3 change over the year. The
maximum and minimum are taken over different implied parameters related to different
maturites for each day, respectively. The empirical MMCT has been used in Models 1
and 2.

Similarly, Figure 5 shows the empirical ŵ120 (black bold line), and the maximum (red
line) and the minimum (blue line) of the implied w̃ from Model 4. The maximum and
minimum are taken over different implied parameters related to different maturites for
each day, respectively.

Figure 6 shows close prices of DAX between 120 working days prior to the 1st June
2006 (marked by a vertical red line) and the 17th of May 2007.
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Fig. 2. Number of days to expiration p vs. implied p̃, based on Model 2 for one year of pricing
options.

100 200 300 400 500 600 700 800

100

200

300

400

500

600

Fig. 3. Empirical ŵn vs. implied w̃, based on Model 3 for one year of pricing options.
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Fig. 4. Empirical ŵ120(u) based on 120 historical log-returns between the 1st of June 2006
and the 17th of May 2007 for each day (black line) and the implied minimum (blue line) and
maximum (red line) w̃ for Model 3.
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Fig. 5. Empirical ŵ120(u) calculated from 120 historical log-returns between the 1st of June
2006 and 17th of May 2007 for each day (black line) and the minimum (blue line) and maximum
(red line) of the implied parameter w̃ for Model 4.
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Fig. 6. Close prices of DAX between 120 working days prior to the 1st June 2006, and 17th May
2007 (blue line). Red line indicates the 1st June 2006.
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Fig. 7. The 12 series of the implied p̃n, obtained for Model 2 between the 1st of June 2006 and
the 17th of May 2007.
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10. Behaviour of the implied parameters. In Figures 7 and 8 we show behaviour of
the implied parameters p̃n and w̃n as time series. They can be modeled using regression
methods with stationary errors providing further insight into the option pricing process
and even presenting a commercial value to Market Makers. Indeed, tools allowing to use,
at least as a starting point at the opening of the day, the implied parameters for today
estimated based on the data available till yesterday, can be quite valuable allowing to
avoid miss-pricing of options by those who are responsible for guarantying the liquidity
of the market.

To fit the regression-time-series models we used a statistical package EViews. We
fit series of implied p̃n and w̃n to the following model (cf. Quantitative-Micro-Software
(2007), Chapter 26)

ym = x′mβ + um, (12)

um = α1um−1 + α2um−2 + εm, (13)

where β′ = [β1, β2] are regression parameters, α1, α2 are parameters of a hidden autore-
gressive (AR) model driving the regression noise um and xt is a vector of explanatory
variables. Let us note that model (12)-(13) can be also presented equivalently without
the hidden AR component in the following way

ym = x′mβ + α1(ym−1 − x′m−1β) + α2(ym−2 − x′m−2β) + εm,

however, representation (12)-(13) allows a clear interpretation. We take ym to be either
p̃n or w̃n, respectively. In the case of implied p̃n we include the number of days to option
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Fig. 8. The 12 series of implied w̃n, obtained for Model 3 between the 1st of June 2006 and the
17th of May 2007.
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expiration as an explanatory variable, and in the case of w̃n we include the empirical
MMCT as an explanatory variable.

Let us note that since p = T/∆ the implied parameter p̃n depends on the time to
option expiry

p̃ =
T

∆̃
.

Hence, in the case of an ideal model, where ∆̃ is constant the p̃n is a linear function of the
time to the expiry T . This justifies our use of p as a regressor in the time-series modeling.
We have observed that values of obtained implied parameters w̃n are near values of the
empirical MMCT. This suggests that in modeling series of implied w̃n we should regress
on the empirical MMCT.

We refer to Binkowski (2008) for a detailed analysis of the considered regression-time-
series models.

11. Conclusions. We combined the modern theory of European options pricing allow-
ing the logarithms of returns of the underlying asset to be driven by a fairly general Lévy
process with nonparametric estimation of the characteristic function. A clear distinguish-
ing between estimated and implied parameters leads to a better understanding of the role
of the historical data for the underlying asset and access to the historical option prices
in fitting and calibrating of the model.

By choosing for calibration two implied parameters we obtained an option pricing
model, labeled in the paper as Model 4, giving excellent agreement with the real options
prices. Let us note that for every maturity the implied parameters have been the same for
all strikes and allow modeling of their behaviour over time by regression methods with
stationary errors. Standard forecasting methods allow to predict the future values of the
implied parameters reducing risk of miss-pricing e.g. by market makers.
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Math. Finance 13 (3), 345–382.

Carr, P. & Madan, D. (1999), Option valuation using Fast Fourier Transform, Journal of Com-

putational Finance 3, 463–520.

Carr, P., Madan, D. B. & Chang, E. (1998), The Variance Gamma Process and option pricing,

European Finance Review 2, 79–105.
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Dai, W. & Heyde, C. C. (1996), Itô’s formula with respect to fractional Brownian motion and

its application, J. Appl. Math. Stochastic Anal. 9 (4), 439–448.

Eberlein, E. & Jacod, J. (1997), On the range of options prices, Finance and Stochastics 1 (2),

131–140.

Eberlein, E. & Keller, U. (1995), Hyperbolic Distributions in Finance, Bernoulli 1 (3), 281–299.

Engle, R. F. (1982), Autoregressive conditional heteroscedasticity with estimates of the variance

of United Kingdom inflation, Econometrica 50 (4), 987–1007.

Field, P. & Jaycobs, R., eds. (1992), From Black-Scholes to black holes: new frontiers in options,

Risk Magazine/Finex, London. Call Number: HG6024.A3 .F76.

Heston, S. (1993), A closed-form solution of options with stochastic volatility with applications

to bond and currency options, Rev. Financial Stud. 6, 327–343.

Huang, J. (2004), Option pricing bounds and the elasticity of the pricing kernel, Review of

Derivatives Research 7, 25–51.

Lewis, A. L. (2001), A simple option formula for general jump-diffusion and other exponential
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