STABILITY IN PROBABILITY BANACH CENTER PUBLICATIONS, VOLUME 90 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2010

STABLE RANDOM FIELDS AND GEOMETRY

SHIGEO TAKENAKA

Department of Applied Mathematics, Okayama University of Science Ridaicho 1-1, Kita-ku 700-0005, Okayama, Japan E-mail: takenaka@xmath.ous.ac.jp

Abstract. Let (M, d) be a metric space with a fixed origin **O**. P. Lévy defined Brownian motion $\{X(a); a \in M\}$ as

0. $X(\mathbf{O}) = 0.$

1. X(a) - X(b) is subject to the Gaussian law of mean 0 and variance d(a, b).

He gave an example for $M = S^m$, the *m*-dimensional sphere. Let $\{Y(B); B \in \mathcal{B}(S^m)\}$ be the Gaussian random measure on S^m , that is,

1. $\{Y(B)\}$ is a centered Gaussian system,

2. the variance of Y(B) is equal of $\mu(B)$, where μ is the uniform measure on S^m ,

3. if $B_1 \cap B_2 = \emptyset$ then $Y(B_1)$ is independent of $Y(B_2)$.

4. for B_i , $i = 1, 2, \ldots, B_i \cap B_j = \emptyset, i \neq j$, we have $Y(\cup B_i) = \sum Y(B_i)$, a.e.

Set $S_a = H_a \triangle H_0$, where H_a is the hemisphere with center a, and \triangle means symmetric difference. Then

$$\{X(a) = Y(S_a); a \in S^m\}$$

is Lévy's Brownian motion.

In the case of $M = R^m$, *m*-dimensional Euclidean space, N. N. Chentsov showed that $\{X(a) = Y(S_a)\}$ is an R^m -parameter Brownian motion in the sense of P. Lévy. Here S_a is the set of hyperplanes in R^m which intersect the line segment \overline{Oa} . The Gaussian random measure $\{Y(\cdot)\}$ is defined on the space of all hyperplanes in R^m and the measure μ is invariant under the dual action of Euclidean motion group Mo(m).

Replacing the Gaussian random measure with an $S\alpha S$ (Symmetric α Stable) random measure, we can easily obtain stable versions of the above examples. In this note, we will give further examples:

1. For hyperbolic space, taking as S_a a self-similar set in \mathbb{R}^m , we obtain stable motion on the hyperbolic space.

²⁰¹⁰ Mathematics Subject Classification: 60G52, 60G60, 60G51, 53C65.

Key words and phrases: stable random fields, multi-parameter additive processes, subordination. The paper is in final form and no version of it will be published elsewhere.

2. Take as S_a the set of all spheres in \mathbb{R}^m of arbitrary radii which separate the origin O and the point $a \in \mathbb{R}^m$; then we obtain a self-similar S α S random field as $\{X(a) = Y(S_a)\}$.

Along these lines, we will consider a multi-dimensional version of Bochner's subordination.

1. Multi-parameter Brownian motion of P. Lévy

1.1. Definition and construction by Lévy. In the famous book "Mouvement Brownien" ([7], [8]), P. Lévy defined a notion of Brownian motion $\{X(u); u \in M\}$ on a metric space $(M, d(\cdot, \cdot))$ with a fixed origin **O**:

DEFINITION 1.1. A Gaussian system $\{X(u)\}$ is called a Brownian motion on a metric space $(M, d(\cdot, \cdot))$ if it satisfies

- 1. $X(\mathbf{O}) \equiv 0.$
- 2. X(u) X(v) is subject to the Gaussian law of mean 0 and variance d(u, v).

In the case of $M = S^m$, he constructed a Brownian motion from Gaussian random measure on the sphere S^m . Let us start with the definition of random measure.

DEFINITION 1.2. A centered Gaussian system $\mathcal{Y} = \{Y(B); B \in \mathcal{B}, \mu(B) < \infty\}$ is called a Gaussian random measure controlled by a measure space (E, \mathcal{B}, μ) if

- 1. Y(B) is subject to the Gaussian law of mean 0 and variance $\mu(B)$.
- 2. If $B_1 \cap B_2 = \emptyset$ then the random variables $Y(B_1)$ and $Y(B_2)$ are mutually independent.
- 3. For any sequence of mutually disjoint family of measurable sets B_1, B_2, B_3, \ldots ,

$$Y(\cup_n B_n) = \sum_n Y(B_n), \text{ a.e.}$$

Let \mathcal{Y} be a Gaussian random measure controlled by (S^m, μ) , where μ is the uniform measure. For a point u of the sphere S^m , define a set $S_u = H_u \triangle H_{\mathbf{O}}$, where $H_u = \{v \in S^m; d(v, u) \geq \frac{\pi}{2}\} \in \mathcal{B}$. Then

$$X(u) = Y(S_u) = Y((H_u \cap H_O^c) \cup (H_u^c \cap H_O)),$$

is a Brownian motion on S^m .

$$\begin{aligned} X(u) - X(v) &= Y(S_u) - Y(S_v) \\ &= Y((H_u \cap H_O^c) \cup (H_u^c \cap H_O)) - Y((H_v \cap H_O^c) \cup (H_v^c \cap H_O)) \\ &= Y(H_u \cap H_v^c \cap H_{\mathbf{O}}^c) + Y(H_u^c \cap H_v \cap H_{\mathbf{O}}) - Y(H_u^c \cap H_v \cap H_{\mathbf{O}}^c) - Y(H_u \cap H_v^c \cap H_{\mathbf{O}}). \end{aligned}$$

The variance is

$$\mu(H_u \cap H_v^c \cap H_{\mathbf{O}}^c) + \mu(H_u^c \cap H_v \cap H_{\mathbf{O}}) + \mu(H_u^c \cap H_v \cap H_{\mathbf{O}}^c) + \mu(H_u \cap H_v^c \cap H_{\mathbf{O}})$$
$$= \mu(H_u \triangle H_v)$$

that is, it is proportional to the geodesic distance d(u, v) of $u, v \in S^m$.

1.2. Construction of Brownian motion on the Euclidean space. For *m*-dimensional Euclidean space \mathbb{R}^m , N. N. Chentsov gave the following construction ([3]). Let E be the set of all hyperplanes of co-dimension 1 in \mathbb{R}^m , and μ be the measure on E which is invariant under the (dual) action of Euclidean motion group Mo(m). The dual action g^*

of $g \in Mo(m)$ is defined as $(g\mathbf{x}, \mathbf{y}) = (\mathbf{x}, g^*\mathbf{y})$, using the homogeneous coordinate $g^* = {}^tg$ (see the next subsection). Let us represent an element of E by the canonical form

$$\{\mathbf{x} \in R^m; \mathbf{a} \cdot \mathbf{x} + r = 0\}, \quad \mathbf{a} \in S^{m-1}, r \in R_+ = [0, \infty),$$

and take a parameter $(\mathbf{a}, r) \in S^{m-1} \times R_+$ for the above plane. The invariant measure mentioned above is $d\mu(r \times \mathbf{a}) = d\mathbf{a}dr$.

Fig. 1

Set

 $S_u = \{h \in E; h \text{ separates the origin } \mathbf{O} \text{ and } u\}.$

Then

$$X(u) = Y(S_u)$$

is a Brownian motion on the Euclidean space $(\mathbb{R}^m, |\cdot|)$, where $\mathcal{Y} = \{Y(\cdot)\}$ is the Gaussian random measure controlled by $(E, d\mu)$.

Note that, as we will see in the next subsection, these two constructions of Brownian motions share the same idea coming from elementary geometry.

1.3. Projective geometry

1.3.1. *m*-dimensional projective space and the homogeneous coordinates. *m*-dimensional projective space is defined as $P^m = (R^{m+1} \setminus \{\mathbf{O}\})/(R \setminus \{0\})$, that is, using the homogeneous coordinates,

$$P^m \ni \mathbf{x} = (x_1, x_2, \dots, x_m, x_0) = (\mathbf{x}, x_0)$$

 P^m is nothing but $R^{m+1} \setminus \{\mathbf{0}\}$ identified by the equivalence relation

$$\mathbf{x} \sim c \times \mathbf{x}, \ c \in R \setminus \{0\}.$$

Let us take a representative $|\mathbf{x}| = 1$ for an element $\mathbf{x} \in P^m$. Then P^m can be considered as the manifold obtained from the sphere S^m by identifying any point x and its antipodal point -x. $P^m \setminus {\mathbf{x}; x_0 = 0}$ —the rest of the infinite plane ${x_0 = 0}$ —can be considered as ${\mathbf{x}/x_0} = R^m$. This is a local coordinate system around the origin $\overline{\mathbf{O}} = (0, 0, \dots, 0, 1)$. The plane which is perpendicular to a vector \mathbf{x} is

$$H_{\mathbf{x}} = \{\mathbf{y}; y_1 x_1 + \dots + y_0 x_0 = 0\}$$

On the sphere this set is the great circle with respect to \mathbf{x} . The corresponding set of $S_{\mathbf{x}}$ in \mathbb{R}^m (see 1.1) is the connected component of $\mathbb{R}^d \setminus H_{\mathbf{x}}$ which does not contain the origin \mathbf{O} .

Fig. 2

Let us introduce the duality mapping

$$\mathbf{x} \Longleftrightarrow \mathbf{x}^* = \mathbf{H}_{\mathbf{x}} = \{\mathbf{y}; (\mathbf{y}, \mathbf{x}) = \mathbf{0}\}, \ \mathbf{H}_{\mathbf{x}}^* = \mathbf{x},$$

and consider \mathbf{x} as a coordinate of $H_{\mathbf{x}}$. Then the set $S_{\mathbf{x}}$ coincides with the set of all hyperplanes which separate a point \mathbf{x} and the origin \mathbf{O} .

1.3.2. Group action and invariant measure. Let L(m), Mo(m) and SO(m + 1) be the Lorentz group, the Euclidean motion group and the rotation group respectively. Then the hyperbolic space \mathcal{H}_2 , the Euclidean space R^m and the sphere S^m are considered as symmetric spaces $\mathcal{H}_2 = L(m)/SO(m)$, $R^m = Mo(m)/SO(m)$ and $S^m = SO(m + 1)/SO(m)$ respectively. There exist invariant measures on their dual spaces.

Let us recall the construction of Brownian motions on the sphere and Euclidean space. Consider a metric space (M, d) and a measure space (E, \mathcal{B}, μ) . Assume also that the metric d and the measure μ are both invariant under the group action, and moreover that the relation

 $M \ni u \mapsto S_u \in \mathcal{B}$

is compatible under the above group action, that is,

$$S_{g \cdot u} = g \cdot S_u.$$

Then the random field defined by $\{X(u) = Y(S_u)\}$ becomes an (M, d)-parameter Brownian motion in the sense of P. Lévy, where $\mathcal{Y} = \{Y(\cdot)\}$ is the Gaussian random measure controlled by (E, μ) .

1.4. Hyperbolic space ([26]). Consider the two-sheeted hyperbolic space

$$\mathcal{H}_2 = \{ |\underline{\mathbf{x}}|^2 - x_0^2 = -1 \},\$$

and the dual space, the 1-sheeted hyperbolic space

$$\mathcal{H}_1 = \{ |\underline{\mathbf{x}}|^2 - x_0^2 = 1 \}.$$

The *m*-dimensional Lorentz group acts on \mathcal{H}_2 and \mathcal{H}_1 . There exist an invariant metric *d* and an invariant measure μ on these two spaces respectively. The dual space \mathcal{H}_1 can be considered the set of all hyperplanes of co-dimension 1 as in the Euclidean case.

Define

$$X(u) = Y(S_u), \quad u \in \mathcal{H}_2,$$

where $S_u = \{h \in E; h \text{ separates the origin } \mathbf{O} \text{ and } u\}$, and $\mathcal{Y} = \{Y(\cdot)\}$ is the random measure controlled by the measure space (\mathcal{H}_1, μ) . Then X(u) is a Brownian motion on \mathcal{H}_2 .

Thus we obtain Brownian motions on the sphere S^m , on the Euclidean space E^m and on the hyperbolic space \mathcal{H}_2 by a unified method. Here these three spaces are considered as symmetric spaces with constant curvatures, +1, 0, -1, respectively.

2. Stable random fields

2.1. Stable Random measures. Similarly as a generalization of Gaussian random measure, let us define symmetric stable random measures.

DEFINITION 2.1. A symmetric α -stable (S α S) system $\mathcal{Y} = \{Y(B); B \in \mathcal{B}, \mu(B) < \infty\}, 0 < \alpha < 2$, is called an S α S random measure controlled by the measure (E, \mathcal{B}, μ) if

- 1. Y(B) is subject to the S α S law with strength (power of scale parameter) $\mu(B)$, that is, $E[e^{izY(B)}] = e^{-\mu(B)|z|^{\alpha}}$.
- 2. For any disjoint sets B_1, B_2, B_3, \ldots , the random variables $Y(B_1), Y(B_2), Y(B_3), \ldots$ form an independent family.
- 3. For any disjoint sets B_1, B_2, B_3, \ldots ,

$$Y(\cup_n B_n) = \sum_n Y(B_n),$$
 a.e.

2.2. Stable random fields on spaces of constant curvatures ([26]). The results in 1.1–1.3 for the Gaussian system can be extended to stable cases.

DEFINITION 2.2. An S α S system {X(u)} is called an S α S Lévy motion on a metric space $(M, d(\cdot, \cdot))$ if

- 1. $X(\mathbf{O}) \equiv 0$, where **O** is the origin of M.
- 2. X(u) X(v) is subject to the S α S law of strength d(u, v).

The constructions of random fields used in the last section are also valid for stable cases.

parameter space M	group	measure space E	measure μ
sphere S^m	SO(m+1,R)	sphere	$\frac{d\underline{\mathbf{x}}}{((\underline{\mathbf{x}}) ^2+1)^{(m+1)/2}}$
Euclidean space \mathbb{R}^m	motion group $Mo(m)$	cylinder	$\frac{d\underline{\mathbf{x}}}{((\underline{\mathbf{x}}) ^{m+1}}$
hyperbolic space \mathcal{H}_2^m	Lorentz group $L(m)$	\mathcal{H}_1^m	$\frac{d\underline{\mathbf{x}}}{((\underline{\mathbf{x}}) ^2-1)^{(m+1)/2}}$

Let \mathcal{Y} be the S α S random measure controlled by the measure (E, μ) , and define

$$X(u) = Y(S_u).$$

Then X is an S α S Lévy motion on the metric space M. This random field X(u) has independent increments along any geodesic lines. That is, for any geodesic line L = L(t)of M, the 1-parameter stochastic process

$$X_L(t) = X(L(t)) - X(L(0))$$

is an additive process with stationary and independent increments. This fact can be derived from the following simple geometrical relation:

$$L \ni \forall \mathbf{u} \to \mathbf{u}^* \ni L^*.$$

That is, all points **u** of L, boundaries of the set $S_{\mathbf{u}}$, share a point of L^* , the dual of L. That is, as we see, when **u** moves to **v** along L, the boundary v^* rotates around L^* . This means that the set $S_{\mathbf{u}} \triangle S_{\mathbf{v}}$ increases monotonically. That is, $X(\cdot)$ has independent increments along L (also see fig. 7 in 3.4).

2.3. Chentsov type random fields. In general, suppose there exist a parameter space M, a measure space (E, \mathcal{B}, μ) and a mapping $S_u : M \ni u \mapsto S_u \in \mathcal{B}$. Let us call an $S\alpha S$ random field X defined by

$$X(u) = Y(S_u)$$

a random field of Chentsov type, where $\mathcal{Y} = \{Y(\cdot)\}\$ is the S α S, $0 < \alpha < 2$, random measure controlled by (E, μ) .

2.3.1. *n*-dimensional characteristic functions. For *n* points (u_1, u_2, \ldots, u_n) of parameter space *M*, the *n*-dimensional characteristic function is

$$E[\exp\{i(z_1X(u_1) + z_2X(u_2) + \dots + z_nX(u_n))\}]$$

= $E[\exp\{i(z_1Y(S_{u_1}) + z_2Y(S_{u_2}) + \dots + z_nY(S_{u_n})\}]$

Let us decompose the sets S_{u_k} , k = 1, ..., n into mutually disjoint sets, so that

$$X(u_1), X(u_1), \ldots, X(u_n)$$

are decomposed into their independent components. Then the above equals

$$= E\left[\exp\left(i\left\{\sum_{\{1,2,\dots,n\}\supset A,\ A\neq\emptyset}\left(\sum_{k\in A}z_k\right)Y\left(\bigcap_{k\in A}S_{u_k}\cap\bigcap_{j\notin A}S_{u_j}^c\right)\right\}\right)\right]\right]$$
$$= \exp\left(-\left\{\sum_{A}\left|\sum_{k\in A}z_k\right|^{\alpha}\mu\left(\bigcap_{k\in A}S_{u_k}\cap\bigcap_{j\notin A}S_{u_j}^c\right)\right\}\right).$$

The above means that we have a characterization of the spectral measure ν of a Chentsov type random vector $X(u_1), X(u_2), \ldots, X(u_n)$,

$$E[\exp\{i(\mathbf{z}, \mathbf{X})\}] = \exp\left(-\left\{\int_{S^{n-1}} |(\mathbf{z}, \mathbf{s})|^{\alpha} \nu(\mathbf{s}) \, d\mathbf{s}\right\}\right).$$

The spectral measures of Chentsov type random vectors concentrate on the symmetric $2 \times (2^n - 1)$ points on S^{n-1} ,

$$\pm (1, 0, \dots, 0), \pm \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \dots, 0\right), \dots$$

2.4. Determinism ([4], [16], [20])

2.4.1. Consistency laws. In general, there exist consistency laws for the above spectral measures. For instance, consider 3 S α S random variables (X_1, X_2, X_3) and compare the spectral measures of (X_1, X_2, X_3) and (X_1, X_2) :

$$E[\exp\{i(z_1X_1 + z_2X_2 + z_3X_3)\}] = \exp\left(-\int_{S^2} |z_1s_1 + z_2s_2 + z_3s_3|^{\alpha}\nu(s_1, s_2, s_3) \, ds_1 \, ds_2 \, ds_3\right)$$
$$E[\exp\{i(z_1X_1 + z_2X_2)\}] = \exp\left(-\int_{S^1} |z_1s_1 + z_2s_2|^{\alpha}\nu_{1,2}(s_1, s_2) \, ds_1 \, ds_2\right).$$

On the other hand, $E[\exp\{i(z_1X_1 + z_2X_2 + z_3X_3)\}]_{z_3=0} = E[\exp\{i(z_1X_1 + z_2X_2)\}]$. We have a consistency law for these spectral measures

$$\nu_{1,2}(s_1, s_2) = \int \nu(s_1, s_2, s_3) \, ds_3,$$

or in spherical coordinates (θ, φ) ,

$$\nu_{1,2}(\theta) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \nu(\theta,\varphi) \cos(\varphi) d\varphi$$

Similar relations hold for $\nu_{2,3}$ and $\nu_{3,1}$.

Let us return to our case. Consider a stable family (not necessarily Chentsov type) of 3 variables (X_1, X_2, X_3) such that all marginal characteristic functions of the pairs $(X_1, X_2), (X_2, X_3), (X_3, X_1)$ are of Chentsov type, that is, their spectral measures concentrate on the points $\pm(1,0), \pm(\frac{1}{2},\frac{1}{2}), \pm(0,1)$. Then, from the above consistency laws, the 3-dimensional spectral measure should be of Chentsov type. The same facts hold for any higher dimensional case. Thus,

THEOREM 2.3 ([21]). If all 2-dimensional marginal characteristic functions of an $S\alpha S$ family $\{X(t); t \in T\}$ are of Chentsov type, then the family X itself has Chentsov type spectral measure.

2.4.2. Lack of point mass from geometry ([4], [16]). Consider 3 sets A, B, C of a measure space (E, μ) and suppose $A \cap B \cap C^c = \emptyset$. Then

$$\mu(A \cap B \cap C) = \mu(A \cap B).$$

This relation means that we can calculate any 3-dimensional measure from their 2dimensional marginal measures. In the above case, we have

$$\mu(A \cap B^c \cap C) = \mu(A \cap C) - \mu(A \cap B \cap C) = \mu(A \cap C) - \mu(A \cap B)$$

(see the left hand side of fig. 4). It is easy to show

PROPOSITION 2.4. Consider a Chentsov type $S\alpha S$ family $\{X_1, X_2, \ldots, X_n\}$. If there exists an integer k such that for any k-dimensional marginals there exists at least one null set related to the point masses of spectral measures, then the whole distribution of this family can be calculated from its (k - 1)-dimensional marginals.

DEFINITION 2.5. We say that the above family has k-dimensional determinism.

THEOREM 2.6. Suppose a Chentsov type $S\alpha S$ family $\{X(u); u \in T\}$ has $k (\geq 2)$ dimensional determinism. If another family $\{Z(u); u \in T\}$ shares the same k-dimensional marginal distributions with X, then $\{Z\}$ is also of Chentsov type and shares the same finite dimensional distributions with X.

Gaussian families have 2-dimensional determinism in this sense. So it should be interesting to consider the stochastic process of fields which have k (> 2) dimensional determinism and do not have 2-dimensional determinism.

2.5. Examples

2.5.1. Stationary fields on \mathbb{R}^m . Take $\mathbf{u} \in \mathbb{R}^m$, and take the corresponding measure space $(E, d\mu) = (\mathbb{R}^m, d\mathbf{x})$. Set

$$S_{\mathbf{u}} = \{ \mathbf{y} \in R^m; ||\mathbf{y} - \mathbf{u}|| \le 1 \},\$$

and define S α S random field $X(\mathbf{u}) = Y(S_{\mathbf{u}})$. Note that in 2-dimensional Euclidean space, any 4 circles divide the whole space into at most 14 subregions (not 16) and this fact holds in higher dimensions. In *m*-dimensional Euclidean space, any m + 2 spheres divide the space into at most $7 \times 2^{m-1}$ subregions. Using this fact the above random field has m + 2-dimensional but not m + 1-dimensional determinism.

Fig. 4

2.5.2. Lévy motions. As we saw in 2.2, the Lévy motions on spaces of constant curvatures are Chentsov type random fields. We can consider the sets $S_{\mathbf{u}}$ as half spaces. The boundaries of $S_{\mathbf{u}}$ are hyperplanes of co-dimension 1. Let us count the number of subregions into which the space is divided by k hyperplanes. R^2 is divided by 2 lines into 4 regions, but into $7 < 2^3$ regions by 3 lines. In the same manner, it is easy to show that m + 1 hyperplanes divide the whole space R^m into only $7 \times 2^{(k-3)} < 2^k$ regions. Thus,

THEOREM 2.7. Any m-parameter Lévy motion has m + 1-dimensional determinism but does not have m-dimensional determinism.

2.5.3. Self-similar stable fields. A S α S random field { $X(\mathbf{u}); \mathbf{u} \in \mathbb{R}^{m}$ } is called *H*-self-similar if

$$X_c(\mathbf{u}) = X(c \cdot \mathbf{u}) \sim c^H X(\mathbf{u}), \quad \forall c > 0.$$

If $0 < \alpha \le 2$, $0 < H < \frac{1}{\alpha}$, set

$$(E,\mu) = (R_+ \times R^m, d\mu(x_0, \mathbf{x}) = x_0^{\alpha H - 1 - m} dx_0 d\mathbf{x}).$$

The set *E* can be considered as the set of balls in \mathbb{R}^m , that is, $(x_0, \mathbf{x}) \sim \{(\mathbf{v}, x_0); \mathbf{v} \in \mathbb{R}^m, \|\mathbf{v} - \mathbf{x}\| \leq x_0\}$.

 Set

$$S_{\mathbf{u}} = \{ \text{ball which contains only one of } \mathbf{O}, \mathbf{u} \}$$
 (see Fig. 6)

Then,

THEOREM 2.8 ([20]). $X(u) = Y(S_u)$ is an H-self-similar SaS random field.

Fig. 6. S. for self-similar processes

As we see in the above figure, there are no point masses in any 1 + 2 dimensional marginals, in the 1-dimensional case. In the *m*-dimensional case, there are no point masses in any m + 2 marginals.

THEOREM 2.9 ([14]). The above H-self-similar processes have m + 2-dimensional determinism.

Note that there exist self-similar processes with more complex determinism ([16]).

3. Multi-parameter additive processes. At the meeting in Tokyo held in October 2000, Professor K. Sato proposed to investigate multi-parameter additive processes. This section is an answer to his proposal.

3.1. Linearly additive stochastic processes

DEFINITION 3.1. An R^m -parameter stochastic process $\{X(\mathbf{t}); t \in R^m\}$ is called a *linearly* additive process if for any (straight) line $L(s) = \{s\mathbf{v} + \mathbf{v}_0; s \in R^1\}$ the 1-parameter process obtained by parameter restriction $X_L(s) \equiv X(s\mathbf{v} + \mathbf{v}_0)$ has independent increments, that is, it is an additive process.

The following theorem of T. Mori is the final result on the structure of these processes.

THEOREM 3.2 ([11]). Let $\{X(\mathbf{t})\}$ be an \mathbb{R}^m -parameter linearly additive stochastic process which is subject to an infinitely divisible law. Then there exists a unique measure μ on the space E of all hyperplanes of co-dimension 1 in \mathbb{R}^m and the process has a (Chentsov type) representation

$$X(\mathbf{t}) = Y(S_{\mathbf{t}}),$$

where $S_{\mathbf{t}}$ is the connected component of $\mathbb{R}^m \setminus \mathbf{t}^*$ which does not contain the origin, and $\{Y(B); B \text{ is a measurable set in } E\}$ is the random measure controlled by the measure space (E, μ) .

3.2. Multi-parameter additive processes

3.2.1. Convex cones

DEFINITION 3.3. A set $V \subset \mathbb{R}^m$ is called a *convex cone* if

- 1. $\forall \mathbf{v} \in V$, $(\mathbf{v}, \mathbf{v}_0) \ge 0$, for a fixed \mathbf{v}_0 .
- 2. V is convex, that is for any $\mathbf{v}_1, \mathbf{v}_2 \in V$ and $0 \le c \le 1$, $c\mathbf{v}_1 + (1-c)\mathbf{v}_2 \in V$.
- 3. for any $\mathbf{v} \in V$, and for any positive $c, c\mathbf{v} \in V$.

DEFINITION 3.4. A curve $\ell(t), 0 \leq t$ is called a *time-like curve* (with respect to V) if

1.
$$\ell(0) = \mathbf{O}$$
,

2. $\ell(t) \in V + \ell(s)$, for any t > s.

Here, we interpret the cone V as the future and -V as the past.

DEFINITION 3.5. The dual cone V^* of a convex cone V is defined as

$$V^* = \{ \mathbf{u} \in R^m; \mathbf{u} \cdot \mathbf{v} \le 0, \ \forall \mathbf{v} \in V \}$$

 V^* is a convex cone too, and $(V^*)^* = \overline{V}$ (the topological closure of V).

3.2.1. Examples.

- For $V = (R_+)^m$, $V^* = (R_-)^m$. For $V_{\mathbf{v}_0,c} = \{\frac{x \cdot \mathbf{v}_0}{\|x\|} \ge c\}$, $0 \le c < 1$, $V^* = \{y; \frac{y \cdot (-\mathbf{v}_0)}{\|y\|} \ge \frac{1}{c}\}$: V is called the light cone in physics.

3.3. *V*-parameter additive processes. Let us fix a convex cone *V*.

DEFINITION 3.6. A random field $\{X(\mathbf{t}); \mathbf{t} \in V\}$ is called a *V*-parameter additive process if the restriction $\{X_{\ell}(t) = X(\ell(t))\}$ to any time-like curve ℓ is an additive process.

If V-parameter additive processes are also linearly additive, then the following representation theorem holds true:

THEOREM 3.7 ([23], [24], [25]). Let $\{X(\mathbf{t}); \mathbf{t} \in \mathbb{R}^m\}$ be a linearly additive $S\alpha S$ process. If the parameter restricted process $\{X(\mathbf{t}); \mathbf{t} \in V\}$ becomes a V-parameter additive process, then there exists a unique measure μ supported in the dual cone such that $X(\cdot)$ has the Chentsov type representation

$$X(\mathbf{t}) = Y(S(\mathbf{t})),$$

where $\{Y(\cdot)\}$ is the S α S random measure controlled by μ .

3.4. Proof. Let us consider points $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots$ in the convex cone V. The differences are

$$X(\mathbf{u}_1) = Y(S(\mathbf{u}_1)),$$

$$X(\mathbf{u}_2 + \mathbf{u}_1) - X(\mathbf{u}_1) = Y(S(\mathbf{u}_2 + \mathbf{u}_1)) - Y(S(\mathbf{u}_1)),$$

$$X(\mathbf{u}_3 + \mathbf{u}_2 + \mathbf{u}_1) - X(\mathbf{u}_2 + \mathbf{u}_1) = Y(S(\mathbf{u}_3 + \mathbf{u}_2 + \mathbf{u}_1)) - Y(S(\mathbf{u}_2 + \mathbf{u}_1)),$$

If the corresponding sets $S(\cdot) \cap V^*$ for the increasing sequence $\mathbf{u}_1, \mathbf{u}_1 + \mathbf{u}_2, \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3, \ldots$ form an increasing sequence of sets, then the corresponding random variables

$$X(\mathbf{u}_1) = Y(S(\mathbf{u}_1)),$$

$$X(\mathbf{u}_2 + \mathbf{u}_1) - X(\mathbf{u}_1) = Y(S(\mathbf{u}_2 + \mathbf{u}_1) \setminus S(\mathbf{u}_1)),$$

$$X(\mathbf{u}_3 + \mathbf{u}_2 + \mathbf{u}_1) - X(\mathbf{u}_2 + \mathbf{u}_1) = Y(S(\mathbf{u}_3 + \mathbf{u}_2 + \mathbf{u}_1) \setminus S(\mathbf{u}_2 + \mathbf{u}_1)),$$

. . .

form an independent family.

Let us prove this fact. Set $S(\mathbf{u}_1) = {\mathbf{u}_1 \cdot \mathbf{x} \leq -1}$ and $S(\mathbf{u}_1 + \mathbf{u}_2) = {(\mathbf{u}_1 + \mathbf{u}_2) \cdot \mathbf{x} \leq -1}$, and consider the boundary of the intersection of the two sets, $B = \{\mathbf{x}; \mathbf{u}_1 \cdot \mathbf{x} = -1,$ $(\mathbf{u}_1 + \mathbf{u}_2) \cdot \mathbf{x} = -1$. Then $\forall \mathbf{z} \in B, \, \mathbf{z} \cdot \mathbf{u}_2 = 0$.

Recall the definition of the dual cone $V^* = \{\mathbf{u}; \mathbf{u} \cdot \mathbf{v} \leq 0, \forall \mathbf{v} \in V\}$. This means that the set B is located outside of the set V^* . Moreover the distances of two boundaries from the origin are $1/||\mathbf{u}_1||$, $1/||\mathbf{u}_1 + \mathbf{u}_2||$, and $||\mathbf{u}_1|| < ||\mathbf{u}_1 + \mathbf{u}_2||$. Thus,

$$(S(\mathbf{u}_1 + \mathbf{u}_2) \cap V^*) \supset (S(\mathbf{u}_1) \cap V^*),$$

that is, the difference $X(\mathbf{u}_1 + \mathbf{u}_2) - X(\mathbf{u}_1)$ is independent of $X(\mathbf{u}_1)$.

Conversely, if the support of the measure is not contained in the dual cone, there exists an increasing sequence $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ such that the above B and V^{*} have nonempty

Fig. 7

intersection. So, the related process is not additive on the line $\overline{\mathbf{u}_1\mathbf{u}_2\mathbf{u}_3}$. This completes the proof.

3.4.1. Determinism. As a special case of linearly additive $S\alpha S$ processes, multi-parameter additive processes have m + 1-dimensional determinism.

4. Subordination. Let Y(t), $0 \le t$, be a positive stable motion of index β , $0 < \beta < 1$, that is, $Y(\cdot)$ has stationary and independent increments. And let X(t), $0 \le t$, be a symmetric stable motion of index α , $0 < \alpha \le 2$. Then the following result is well known as Bochner's subordination:

The random time change Z(t) = X(Y(t)) of the process $X(\cdot)$ becomes a symmetric stable motion with index $\alpha \cdot \beta$.

In this note, we will show an extension of the above result. The parameter of $X(\cdot)$ will be extended to a multi-dimensional space and $Y(\cdot)$ will be considered a vector-valued process.

4.1. 1-dimensional case

4.1.1. Definitions and Bochner's subordination. Let X(t), $0 \le t$, be a symmetric stable process of index α with stationary independent increments, that is,

- 1. $E[e^{iz \cdot X(t)}] = e^{-at \cdot |z|^{\alpha}}, \ a > 0,$
- 2. $X(t_n) X(t_{n-1}), X(t_{n-1}) X(t_{n-2}), \dots X(t_1) X(t_0)$ is an independent system for $t_n \ge t_{n-1} \ge \dots \ge t_0$,
- 3. $X(t+h) X(t) \sim X(h)$ (equality of laws).

A positive stable process Y(t) is called a subordinator of index β if

- 1. $E[e^{iz \cdot Y(t)}] = e^{-bt \cdot |z|^{\beta}(1-i \cdot \operatorname{sign}(z) \tan(\frac{\pi\beta}{2})}, b > 0$, that is Y(t) is subject to a positive stable distribution of index β .
- 2. Y(t) has independent and stationary increments.

Bochner considered the composition Z(t) = X(Y(t)) and obtained

THEOREM 4.1 (Bochner's subordination [2]). X(Y(t)) is a symmetric stable motion of index $\alpha \cdot \beta$.

4.2. Sketch of the proof

4.2.1. Approximation of subordinator. Let $T_{c^{-n}\lambda}(t)$, $n \in \mathbb{Z}$ be a sequence of independent Poisson processes with intensities $c^{-n}\lambda$, for a constant c > 1. Consider the sum

$$T(t) = \sum_{-\infty}^{\infty} c^{n\gamma} T^n_{c^{-n}\lambda}(t).$$

T(t) is a semi-self-similar process, that is,

$$T(c^k \cdot t) \sim c^{k\gamma} T(t), \ \forall k \in \mathbf{N},$$

and the characteristic function is

$$\varphi_T(z) = E[\exp(i \cdot zT(t))] = \exp\left(-\lambda \cdot t \sum_{n=-\infty}^{\infty} c^{-n}(1 - \exp(ic^{\gamma}z))\right).$$

The series in the above equation converges if $1 < \gamma$. Let us replace the semi-self-similar constant c and the intensity constant λ by $c_p = c \frac{1}{2^p}$, $\lambda_p = \frac{\lambda}{2^p}$, $p = 1, 2, \ldots$ The above series converges to

$$\exp\left(-\lambda t \int_0^\infty \frac{1 - \exp(ix^{-\gamma}z)}{c'} dx\right), \quad c' = c - 1.$$

The above integral is equal to

$$\exp\left(\frac{\lambda \cdot t}{\gamma c'} \int_0^\infty (1 - \cos x) x^{-\frac{\gamma+1}{\gamma}} dx |z|^{\frac{1}{\gamma}} (1 - i \operatorname{sign}(z) \tan\left(\frac{\pi/\gamma}{2}\right)\right).$$

That is, T(t) converges to the subordinator Y(t) of index $\beta = \frac{1}{\gamma}$.

4.2.2. Subordination by a Poisson process. Let X(t), $0 \leq t$ be a symmetric α -stable motion, that is,

$$E[e^{izX(t)}] = \exp(-t(|z|^{\alpha})).$$

Consider the time-changed process $X(aT_{\lambda}(t))$, by a Poisson process $T_{\lambda}(t)$ which is independent of X(t). The characteristic function is

$$E[e^{izX(aT_{\lambda}(t))}] = \exp(-\lambda t(1 - e^{-a|z|^{\alpha}})).$$

Consider the characteristic function of the process $X(aT_{\lambda}(t) + bT_{\mu}(t))$ which is obtained by the time change using two independent Poisson processes with different means and different jumps:

$$\begin{split} E[e^{iz(X(aT_{\lambda}(t)+bT_{\mu}(t)))}] &= e^{-(\lambda+\mu)t} \sum_{j,k} \frac{e^{(aj+bk)|z|^{\alpha}}}{(\lambda t)^{j}(\mu t)^{k}} \\ &= \exp(-t(\lambda(1-e^{-a|z|^{\alpha}})+\mu(1-e^{-b|z|^{\alpha}}))). \end{split}$$

Thus the characteristic function of the process X(T(t)) in 4.2.1 is

$$E[e^{izX(T(t))}] = \exp\left(-\lambda t \sum_{n} c^{-n} (1 - e^{-c^{n\gamma|z|^{\alpha}}})\right)$$

and, as in 4.2.1, the above sum converges to the following integral:

$$\exp\left(-\lambda t \int_0^\infty \frac{1 - e^{x^{-\gamma}|z|^\alpha}}{c'} dx\right) = \exp\left(-\lambda t \int_0^\infty \frac{1 - e^{(x|z|^{-\alpha/\gamma})^{-\gamma}}}{c'} dx\right)$$
$$= \exp\left(-\lambda t |z|^{\frac{\alpha}{\gamma}} \int_0^\infty \frac{1 - e^{y^{-\gamma}}}{c'} dy\right).$$

Thus the limit process X(Y(t)) of X(T(t)) has the symmetric stable law of index $\alpha \cdot \beta$, $\beta = \frac{1}{H}$.

4.2.3. Increments. Let us consider the 2-dimensional characteristic function. For $t \ge s \ge 0$,

$$\begin{split} E[\exp(i(z_1(X(aT_{\lambda}(t) + bT\mu(t)) - X(aT_{\lambda}(s) + bT_{\mu}(s))) + z_2X(aT_{\lambda}(s) + bT_{\mu}(s))))] \\ &= \sum_{k_t \ge k_s \ge 0, \ell_t \ge \ell_s \ge 0} E[\exp(i(z_1(X(ak_t + b\ell_t) - X(ak_s + b\ell_s)) + z_2X(ak_s + b\ell_s)))) \\ &\cdot P(T_{\lambda}(t) = k_t, T_{\lambda}(s) = k_s, T_{\mu}(t) = \ell_t, T_{\mu}(s) = \ell_s) \\ &= \sum E[\exp(iz_1(X(ak_t + b\ell_t) - X(ak_s + b\ell_s)))]P(T_{\lambda}(t) - T_{\lambda}(s) = k_t - k_s) \\ &\cdot P(T_{\mu}(t) - T_{\mu}(s) = \ell_t - \ell_s) \cdot P(T_{\lambda}(t) = k_t, T_{\lambda}(s) = k_s, T_{\mu}(t) = \ell_t, T_{\mu}(s) = \ell_s) \\ &= \sum_{k_t - k_s, \ell_t - \ell_s} E[\exp(iz_1(X((ak_t - ak_s) + (b\ell_t - b\ell_s))))] \\ &\cdot P(T_{\lambda}(t - s) = k_t - k_s) \cdot P(T_{\mu}(t - s) = \ell_t - \ell_s) \\ &\cdot \sum_{k_s, \ell_s} E[\exp(iz_2(X(ak_s + b\ell_s)))]P(T_{\lambda}(s) = k_s)P(T_{\mu}(s) = \ell_s) \\ &= E[\exp(i(z_1(X(aT_{\lambda}(t) + bT\mu(t)) - X(aT_{\lambda}(s) + bT_{\mu}(s)))))] \cdot E[z_2X(aT_{\lambda}(s) + bT_{\mu}(s))]. \end{split}$$

This means that the processes X(T(t)) and X(Y(t)) have independent increments. Along these lines we can prove that the process X(Y(t)) is an S $\alpha\beta$ S Lévy motion, that is, a process having stationary and independent increments.

4.3. Multi-dimensional case. First, we need the concept of multi-dimensional random time (subordinator). Let us fix a future cone V.

4.3.1. Multi-dimensional subordinator [27]. Let ν be a measure on $V \cap S^{m-1}$. There is one-to-one correspondence between the measure ν and an R^m -valued positive stable process $\mathbf{Y}(t) (= \mathbf{Y}_{\nu}), 0 \leq t$, with index $0 < \beta < 1$ which satisfies the following properties:

- 1. $\mathbf{Y}(\cdot; \omega)$ is a time-like curve for a.e. ω .
- 2. $\mathbf{Y}(t) \mathbf{Y}(s), t > s$ is independent of $\mathbf{Y}(t)$, and $\mathbf{Y}(t) \mathbf{Y}(s) \sim \mathbf{Y}(t-s)$.

4.3.2. Multi-parameter additive process with stationary increments. Let $X(\mathbf{t}), t \in V$ be a V-parameter additive process (cf. 3.3). Suppose X has stationary increments, that is,

$$E[e^{i(X(\mathbf{t})-X(\mathbf{s})z}] = e^{-\sigma(\mathbf{t}-\mathbf{s})||z||^{\alpha}}$$

and $\sigma(\mathbf{t}) = |\mathbf{t}| \sigma(\frac{\mathbf{t}}{|\mathbf{t}|})$. Then theorem 3.7 can be modified as

THEOREM 4.2 ([23], [24], [25]). There is one-to-one correspondence between measures on $V^* \cap S^{m-1}$ and additive, stationary increments processes on time-like curves. Here the measure μ on V^* has the form $d\mu(r \cdot \mathbf{q}) = d\mu_{S^{m-1}}(\mathbf{q}) \frac{dr}{r^{m+1}}, \mathbf{x} = r \times \mathbf{q}, r \ge 0, \mathbf{q} \in S^{m-1}$.

4.4. Subordination in multi-dimensional case. We can easily rewrite the proofs in 4.2.1 - 4.2.3, and obtain an extension of Bochner's subordination.

THEOREM 4.3. The time-changed process $X(\mathbf{Y}(t))$ is an $S\alpha\beta S$ Lévy motion.

4.4.1. Subordination by a Poisson process of direction $\mathbf{a} \in V$. Consider the time changed process $X(\mathbf{a}T_{\lambda}(t))$ by a Poisson process of direction $\mathbf{a} \in V$. The characteristic function is

$$E[e^{izX(\mathbf{a}T_{\lambda}(t))}] = \exp(-\lambda t(1 - e^{-\sigma(\mathbf{a})|z|^{\alpha}})),$$

where $\sigma(\mathbf{a})$ is the strength of the S α S Lévy motion $X|_{t\mathbf{a}} = X(\mathbf{a}t)$ along the line $\{t\mathbf{a} : t \ge 0\}$. The characteristic function of the process $X(\mathbf{a}T_{\lambda}(t) + \mathbf{b}T_{\mu}(t))$ for two independent Poisson processes $T_{\lambda}(t), T_{\mu}(t)$ with different directions \mathbf{a} and \mathbf{b} is

$$E[e^{iz(X(\mathbf{a}T_{\lambda}(t)+\mathbf{b}T_{\mu}(t)))}] = e^{-(\lambda+\mu)t} \sum_{j,k} \frac{e^{\sigma(j\mathbf{a}+k\mathbf{b})|z|^{\alpha}}}{(\lambda t)^{j}(\mu t)^{k}} = e^{-(\lambda+\mu)t} e^{-\lambda t e^{-\sigma(\mathbf{a})|z|^{\alpha}}} e^{-\mu t e^{-\sigma(\mathbf{b})|z|^{\alpha}}}$$
$$= \exp(-t(\lambda(1-e^{-\sigma(\mathbf{a})|z|^{\alpha}}) + \mu(1-e^{-\sigma(\mathbf{b})|z|^{\alpha}}))).$$

Note that the relation $\sigma(j\mathbf{a} + k\mathbf{b}) = j\sigma(\mathbf{a}) + k\sigma(\mathbf{b})$ comes from the properties that $X(\mathbf{t})$ has independent stationary increments. Thus the characteristic function of the process $X(\mathbf{a}T_1(t) + \mathbf{b}T_2(t))$ with the processes like 1.2.1 is

$$E[e^{izX(\mathbf{a}T_{1}(t)+\mathbf{b}T_{2}(t))}] = \exp\left(-\lambda_{1}t\sum_{n}c^{-n}(1-e^{-c^{\sigma(\mathbf{a})nH|z|^{\alpha}}}) - \lambda_{2}t\sum_{n}c^{-n}(1-e^{-c^{\sigma(\mathbf{b})nH|z|^{\alpha}}})\right).$$

By arguments similar to 1.2.2, we can show that the time-changed process is subject to $S\alpha\beta S$ law and the strength is proportional to the time parameter t.

4.4.2. Increments. Let us consider the 2-dimensional characteristic function. For the points $t \ge s \ge 0$,

$$\begin{split} E[\exp(i(z_1(X(\mathbf{a}T_{\lambda}(t) + \mathbf{b}T\mu(t)) - X(\mathbf{a}T_{\lambda}(s) + \mathbf{b}T_{\mu}(s))) + z_2X(\mathbf{a}T_{\lambda}(s) + \mathbf{b}T_{\mu}(s))))] \\ &= \sum_{k_t \ge k_s \ge 0, \ell_t \ge \ell_s \ge 0} E[\exp(i(z_1(X(\mathbf{a}k_t + \mathbf{b}\ell_t) - X(\mathbf{a}k_s + \mathbf{b}\ell_s)) + z_2X(ak_s + b\ell_s)))] \\ &\cdot P(T_{\lambda}(t) = k_t, T_{\lambda}(s) = k_s, T_{\mu}(t) = \ell_t, T_{\mu}(s) = \ell_s) \\ &= \sum E[\exp(iz_1(X(\mathbf{a}k_t + \mathbf{b}\ell_t) - X(\mathbf{a}k_s + \mathbf{b}\ell_s)))]P(T_{\lambda}(t) - T_{\lambda}(s) = k_t - k_s) \\ &\cdot P(T_{\mu}(t) - T_{\mu}(s) = \ell_t - \ell_s) \cdot P(T_{\lambda}(t) = k_t, T_{\lambda}(s) = k_s, T_{\mu}(t) = \ell_t, T_{\mu}(s) = \ell_s) \\ &= \sum_{k_t - k_s, \ell_t - \ell_s} E[\exp(iz_1(X((\mathbf{a}k_t - \mathbf{a}k_s) + (\mathbf{b}\ell_t - \mathbf{b}\ell_s))))] \\ &\cdot P(T_{\lambda}(t - s) = k_t - k_s) \cdot P(T_{\mu}(t - s) = \ell_t - \ell_s) \\ &\cdot \sum_{k_s, \ell_s} E[\exp(iz_2(X(\mathbf{a}k_s + \mathbf{b}\ell_s)))]P(T_{\lambda}(s) = k_s)P(T_{\mu}(s) = \ell_s) \\ &= E[\exp(i(z_1(X(\mathbf{a}T_{\lambda}(t) + \mathbf{b}T\mu(t)) - X(\mathbf{a}T_{\lambda}(s) + \mathbf{b}T_{\mu}(s))))]) \cdot E[z_2X(\mathbf{a}T_{\lambda}(s) + \mathbf{b}T_{\mu}(s))]. \end{split}$$

This means the process $X(\mathbf{Y}(t))$ has independent increments. Thus the process $X(\mathbf{Y}(t))$ is a S α S Lévy motion.

References

- O. E. Barndorff-Nielsen, J. Pedersen and K. Sato, Multivariate subordination, selfdecomposability and stability, Adv. Appl. Prob. 33 (2001), 160–187.
- [2] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. of California Press, 1955.
- [3] N. N. Chentsov, Lévy Brownian motion of several parameters and generalized white noise, Theory Probab. Appl. 2 (1957), 265–266 (original Russian article in 1956).
- T. Hida, Canonical representations of Gaussian processes and their applications, Mem. College Sci. Univ. Kyoto 33 (1960), 109–155.
- K. Kojo and S. Takenaka, On canonical representations of stable M_t-processes, Probab. Math. Statist. 13 (1992), 229–238.
- [6] K. Kojo, SαS M(t)-processes and their canonical representations, Hiroshima Math. J. 23 (1993), 305–326.
- [7] P. Lévy, Le Mouvement Brownien, Gauthier-Villars, 1954.
- [8] P. Lévy, Processus Stochastiques et Mouvement Brownien, 2nd ed., Gauthier-Villars, 1965.
- H. P. McKean Jr., Brownian motion with a several-dimensional time, Theory Probab. Appl. 8 (1963), 335–354.
- G. M. Molchan, Markov property of Lévy fields on spaces of constant curvature, D.A.N. 221 (1975), 1276–1279 (in Russian).
- T. Mori, Representation of linearly additive random fields, Prob. Theory and Related Fields 92 (1992), 91–115.
- [12] J. Pedersen and K. Sato, Lévy processes and convolution semi-groups with parameter in a cone and their subordination, Research Rep. 43 (2001) Center for Mathematical Physics and Statistics.
- [13] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, 1994.
- [14] Y. Sato, Distributions of stable random fields of Chentsov type, Nagoya Math. J. 123 (1991), 119–139.
- Y. Sato, Structure of Lévy measures of stable random fields of Chentsov type, Probab. Math. Statist. 13 (1992), 165–176.
- [16] Y. Sato and S. Takenaka, On determinism of symmetric α-stable processes of generalized Chentsov type, in: Gaussian Random Fields, the third Nagoya Lévy Seminar, World Scientific, 1992, 229–238.
- S. Takenaka, On projective invariance of multi-parameter Brownian motion, Nagoya Math. J. 67 (1977), 89–120.
- [18] S. Takenaka, Representation of Euclidean random field, Nagoya Math. J. 105 (1987), 19–31.
- [19] S. Takenaka, On pathwise projective invariance of Brownian motion. I, Proc. Japan Acad. 64 (1988), 41–44.
- [20] S. Takenaka, Integral-geometric construction of self-similar stable processes, Nagoya Math. J. 123 (1991), 1–12.

- 241
- [21] S. Takenaka, Examples of self-similar stable processes, in: Stochastic Processes— Festschrift in Honour of Gopinath Kallianpur, Springer-Verlag, 1993, 303–311.
- [22] S. Takenaka, On determinism of set-indexed SαS-processes, in: Trends in Probability and Related Analysis 1999, World Scientific, 1999, 285–290.
- [23] S. Takenaka, Linearly additive random fields with independent increments on time-like curves, Math. Forschungsinstitut Oberwolfach, Tagungsbericht 48 (2001), 10–10.
- [24] S. Takenaka, Linearly additive random fields with independent increments on time-like curves, The Institute of Statistical Mathematics, Cooperative Research Report 146 (2002), 13–19.
- [25] S. Takenaka, Linearly additive random fields with independent increments on time-like curves, Probab. Math. Statist. 23 (2003), 1–5.
- [26] S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric space of constant curvature, Nagoya Math. J. 82 (1981), 433–437.
- [27] H. Tanida and S. Takenaka, Cone valued subordinators, Bull. Okayama Univ. Sci. 39A (2003), 1–4 (in Japanese).
- [28] Y. Yamane and S. Takenaka, Subordination in multi-parameter case, Report of the Institute of Math. Stat. 213 (2008), 133–137.