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Abstract. Take finitely many topological spaces and for each pair of these spaces choose a

pair of corresponding closed subspaces that are identified by a homeomorphism. We note that

this gluing procedure does not guarantee that the building pieces, or the gluings of some pieces,

are embedded in the space obtained by putting together all given ingredients. Dually, we show

that a certain sufficient condition, called the cocycle condition, is also necessary to guarantee

sheaf-like properties of surjective multi-pullbacks of algebras with distributive lattices of ideals.

When constructing a topological space as the gluing of pieces, it is desirable that the

parts are embedded into the described space. The gluing of three intervals I1 ∼= I2 ∼=
I3 ∼= [−1, 1] into the space T∗ described by Fig. 1 fails this property as the endpoints of

I2 and I3 are glued into a single point.

There is, however, a more subtle way in which a gluing may fail to embed its parts into

the whole space. To see this, consider another gluing of I1, I2 and I3 depicted in Fig. 2(a)

into the space T◦ pictured in Fig. 2(b). All the Ij ’s are embedded into T◦ but the partial

gluing of I2 and I3 is not. Of course, one can define an alternative gluing procedure of

Ij ’s into T◦ (see Fig. 2(c)) for which all partial gluings are embedded into T◦.
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Let us now consider the problem of gluing from the point of view of algebras. Let J

be a finite set, and let

{πij : Bi −→ Bij = Bji}i,j∈J, i6=j (1)

be a family of algebra homomorphisms.

Definition 1 ([1, 5]). The multi-pullback algebra Bπ of a family (1) of algebra homo-

morphisms is defined as

Bπ :=
{

(bi)i ∈
∏
i∈J

Bi

∣∣∣ πij(bi) = πji (bj), ∀ i, j ∈ J, i 6= j
}
.

Definition 2. A family (1) of algebra homomorphisms is called distributive if and only

if all of them are surjective and for all i ∈ J the kernels of πij , j ∈ J \ {i}, generate a

distributive lattice of ideals.

The multi-pullback algebra of a distributive family of homomorphisms is the main

mathematical concept of this note, and plays a key role in [3, 2, 4]. In particular, it

includes the multi-pullbacks of all finite families of surjective unital homomorphisms

of C∗-algebras. In the case of commutative unital C∗-algebras, such a multi-pullback

C∗-algebra can be identified with the algebra of all continuous functions on the compact

Hausdorff space obtained by the gluing procedure described in the abstract applied to

compact Hausdorff spaces.
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Example 3. Consider the C∗-algebra C(T∗) of all continuous functions on T∗ as the

multi-pullback C∗-algebra corresponding to the gluing depicted on Fig. 1(a). Here we

take Bi = C(Ii), i = 1, 2, 3, B12 = B13 = C, B23 = C ⊕ C, and define C∗-epimorphisms

by the formulae

π1
2 = π2

1 = π1
3 = π3

1 : f 7→ f(1), π2
3 : f 7→ (f(−1), f(1)), π3

2 : f 7→ (f(1), f(−1)).

The fact that I2 is not embedded in T∗ corresponds to the non-surjectivity of the canonical

projection Bπ → B2.

Example 4. Consider the C∗-algebra C(T◦) of all continuous functions on T◦ as the

multi-pullback C∗-algebra corresponding to the gluing depicted on Fig. 2(a). Here we

take Bi = C(Ii), Bij := C, 1 ≤ i, j ≤ 3, i 6= j, and define C∗-epimorphisms by the

formulae

π1
2 = π2

1 = π1
3 = π3

1 : f 7→ f(1), π2
3 = π3

2 : f 7→ f(−1).

While the canonical projectionsBπ → Bi are all surjective, the canonical projectionBπ →
{(b2, b3) ∈ B2×B3 | π2

3(b2) = π3
2(b3)} is not. Indeed, a pair b2 := (t 7→ t), b3 := (t 7→ −1)

satisfies π2
3(b2) = π3

2(b3), but there is no function b1 ∈ B1 such that (b1, b2, b3) ∈ Bπ. This

corresponds to the fact that the gluing of I2 and I3 is not embedded in T◦.

Example 5. We can present the C∗-algebra C(T◦) of all continuous functions on T◦
pictured in Fig. 2(b) by using different multi-pullbacks: one corresponding to the gluing

depicted in Fig. 2(a) (see Example 4) and one corresponding to the gluing depicted in

Fig. 2(c). For the latter case, we take the Bi’s, B12, B13, π1
2 , π2

1 , π1
3 , π3

1 as in Example 4,

but we put B23 := C⊕ C and π2
3 = π3

2 : f 7→ (f(−1), f(1)). Now not only the canonical

projections Bπ → Bi are all surjective, but also, for all distinct i, j, k and all bi ∈ Bi,
bj ∈ Bj such that πij(bi) = πji (bj), there exists bk ∈ Bk such that πik(bi) = πki (bk) and

πjk(bj) = πkj (bk).

It turns out that the cocycle condition defined below is a perfect tool to understand

the differences between the above examples. To define the cocycle condition, for any

distinct i, j, k we put Bijk := Bi/(kerπij + kerπik) and take [·]ijk : Bi → Bijk to be the

canonical surjections. Next, we introduce the family of maps

πijk : Bijk −→ Bij/π
i
j(kerπik), [bi]

i
jk 7−→ πij(bi) + πij(kerπik). (2)

They are isomorphisms when πij ’s are epimorphisms. Now we are ready for:

Definition 6 ([1, in Proposition 9]). We say that a family (1) of surjective algebra

homomorphisms satisfies the cocycle condition if and only if, for all distinct i, j, k ∈ J ,

1. πij(kerπik) = πji (kerπjk),

2. the isomorphisms φijk := (πijk )−1 ◦ πjik : Bjik → Bijk satisfy φikj = φijk ◦ φ
jk
i .

It was proven in [1] that, if a distributive family of πij ’s satisfies the cocycle con-

dition, then the canonical projections Bπ → Bi are all surjective. In particular, the

multi-pullback from Example 3 cannot satisfy the cocycle condition. The multi-pullback

presentation of C(T◦) from Example 4 demonstrates, however, that the cocycle condition

is not necessary for the canonical projections Bπ → Bi to be surjective. Indeed, they

are all clearly surjective in this case, but πij ’s do not satisfy the cocycle condition be-
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cause π1
2(kerπ1

3) = {0} whereas π2
1(kerπ2

3) = C. On the other hand, the cocycle condition

is satisfied by an alternative multi-pullback presentation of C(T◦) given in Example 5.

This suggests that the cocycle condition is related to the possibility of extending partial

multi-pullbacks. Thus we arrive at the main result of this note:

Theorem 7. The following statements about a distributive family (1) of algebra homo-

morphisms are equivalent:

1. The family (1) satisfies the cocycle condition.

2. For any K ( J , k ∈ J \K and (bl)l∈K ∈
∏
l∈K Bl such that πij(bi) = πji (bj) for all

distinct i, j ∈ K, there exists bk ∈ Bk such that πlk(bl) = πkl (bk) for all l ∈ K.

3. For all distinct i, j, k ∈ J and all bi ∈ Bi, bj ∈ Bj such that πij(bi) = πji (bj), there

exists bk ∈ Bk such that also πik(bi) = πki (bk) and πjk(bj) = πkj (bk).

Proof. The proof of (1)⇒ (2) is essentially identical with the proof of [1, Proposition 9],

and (3) is obviously a special case of (2). In order to prove (3)⇒ (1) and close the loop

of implications, assume that for any distinct i, j, k ∈ J and for arbitrary elements bi ∈ Bi
and bj ∈ Bj such that πij(bi) = πji (bj) there exists bk ∈ Bk such that also πik(bi) = πki (bk)

and πjk(bj) = πkj (bk). Specializing this condition for bj = 0 yields that for any bi ∈ kerπij
there exists a bk ∈ kerπkj such that πik(bi) = πki (bk), that is πik(kerπij) ⊆ πki (kerπkj ).

Exchanging i and k we obtain the set equality. This proves Condition (1) defining the

cocycle condition.

To prove the second condition observe that, for all distinct i, j, k ∈ J and any bi ∈ Bi,
bj ∈ Bj ,

[bi]
i
jk = φijk ([bj ]

j
ik) ⇔ πjik ([bj ]

j
ik) = πijk ([bi]

i
jk) ⇔ πij(bi)− π

j
i (bj) ∈ π

i
j(kerπik). (3)

Now let us pick any distinct i, j, k ∈ J and any bj ∈ Bj . Since πkj is surjective, there

exists bk ∈ Bk such that πkj (bk) = πjk(bj), so that [bk]kji = φkji ([bj ]
j
ik) by (3). Furthermore,

by assumption, there exists bi ∈ Bi such that πik(bi) = πki (bk) and πij(bi) = πji (bj).

Therefore, again by (3), we obtain

[bi]
i
jk = φikj ([bk]kji) = φikj (φkji ([bj ]

j
ik)) and [bi]

i
jk = φijk ([bj ]

j
ik). (4)

Plugging in the second equality to the first one, we get φijk ([bj ]
j
ik) = φikj (φkji ([bj ]

j
ik)) for

any [bj ]
j
ik ∈ B

j
ik, as needed.

Finally, let us remark that the fact that in Example 5 we could remedy the lack of the

cocycle condition in Example 4 is not a coincidence. Indeed, following [1, Proposition 8

and Remark 2], one sees that, if Bπ is the multi-pullback of an appropriate family (1),

then Bπ can also be presented as the multi-pullback of a family satisfying the cocycle

condition even if the original family failed to do so. More precisely:

Proposition 8. If Bπ is the multi-pullback of a family (1) such that the canonical

projections Bπ → Bi are all surjective and their kernels generate a distributive lattice of

ideals, then the family defined via the canonical surjections

{π
′i
j : Bi ∼= Bπ/ ker(Bπ → Bi) −→ Bπ/(ker(Bπ → Bi) + ker(Bπ → Bj))}i,j∈J, i 6=j (5)

satisfies the cocycle condition and its multi-pullback is isomorphic to Bπ.
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The aforementioned example is a special case of this general claim because C∗-ideals

always generate a distributive lattice.

Acknowledgments. This work is part of the project Geometry and Symmetry of Quan-

tum Spaces sponsored by grants PIRSES-GA-2008-230836 and 1261/7.PR UE/2009/7.

References

[1] D. Calow and R. Matthes, Covering and gluing of algebras and differential algebras, J. Geom.

Phys. 32 (2000), 364–396.
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