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Abstract. We give a classification of Z/2Z-graded fusion categories whose 0-component is a

pointed fusion category. A number of concrete examples are considered.

1. Introduction

1.1. A fusion category over an algebraically closed field k of characteristic zero is a

k-linear semisimple rigid tensor category C with finitely many simple objects (the unit

object 1 is supposed to be simple) and finite dimensional spaces of morphisms. Our main

reference on fusion categories is [4]. Throughout this paper we work with k = C although

many results hold for general k. If there is no ambiguity, we use the same notation for an

equivalence class and for its representative.

A fusion category C is said to be graded by a finite group G if C = ⊕g∈Gc(g), where

c(g) are full abelian subcategories of C such that c(g)∗ = c(g−1) and the tensor product

maps c(g)×c(h) to c(gh), for all g, h ∈ G (we call C a G-extension of its fusion subcategory

c(e), where e is the unit of G). A fusion category is said to be pointed if all its simple

objects are invertible with respect to the tensor product. Such a category is equivalent

to the category V ecωS whose simple objects are elements of a finite group S with tensor

product s⊗t = st, the unit object 1 = 1S , the duality s∗ = ∗s = s−1, and the associativity

isomorphisms defined by ω ∈ H3(S,C×).
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Our aim is classification of Z/2Z-extensions C = c(0)⊕ c(1) of c(0) = V ecωS . Tambara

and Yamagami [23] showed that for any such an extension with c(1) containing only

one simple object, S must be abelian and equipped with a symmetric non-degenerate

bicharacter χ, and ω = 1. The general case is much more complicated. We show that S

must contain a normal abelian subgroup A, so S ∼= Ao
ρ
S/A, a twisted semidirect product

with an action of S/A on A and ρ ∈ Z2(S/A,A); see, for instance, [3] (the simplest

example: S = Z/4Z = Z/2Z o
ρ
Z/2Z with trivial action and nontrivial ρ). Then, A must

be equipped with a symmetric non-degenerate bicharacter χ and with an equivalence

class of 2-cochains µr invariant with respect to Aut(S) and such that ∂2µr = ω, modulo

2-cocycles on A which can be extended to 2-cocycles on Sop, the opposite group to S.

The above extensions of 2-cocycles are classified by couples (ψ, ν), where maps ψ ∈
Z1(S/A,Fun(A × A,C×)) and ν ∈ C2(S/A,C×) satisfy some relations. If S is a usual

semidirect product, i.e., ρ = 1, this was explained in [12]; in this partial case we show

that there is only one class µr, so it can be omitted. Finally, the Grothendieck rings of

Z/2Z-extensions of V ecωS are classified by couples (ε, δ), where ε ∈ Aut(S/A), δ ∈ S/A
are such that ε2 = Ad(δ) and ε(δ) = δ.

Thus, our main result, Theorem 3.16, claims that Z/2Z-extensions of V ecωS are clas-

sified, up to equivalence, by collections (A,χ, µr, τ, ε, δ, ψ, ν), where τ = ±|A|−1/2, like

in [23]. It also describes their structure and allows to construct a number of new examples

of fusion categories.

We have to mention that Liptrap [14] earlier obtained some classification of Z/2Z-

extensions of V ecωS (analyzing, as in [23], the solutions of the system of 16 pentagon

equations for the associativity isomorphisms of C), but in terms that are difficult to ap-

ply to the construction of concrete examples. On the other hand, we need new examples

of fusion categories in order to construct new families of finite index and finite depth

II1-subfactors as follows: 1) For a given concrete fusion category C, the Hayashi’s recon-

struction theorem [25] (see also [24]) allows to construct a canonical weak Hopf algebra

(a quantum groupoid) H [1], [18] whose representation category is equivalent to C. 2)

From a given H, one can construct a subfactor whose bimodule category is equivalent

to C, and compute its index, principal and dual graphs, and the lattice of intermediate

subfactors; see [19], [20]. If C is Tambara-Yamagami category, this was done in [15] and

gave a family of subfactors of index (n +
√
n)2/d (n, d ∈ N, d|n). We will describe in

a separate paper a much larger family of subfactors coming from the fusion categories

constructed in the present paper.

1.2. The classification of G-extensions of fusion categories given in [5] implies, in the case

when G = Z/2Z, that any Z/2Z-extension C = c(0)⊕ c(1) determines the following data

(for all needed definitions see [5] and the references therein):

(1) A group homomorphism c : Z/2Z → π1 = BrPic(c(0)) (0 7→ c(0), 1 7→ c(1)),

where the elements of the Brauer-Picard group π1 are the equivalence classes of invertible

c(0)-bimodule categories and the operation in π1 is the relative tensor product �c(0). In

fact, c is defined by the choice of an invertible c(0)-bimodule category c(1) such that

c(1) ∼= c(1)op.



Z/2Z-EXTENSIONS OF POINTED FUSION CATEGORIES 345

(2) A collection of c(0)-bimodule equivalences Mg,h : c(g) �c(0) c(h) ∼= c(gh) (g, h ∈
Z/2Z) such that the following functors are isomorphic to Id:

Tf,g,h : Mfg,h(Mf,g �c(0) Idc(h))(Idc(f) �c(0) M
−1
g,h)M−1

f,gh : c(fgh)→ c(fgh).

(3) Natural isomorphisms αf,g,h : Mf,gh(Idc(f)�c(0)Mg,h) ∼= Mfg,h(Mf,g�c(0) Idc(h))

satisfying the pentagon equations

Mf,gh,k(idc(f) �c(0) αg,h,k)

× αf,gh,k(Idc(f) �c(0) Mg,h �c(0) Idc(k))Mfgh,k(αf,g,h �c(0) idc(k))

= αf,g,hk(Idc(f) �c(0) Idc(g) �c(0) Mh,k)αfg,h,k(Mf,g �c(0) Idc(h) �c(0) Idc(k)).

Vice versa, given c(0), c and Mg,h as above, the c(0)-bimodule category C = c(0)⊕c(1)

can be equipped with a c(0)-bimodule tensor product which is associative if and only

if certain cohomological obstruction O3(c) vanishes or, equivalently, if and only if the

functors Tf,g,h are isomorphic to Id. If this is the case, the above tensor product admits

two possible families of associativity isomorphisms satisfying the pentagon equations.

1.3. The paper is organized as follows: Section 2 contains preliminary results on induction

and extension of cocycles from a subgroup of a finite group and also on invertible bimodule

categories over c(0) = V ecωS . In Section 3 we give a classification of Z/2Z-extensions of

c(0) = V ecωS . In order to do this, we obtain the following intermediate results:

- Description of homomorphisms c : Z/2Z→ BrPic(c(0)), or equivalently of invertible

c(0)-bimodule categories c(1) such that c(1) ∼= c(1)op.

- Classification of fusion rings of possible Z/2Z-extensions of c(0).

- Explicit calculation of the c(0)-bimodule equivalences Mf,g.

- Explicit calculation of the functors Tf,g,h which allows not only to deduce that they

are isomorphic to Id (i.e., that the cohomological obstruction O3(c) vanishes), but also

to calculate explicitly the natural isomorphisms αf,g,h satisfying the pentagon equations

(there are exactly 2 families of them).

Section 4 is devoted to examples: we compute the number of non-equivalent Z/2Z-

extensions of V ecωS , where S is either an abelian group of order 2p, or dihedral group

Dp (p is prime), or the alternate group A4.

Note that our results imply the classification, up to (categorical) Morita equivalence,

of Z/2Z-extensions of group-theoretical categories, i.e., Morita equivalent to pointed ones

[4]. Indeed, [6], Lemma 3.4 implies that for any such extension there is a Morita equivalent

Z/2Z-extension of a pointed category.

2. Preliminaries

2.1. Some cohomological constructions

2.1.1. Basic definitions, induction of cocycles. Let C(S, P ) = {Cn(S, P )}n≥0 be a

cochain complex of a finite group S with coefficients in a left or right S-module P [3].
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Namely, Cn(S, P ) = Fun(Sn, P ) is a set of normalized n-cochains (i.e., equal to 0 if at

least one of arguments equals to 1S), Sn = S×· · ·×S (n factors). If P is a left S-module

with an action s · p (s ∈ S, p ∈ P ), then the coboundary operator ∂n : Cn(S, P ) →
Cn+1(S, P ) is defined by

(∂nf)(s1, . . . , sn, sn+1) = s1 ·f(s2, . . . , sn+1) +

n∑
i=1

(−1)if(s1, . . . , si−1, sisi+1, . . . , sn+1)

+(−1)n+1f(s1, . . . , sn). (1)

Similarly, if P is a right S-module with an action p · s, then the coboundary operator

∂n : Cn(S, P )→ Cn+1(S, P ) is defined by

(∂nf)(s1, . . . , sn, sn+1) = f(s2, . . . , sn+1) +

n∑
i=1

(−1)if(s1, . . . , si−1, sisi+1, . . . , sn+1)

+(−1)n+1f(s1, . . . , sn) · sn+1. (2)

Let Zn(S, P ) = Ker(∂n) (resp., Zn(S, P ) = Ker(∂n)) be the set of n-cocycles, and

also Bn(S, P ) = Im(∂n−1) (resp., Bn(S, P ) = Im(∂n−1)) the set of n-coboundaries,

and Hn(S, P ) = Zn(S, P )/Bn(S, P ) (resp., Hn(S, P ) = Zn(S, P )/Bn(S, P )) the n-th

cohomology group of S with coefficients in P .

Any left G-module is also a right G-module with the action (s,M) 7→ s−1 ·M . Let

σn : Cn(S, P ) → Cn(S, P ) be the map defined by σn(f)(g1, . . . , gn) = −f(g−1
n , . . . g−1

1 ),

we have easily σn+1∂
nσn = ∂n, so σn is an isomorphism Zn(S, P )→ Zn(S, P ) and passes

to an isomorphism Hn(S, P )→ Hn(S, P ).

Given a subgroup A of S, we denote by p : S → S/A the usual surjection p(s) = sA,

for all s ∈ S, and 1 = p(1S). Let us choose a representative u(M) in any coset M ∈ S/A,

in particular, u(1) = 1S . S acts on S/A via s · M = p(su(M)) and also on the set

{u(M)|M ∈ S/A} via s · u(M) = u(s ·M). Then, for all s ∈ S,M ∈ S/A, there exists

an element κM,s ∈ A such that su(M) = u(s ·M)κM,s. One can check that κM,s1s2 =

κs2·M,s1κM,s2 .

Let C = Fun(S/A,C×) be the coinduced right S-module with the natural action

f(M) · s = f(s · M), for all s ∈ S,M ∈ S/A (here C× is viewed as a trivial right

S-module). By Shapiro’s lemma (see [3]) the groups Hn(S,C) and Hn(A,C×) are iso-

morphic. Explicitly, [16], Lemmas 2.1 and 2.2 show that for n = 1 this isomorphism is

induced by the maps

ϕ1 : Z1(A,C×)→ Z1(S,C) : (ϕ1(ρ)(s))(M) = ρ(κM,s),

ϕ−1
1 : Z1(S,C)→ Z1(A,C×) : ϕ−1

1 (β)(a) = β(a)(1),
(3)

and for n = 2, respectively, by the maps

ϕ2 : Z2(A,C×)→ Z2(S,C) : (ϕ2(µ)(s1, s2))(M) = µ(κs2·M,s1 , κM,s2),

ϕ−1
2 : Z2(S,C)→ Z2(A,C×) : ϕ−1

2 (γ)(a1, a2) = γ(a1, a2)(1).
(4)



Z/2Z-EXTENSIONS OF POINTED FUSION CATEGORIES 347

2.1.2. Extension of 2-cocycles. If A / S is abelian, then S is isomorphic (see [3], IV,

3)) to the twisted semi-direct product Ao
ρ
T defined by:

(a, t) · (a′, t′) = ((a · ta′)ρ(t, t′), tt′) ∀a, a′ ∈ A, t, t′ ∈ T,

where T = S/A acts on A by inner automorphisms (i.e., ta = u(t)au(t)−1, u(t) ∈ S),

ρ ∈ Z2(T,A) is given by ρ(t, t′) = u(t)u(t′)u(tt′)−1, the isomorphism between Ao
ρ
T and S

is defined by (a, t) 7→ au(t). Moreover, the map (a, t)op 7→ (t
−1

a, t) is an isomorphism be-

tween Sop and A o
ρop

T op, where ρop(t, t′) =(t′t)−1

ρ(t′, t) = u(t′t)−1u(t′)u(t) ∈ Z2(T op, A)

and the action of T op on A is given by topa = t−1

a.

In the case of usual semidirect product (i.e., ρ = 1) Karpilovski [12] explained how

to extend σ ∈ H2(A,C×) to µ ∈ H2(S,C×). We generalize this construction to twisted

semidirect products using essentially the same arguments (however, slightly more com-

plicated because of the presence of ρ). Like in [12], Lemma 2.2.3, one can show that:

1) Any µ ∈ Z2(S,C×) is cohomologous to µ′ that is normal, i.e., µ′((a, e), (e, t)) = 1,

for all a ∈ A, t ∈ T , and has the same restriction µT,T on (e, T )× (e, T ). Note that (e, T )

is not a subgroup of S, in general, because the products in S and in T are related by the

formula (e, t) ·S (e, t)′ = (ρ(t, t′), tt′).

2) Any normal µ ∈ Z2(S,C×) is completely determined by its restrictions µT,T ,

µA,A := µ|(A,e)×(A,e), and µT,A := µ|(e,T )×(A,e) by the following formula in which we

identify (a, t) with at and (a′, t′) with a′t′(∀a, a′ ∈ A, t, t′ ∈ T ):

µ(at, a′t′) = µT,T (t, t′)µT,A(t, a′)µA,A(a, ta′)µAA(a(ta′), ρ(t, t′)). (5)

Proposition 2.1. A 2-cocycle σ ∈ Z2(A,C×) can be extended to a normal 2-cocycle

µ ∈ Z2(S,C×) if and only if:

1) σ is cohomologically S/A-invariant, i.e., there exists µT,A ∈ C1(S/A, Fun(A,C×))

such that
σ
tσ

= ∂1
AµT,A(t, ·), where t ∈ T,t σ(a, b) := σ(ta, tb).

2) µT,A ∈ Z1(T, Fun(A,C×)), where t′µT,A(t, a) := µT,A(t, t
′
a), ∀ t, t′ ∈ T, a ∈ A.

3) The 3-cochain on T

ζ(t, t′, t′′) := µT,A(t, ρ(t′, t′′))
σ(tρ(t′, t′′), ρ(t, t′t′′))

σ(ρ(t, t′), ρ(tt′, t′′))

is a 3-coboundary, i.e., can be presented as ∂2µT,T for some µT,T ∈ C2(T,C×).

Proof. 1) Condition 1) is necessary due to [12], Proposition 1.5.8 (iii).

2) If a normal extension µ of σ exists, write for it the 2-cocycle equality restricted to

(e, T ) × (e, T ) × (e, T ), in terms of the product in S. Passing then to the product in T

and using (5), we get the necessity of condition 3).

3) By direct calculations, exactly like in [12], Lemma 2.2.4, one has:

µT,A(tt′, a) = µT,A(t′, a)µT,A(t,t
′
a)

with the product tt′ in T . This means that µT,A ∈ Z1(T, Fun(A,C×)).

Vice versa, it is straightforward to check that the relation (5) defines, under conditions

1), 2), 3), a normal extension of σ.
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Remark 2.2. 1) In a slightly more general situation when 2-cocycles µ and σ are replaced

by 2-cochains such that ∂2µ = ∂2h for some h ∈ C2(S,C×) and ∂2σ = ∂2h|A×A×A,

respectively, one can use Proposition 2.1 applied to 2-cocycle
σ

h|A×A
which describes

when this 2-cocycle can be extended to a normal 2-cocycle
µ

h
or, equivalently, when σ

can be extended to µ.

2) Let σ = ∂1η be a cohomologically S/A-invariant 2-coboundary on A and µ its

normal extension described by µT,A and µT,T as above. Then one can deduce from (5) that

µ is a 2-coboundary if and only if µT,A = ∂0η̃ and µT,T =
∂1fT
η ◦ ρ

, where fT ∈ C1(T,C×)

and η̃(t, ·) ≡ η is a constant function.

2.2. Invertible bimodule categories over c(0) = V ecωS

2.2.1. Indecomposable left c(0)-module categories. These categories are indexed

(see [22]) by conjugacy classes of pairs (A,µ), where A is a subgroup of S and a 2-cochain

µ ∈ C2(A,C×) satisfies ∂2µ = ω|A×A×A (so µ|A×A×A = 1 in H3(A,C×)). A 2-cochain µ

satisfying the relation ∂2µ = ω will be called an ω-2-cocycle.

If M(A,µ) is such a category, then group S acts transitively on the left on the set

Irr(M(A,µ)) = S/A of its simple objects; its associativity isomorphisms are defined by

a 2-cochain µ̃(s, t,M) ∈ C2(S,C) induced from µ and such that

µ̃(t, u,M)µ̃(s, tu,M) = ω(s, t, u)µ̃(s, t, u ·M)µ̃(st, u,M). (6)

In its turn, µ(a, b) = µ̃(a, b,1) for all a, b ∈ A.

Remark 2.3. If ω = 1, the induction above is given explicitly by the map ϕ2 from

subsection 2.1. In general, there is no canonical way for such an induction. One can

proceed as follows. Fix µ0 ∈ C2(A,C×) such that ∂2µ0 = ω|A×A×A and µ̃0 ∈ C2(S,C)

such that ∂2µ̃0 = ω. Then, for any other µ ∈ C2(A,C×) such that ∂2µ = ω|A×A×A, we

can put µ̃ = µ̃0ϕ2(µ/µ0).

Two pairs, (A,µ) and (A′, µ′), give rise to equivalent c(0)-module categories if and

only if A′ = sAs−1 for some s ∈ S and µ is cohomologous to the s-conjugate (µ′)s of µ′,

that is, they differ by a 2-coboundary. Let

ΩA,ω := the set of equivalence classes of {µ ∈ C2(A,C×)|∂2µ = ω|A×A×A}.

Note that ΩA,ω is a torsor over H2(A,C×), in particular, ΩA,1 = H2(A,C×). For any

s ∈ S and µ ∈ ΩA,ω, let us define

µ / s := µs ×Υs|A×A, where

Υs(t, u) :=
ω(sts−1, sus−1, s)ω(s, t, u)

ω(sts−1, s, u)
, µs(t, u) := µ(sts−1, sus−1),

for all s, t, u ∈ S. Let (ΩA,ω)S be the set of S-invariant elements of ΩA,ω, i.e.,

(ΩA,ω)S := {µ ∈ ΩA,ω|µs ×Υs|A×A = µ in H2(A,C×), for all s ∈ S}.

If ω = 1, we have the usual definition of the class of S-invariant 2-cocycles on A.
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2.2.2. Invertible c(0)-bimodule categories. By definition, a c(0)-bimodule category

M is a left V ecω⊗ω
op

S×Sop -module category, where Sop is the group opposite to S and also

ωop(sop, top, uop) = ω−1(s−1, t−1, u−1), for all s, t, u ∈ S. The action of (s, top) ∈ S × Sop
on M ∈ Irr(M) defines left and right actions of S by (s, top) ·M := (s ·M) · t, soM can

be viewed as both left and right c(0)-module category. Note that right indecomposable

c(0)-module categories are also parameterized by the classes of equivalence of pairs (A,µ),

their associativity isomorphisms are defined by 2-cochains µ̃(s, t,M) ∈ C2(S,C) induced

from µ and satisfying

µ̃(M · s, t, u))µ̃(M, s, tu) = ω(s, t, u)µ̃(M, s, t)µ̃(M, st, u). (7)

If M is invertible (i.e., Mop �c(0) M ∼= M �c(0) Mop ∼= c(0), where Mop is the

c(0)-bimodule category opposite to M and �c(0) is the relative tensor product; see [5]),

then it is indecomposable as both left and right c(0)-module category (see [5], Corollary

4.4), so it is indecomposable as a left V ecω⊗ω
op

S×Sop -module category. Thus, it is of the form

M(L, µ), where L < S × Sop and µ ∈ C2(L,C×) satisfies ∂2µ = (ω ⊗ ωop)|L×L×L. Its

associativity isomorphisms are defined by a 2-cochain µ̃ ∈ C2(S×Sop, C) induced from µ.

Since S acts transitively on (S × Sop)/L on both sides, we have

(S × {e})L = ({e} × Sop)L = S × Sop.

Let A1 be the subgroup of S such that L∩ (S×{e}) = A1×{e} and A2 be the subgroup

of Sop such that L ∩ ({e} × Sop) = {e} ×A2, and let us denote µl = µ|(A1,e)×(A1,e), µ
r =

µ|(e,A2)×(e,A2). ThenM(L, µ) viewed as a left (resp., right) c(0)-module category is equiv-

alent to M(A1, µ
l) (resp., to M(A2, µ

r)).

Lemma 2.4. The maps f1 : (S × Sop)/L → S/A1 and f2 : (S × Sop)/L → Sop/A2

defined by M 7→ p1(M ∩ (S × {e})) and M 7→ p2(M ∩ ({e} × Sop)), respectively, where

p1 : (s, top) 7→ s, p2 : (s, top) 7→ top, for all s, t ∈ S, are well defined bijections between

Irr(M) and S/A1 (resp., Sop/A2). Let us define Inv : Sop/A2 → A2 \ S by sopA2 7→
A2s

−1, then the composition f := Inv ◦ f2 ◦ f−1
1 is a natural bijection:

f : S/A1 → A2 \ S

such that:

L = {(s, top) ∈ S × Sop/f(sA1) = A2t}. (8)

We will denote L in (8) by L(A1, A2, f) and, if A1 = A2 = A, by L(A, f).

The left action of S (resp., Sop) on Irr(M) identified with S/A1 (resp., Sop/A2), is

given by the multiplication of left classes. The left action of Sop on Irr(M) identified

with S/A1, is the right action of S on S/A1 given by:

(xA1) · s = xf−1(A2s
−1).

Proof. As (S × {e})L = S × Sop, then for any s, t ∈ S there exists σ ∈ S such that

(σ, e) ∈ (s, top)L, so p1(M ∩(S×{e})) is a nonempty class in S/A1, for any M ∈ Irr(M).

Thus, the map f1 above is a bijection of Irr(M) and S/A1, and similarly for f2. One can

see that the natural left action of S (resp., Sop) on (S ×Sop)/L becomes the natural left

action of S (resp., Sop) on S/A1 (resp., Sop/A2). Moreover, for all s, t ∈ S, f(sA1) = A2t

means (s, e)L = (e, (top)−1)L which is equivalent to (s, top) ∈ L. So, L = {(s, top) ∈
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S × Sop|f(sA1) = A2t}. For any M ∈ Irr(M), there exists x ∈ S such that M = (x, e)L

and, after identification with S/A1, M = xA1. One also has, for any s ∈ S: (e, sop)M =

(x, sop)L; if y ∈ S is such that (x, sop)L = (y, e)L, this means (x−1y, (sop)−1) ∈ L, hence

yA1 = xf−1(A2s
−1).

Let us describeM(L, µ) in other terms; see [10], 2.1.1. Using notations µ̃l(x, y,M) :=

µ̃((x, e), (y, e),M), µ̃r(M,x, y) := µ̃((e, yop), (e, xop),M), and finally also let us define

χ̃(x,M, y) := µ̃((x, e), (e, yop),M) and the decomposition

µ̃((x1, x
op
2 ), (y1, y

op
2 ),M) = χ̃(x1, y1 ·M,y2)µ̃l(x1, y1,M)µ̃r((x1y1) ·M,y2, x2), (9)

(see [11], p. 27), one can check that ∂2µ̃l = ω, ∂2µ̃r = ω and that the following compati-

bility conditions hold:

µ̃l(x, y,M · z)χ̃(xy,M, z) = χ̃(y,M, z)χ̃(x, y ·M, z)µ̃l(x, y,M), (10)

µ̃r(M,y, z)χ̃(x,M, yz) = χ̃(x,M · y, z)χ̃(x,M, y)µ̃r(x ·M,y, z). (11)

Here µ̃l and µ̃r define left and right V ecωS-module category structures on M(L, µ), re-

spectively, x, x1, x2, y, y1, y2, z ∈ S, M ∈ Irr(M(L, µ)).

Lemma 2.5. If M(L, µ) is an invertible c(0)-bimodule category, then:

(i) A1 and A2 are normal abelian subgroups equipped with S-invariant ω-2-cocycles µl

and µr, respectively.

(ii) The map f : S/A1
∼−→ S/A2 in Lemma 2.4 is a group anti-isomorphism.

Proof. [5], Definition 4.1 and Proposition 3.5 imply that the dual category of c(0) with re-

spect toM(L, µ) viewed as a right c(0)-module category (and so equivalent toM(A2, µ
r)),

is equivalent to c(0) itself which is pointed. But due to [16], Theorem 3.4, this is possible

if and only if the pair (A2, µ
r) satisfies conditions (i). Similarly for (A1, µ

l).

(ii) Follows from (i) and from Lemma 2.4.

In what follows we denote by χ(·, ·) the bicharacter χ̃(·,1, ·)|A1×A2
.

2.2.3. The additive endofunctor L(s) ofM(L, µ) defined by left multiplication by (s, e),

where s ∈ S, is isomorphic to the identity if and only if s ∈ A1. Due to (11), its right

c(0)-module functor structure can be defined by

χ̃−1(s,M, x)ids·M ·x : L(s)(M · x)
∼−→ (L(s)(M)) · x, s, x ∈ S.

Similarly, the additive endofunctor R(s) of M(L, µ) defined by left multiplication by

(e, sop), has a structure of a left c(0)-module functor:

χ̃(x,M, s)idx·M ·s : R(s)(x ·M)
∼−→ x · (R(s)(M)), x, s ∈ S.

Let us summarize these observations:

Lemma 2.6. L(s) is equivalent to the identity as a right c(0)-module autoequivalence of

M(L, µ) if and only if s ∈ A1 and as(·) = 1 on A2, where the group homomorphism

a : A1 → Â2 is defined by

a : s 7→ as(x) := χ−1(s, x), x ∈ A2. (12)

A similar statement is valid for R(s).
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Proposition 2.7. M(L, µ) is invertible if and only if:

(i) The conditions of Lemma 2.5 hold.

(ii) There is µ′ cohomologous to µ such that the well defined S-invariant bicharacter

χ := µ′|(A1,e)×(e,A2) : A1 ×A2 → C× is non-degenerate.

Proof. The only thing to prove is (ii). [5], Prop. 4.2 claims thatM =M(L, µ) is invertible

if and only if the functors c(0) → Func(0)(M,M) : s 7→ L(s) (respectively, c(0) →
Fun(M,M)c(0) : s 7→ R(s)) are equivalences. Since those functors are tensor, the latter

condition is equivalent to L(s) 6∼= idM as a right c(0)-module functor (respectively, R(s) 6∼=
idM as a left c(0)-module functor), for all s 6= e. Due to Lemma 2.6, these conditions

hold if and only if the group homomorphisms (12) and

A2 → Â1 : x 7→ a′x,where a′x(s) := χ(s, x), s ∈ A1, (13)

are injective. This is equivalent to χ being non-degenerate on A1 ×A2.

3. Z/2Z-extensions of c(0) = V ecωS

3.1. Group homomorphisms c : Z/2Z→ BrPic(V ecωS) and fusion rings

3.1.1. Homomorphisms c : Z/2Z → BrPic(V ecωS). Such a group homomorphism c

is defined by an invertible c(0)-bimodule category M(L, µ) which is equivalent to its

opposite. The last one, Mop(L, µ), has the same simple objects as M(L, µ) on which

S×Sop acts as (s, top) ·opM = (s, top)∨M , where ∨ : (s, top) 7→ (t−1, (s−1)op) is canonical

involutive automorphism of S × Sop (see [5]). The corresponding subgroup of S × Sop is

Lop = ∨(L) and µop = µ(∨×∨)−1. Passing to the quotient we have a canonical bijection

∨ : (S × Sop)/L 7→ (S × Sop)/Lop which transforms the opposite action of S × Sop on

(S×Sop)/L into the left natural action ·∨ of S×Sop on (S×Sop)/Lop, and one can check

thatMop(L, µ) ∼=Mop(Lop, µop). In particular, µlop = (µr ◦∨)−1, µrop = (µl ◦∨)−1, χop =

χ ◦ ∨.

In terms of Lemma 2.5, L(A1, A2, f)op = L(A2, A1, f
−1), so M(L, µ) ∼=M(L, µ)op

if and only if subgroups L(A1, A2, f) and L(A2, A1, f
−1) are conjugate and µop is

cohomologous to the conjugate of µ. In particular, this implies A1 = A2 = A, so f is an

anti-isomorphism of S/A.

Lemma 3.1. If f and f ′ are anti-isomorphisms of S/A, then L = L(A, f) and L′ =

L(A, f ′) are conjugate subgroups of S × Sop if and only if f = Ad(xA) ◦ f ′ for some

x ∈ S. For such an x, we have L′ = Ad(1, x)L in S × Sop. In particular, L and Lop are

conjugate if and only if

f2 = Ad(xA) for some x ∈ S. (14)

For such an x, we have Lop = Ad(x, 1)L = Ad(1, x)L in S × Sop.

Proof. The sufficiency is clear. Let (h, k) ∈ S × Sop be such that L′ = Ad(h, k)L. If

(s′, t′) ∈ L′, then f ′(s′A) = t′A, but Ad(h, k)−1(s′, t′) ∈ L, so f((hA)(s′A)(hA)−1) =

(kA)(t′A)(k−1A), from where f = Ad(xA) ◦ f ′ for xA = f(hA)−1(kA).
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For any x ∈ S such that f = Ad(xA) ◦ f ′ and any (s′, t′) ∈ L′, one has in S × Sop:
Ad(1, x−1)(s′, t′) = (s′, xt′x−1), but (xA)(t′A)(x−1A) = Ad(xA) ◦ f ′(s′A) = f(s′A), so

Ad(1, x−1)(s′, t′) ∈ L. The proof of the remaining statements is similar.

Remark 3.2. IfM(L1, µ1) andM(L0, µ0) are equivalent invertible c(0)-bimodule cate-

gories, then L1(A1, f1) and L0(A0, f0) are conjugate and µ1 is cohomologous to a conju-

gate of µ0, so A1 = A0 = A and f1 = Ad(xA) ◦ f0 for some x ∈ S. In terms of the triples

(µ̃l1, µ̃
r
1, χ̃1) and (µ̃l0, µ̃

r
0, χ̃0), this equivalence is a bijection F of S/A equipped with left

and right D-module functor structures f l(s,M) : F (sM) 7→ sF (M), fr(M, s) : F (Ms) 7→
F (M)s such that, for all s, t ∈ S,M ∈ Irr(M(L1, µ1)):

µ̃l1(s, t, F (M))f l(st,M) = f l(t,M)f l(s, t ·M)µ̃l0(s, t,M),

µ̃r1(F (M), s, t)fr(M, st) = fr(M, s)fr(M · s, t)µ̃r0(M, s, t),

χ̃1(s, F (M), t)f l(s,M)fr(s ·M, t) = fr(M, t)f l(s,M · t)χ̃0(s,M, t)

(see [10], Remark 2.14). This implies that µl1 and µr1 are cohomologous, respectively, to

µl0 and µr0, and that χ1 = χ0.

As S ∼= Ao
ρ
T, T = S/A (see [3], IV, 3), we have the following

Lemma 3.3. Identifying f with an anti-automorphism φ of T such that φ2 is inner, we

have L(A, f) ∼= (A×A)o
ρ
T with the action of T on A×A given by t(a, a′) = (ta,φ(t−1) a′)

and the 2-cocycle ρ(t, t′) = (ρ(t, t′),(t
′t)−1

ρ(t′, t)).

The map φ̃: ((x, t), (y, s)) 7→ s−1φ(t) factors through L to a bijection (S×Sop)/L→ T .

If T is abelian, L(A, f) / (S ×Sop) and Irr(M(L, µ)) is a group isomorphic to T via the

canonical decomposition of φ̃.

Proof. Obviously,

L(A, f) = {((a, t), (b, φ(t))/a, b ∈ A, t ∈ T},

and the map ((a, t), (b, φ(t)) 7→ (a, φ(t)−1b, t) is an isomorphism L(A, f)→ (A× A) o
ρ
T

with the above action of T on A × A and 2-cocycle ρ. Let x = ((a, t), (b, s)) and y =

((a′, t′), (b′, s′)), then x−1y ∈ L(A, f), means that φ(t−1t′) = s′s−1 or s′−1φ(t′) = s−1φ(t),

the remaining statements follow.

Corollary 3.4. 1) Given a triple (µl, µr, χ) as above, let us construct the ω ⊗ ωop-2-

cocycle on A×A:

µ0((a, b), (a′, b′)) := µl(a, a′)µr(b, b′)χ(a, b′).

In fact, µ0 = µ|A×A. Let h ∈ C2(L,C×) be such that (ω⊗ωop)|L×L×L = ∂2h. Then there

exists an ω ⊗ ωop-2-cocycle µ on L such that µl = µ|(A,e)×(A,e), µ
r = µ|(e,A)×(e,A), χ =

µ|(A,e)×(e,A) if and only if the 2-cocycle
µ0

h|A×A
on A × A satisfies the conditions of

Proposition 2.1 with respect to the action t(a, b) = (ta,φ(t−1) b) of S/A on A × A, the

2-cocycle ρ = (ρ, ρop) ∈ Z2(S/A,A × A), and some ψ ∈ Z1(S/A,Fun(A × A,C×)),

ν ∈ C2(T,C×).
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2) The condition (µ ◦ (∨ × ∨))−1 ∼= µ(e,x), for some x ∈ Sop such that f2 = Ad(x),

implies the conditions µl(a, b) ∼= (µr(b−1, a−1))−1, χ(a, b) = χ(b−1, a−1); in particular,

the bicharacter χ is symmetric.

Proof. 1) Lemma 3.3 and relation (ω ⊗ ωop)|L×L×L = ∂2h allow to use Remark 2.2, 1)

which gives the needed result. Note that the relation between µ and extensions of µl, µr

and χ (in fact, of µl0, µ
r
0 and χ0) to L is:

µ((a, b, t), (a′, b′, t′)) = µl((a, b, t), (a′, b′, t′))µr((a′, b′, t), (a, b, t′))

× χ((a, b, t), (a′, b′, t′)), for all a, a′, b, b′ ∈ A, t, t′ ∈ T. (15)

2) Direct computation.

Let us summarize the above considerations. We will denote ψ := µT,A×A, ν := µT,T
(see Preliminaries), ε(M) := f−1(M−1), for all M ∈ S/A, and (BrPic(V ecωS))(A,ε) the

subset of BrPic(V ecωS) composed by order two elements attached to L < S × Sop, i.e.,

to the couple (A, ε).

Lemma 3.5. Homomorphisms c : Z/2Z→ π1 are indexed by collections (A,µr, χ, ε, ψ, ν),

where A / S is abelian and equipped with a symmetric non-degenerate bicharacter χ,

µr ∈ (ΩA,ω)S, ε ∈ Aut(S/A) such that ε2 is inner, ψ ∈ Z1(S/A,Fun(A × A,C×)),

ν ∈ C2(S/A,C×) such that:

(i)
µ0

tµ0

= ∂1
A×Aψ(t, ·), for any t ∈ S/A, where the ω⊗ωop-2-cocycle µ0 is defined above;

(ii) ∂2ν(t, t′, t′′) = ψ(t, ρ(t′, t′′))
µ0(tρ(t′, t′′), ρ(t, t′t′′))

µ0(ρ(t, t′), ρ(tt′, t′′))
, ∀t, t′, t′′ ∈ S/A;

(iii) There exist k ∈ C1(A×A,C×), q ∈ C1(S/A,C×) such that:

µ0[µ0 ◦ (∨ × ∨)] = ∂1k,

ψ[ψ ◦ (ε× ∨)] = ∂0k̃,

ν[ν ◦ (ε× ε)] =
∂1q

k ◦ ρ
,

where k̃ is the constant map t 7→ k on S/A;

(iv) (BrPic(V ecωS))(A,ε) is not empty.

Two collections, (A,µr, χ, ε, ψ, ν) and (A′, µ′r, χ′, ε′, ψ′, ν′), define the same homo-

morphism if and only if: A = A′, ε = ε′ in Out(S/A), χ = χ′, µr ∼= µ′r and there exist

η ∈ C1(A×A,C×), φ ∈ C1(S/A,C×) such that
µ′0
µ0

= ∂1η,
ψ′

ψ
= ∂0η̃, where η̃ is constant

map t 7→ η, and
ν′

ν
=

∂1φ

η ◦ ρ
.

Proof. 1) Any homomorphism c is defined by an equivalence class of invertible c(0)-

bimodule categories c(1) such that c(1) ∼= c(1)op, i.e., of the form M(L, µ) (see Proposi-

tion 2.7), where µ ∼= (µ ◦ (∨ ⊗ ∨))−1. The subgroup L of S × Sop is of the form L(A, f)

- see Lemmas 2.5 and 3.1, this gives A, ε(t) := f−1(t−1). Now we can use Corollary 3.4

which describes the relation between µ and triples (µl, µr, χ) in terms of ψ and ν and

gives the relations µl(a, b) ∼= (µr(b−1, a−1))−1, χ(a, b) = χ(b−1, a−1). To do this, due to
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condition (iv), we can use as h a particular fixed µ corresponding to one of invertible

c(0)-bimodule categories attached to the couple (A, ε) and remark that µ/µ ∈ Z2(L,C×)

can be chosen normal changing, if necessary, a representative µ in the same class. Finally,

one can check, using Remark 2.2, 2), that conditions (iii) are equivalent to the relation

µ ∼= (µ ◦ (∨ ⊗ ∨))−1.

2) Two c(0)-bimodule categories,M(L(A, f), µ) andM(L(A′, f ′), µ′), are equivalent

if and only if A = A′ and there exists x ∈ S such that L′ = Ad(1, x)L and Ad(x) ◦ f = f ′

for some x ∈ S (this gives relations between (A, ε) and (A′, ε′); see Lemma 3.1 and

Remark 3.2) and µ′ ∼= µ(e,x). In order to show that this last condition is equivalent to

the above conditions, one can apply Remark 2.2, 2) to the coboundary
µ′

µ(e,x)
and its

restrictions
µ′0
µ0
,
ψ′

ψ
,
ν′

ν
.

Remark 3.6. When ω = 1, condition (iv) follows from other conditions because we can

take in the proof h = 1.

3.1.2. Fusion ring structures for C = c(0) ⊕ c(1). In order to equip the category

C with a tensor product and a duality, we have to define an involutive c(0)-bimodule

equivalence γ : c(1) → c(1)op ∼= c(1) by γ : M 7→ M∗, for any M ∈ Irr(M(L, µ)), such

that (s ·M · t)∗ = t−1 ·M · s−1. This implies some restrictions on the structure of the

fusion ring of C (see also [14], Lemma 2.3):

Proposition 3.7. 1) Given an invertible c(0)-bimodule category c(1) = M(L(A, f), µ)

equivalent to c(1)op, let us suppose that c(0)⊕ c(1) is a fusion category with some tensor

product ⊗. Then all possible Z/2Z-graded fusion rings for c(0)⊕c(1) are characterized by

elements δ ∈ S/A such that f2 = Ad(δ) and f(δ) = δ−1. Namely, for all s, s′ ∈ S,M,N ∈
Irr(M(L(A, f), µ)):

s∗ = s−1, M∗ = f(M)δ,

s⊗ s′ = ss′, s⊗M = p(s)M, M ⊗ s = Mf−1(p(s)−1),M ⊗N∗ = ⊕
x∈MN−1

x.

2) Let (f, δ) and (f ′, δ′) be as above, then c(0)-bimodule categories c(1) =

M(L(A, f), µ)) and c(1)′ =M(L(A, f ′), µ′)) are equivalent if and only if there is x ∈ S,

such that

f ′ = Ad(xA) ◦ f, µ′ = µ ◦Ad(1, x) in H2(L(A, f ′),C×).

3) Z/2Z-graded fusion rings for c(0)⊕c(1) and c(0)⊕c(1)′ are isomorphic if and only

if there is F ∈ Aut(S) such that:

F (A) = A, F (δ) = δ′, F ◦ f ◦ F−1 = f ′.

Proof. 1) Relations s∗ = s−1, s⊗s′ = ss′ are obvious, relations s⊗M = p(s)M, M⊗s =

Mf−1(p(s)−1) follow from Lemmas 2.4 and 2.5. The map γ : M 7→M∗ is involutive and,

for any N ∈ S/A, (M · (au(N)))∗ = (au(N))−1 ·M∗, so γ(Mf−1(N−1)) = N−1γ(M). If

M = 1 and N = f(N ′)−1, this gives γ(N ′) = f(N ′)γ(1), and if N ′ = δ := γ(1), we have

f(δ) = δ−1.

The Z/2Z-grading implies that M⊗N = ⊕x∈Snxx, where nx ∈ N, and the properties

of duality, that ne = 1 if and only if M = N∗ and ne = 0 if not. This gives nx = 1 if



Z/2Z-EXTENSIONS OF POINTED FUSION CATEGORIES 355

and only if M = xN∗ (the set of such x is an A-coset) and nx = 0 if not. In the above

mentioned terms we have

M ⊗N = ⊕
{x∈S/M∗.x=N}

x = ⊕
{x∈S/f(M)δf−1(p(x)−1)=N}

x = ⊕
x∈Mδ−1f(N−1)

x

which gives M ⊗N∗ = ⊕x∈MN−1x, so N = 1 = A is the only simple object of c(1) such

that, for any other simple object M of c(1), one has: M ⊗N∗ = ⊕x∈Mx, hence 1 is an

invariant of fusion rings.

2) Follows from Lemma 3.1.

3) Let (f, δ) and (f ′, δ′) be two pairs as above, then any isomorphism ϕ of Z/2Z-graded

fusion rings for c(0) ⊕ c(1) and c(0) ⊕ c(1)′ is given by a pair (F, φ) where F ∈ Aut(S)

and φ : S/A→ S/A are such that, for any s ∈ S, M,N ∈ S/A, one has:

φ(s⊗M) = F (s)⊗ φ(M), φ(1) = 1, φ(M ⊗ s) = φ(M)⊗ F (s),

φ(M∗) = φ(M)∗, ϕ(M ⊗N∗) = φ(M)⊗ φ(N)∗.

The first equality gives φ(p(s)M) = p(F (s))φ(M), so F (A) ⊂ A and F factors through

A. Let us write the last one as F (M)F (N)−1 = φ(M)φ(N)−1; together with φ(1) = 1,

this gives φ = F . The remaining equalities can be written as φ(Mf−1(p(s)−1)) =

φ(M)f ′−1(p(F (s−1))) and φ(f(M)δ) = f ′(φ(M))δ′, respectively, which can be summa-

rized by:

f ′ = F ◦ f ◦ F−1, δ′ = F (δ). (16)

The converse also holds: given (f, δ) and F ∈ Aut(S) such that F (A) ⊂ A, let us define

φ := F and f ′, δ′ by (16); then routine computations show that f ′ is an anti-isomorphism

of S/A such that f ′2 = Ad(δ′) and f ′(δ′) = δ′−1. If, moreover, there is x ∈ S such that

f ′ = ad(xA)◦f and if one defines µ′ := µ◦Ad(1, x), thenM(L(A, f ′), µ′) is an invertible

c(0)-bimodule category equivalent to its opposite and such that φ associated with (F, φ)

gives an isomorphism of the corresponding Z/2Z-graded fusion rings.

3.2. V ecωS-bimodule equivalences Mg,h. Given a group homomorphism c : Z/2Z →
BrPic(c(0)) : 0 7→ c(0), 1 7→ c(1) :=M(L, µ), there exist (by definition of an invertible

c(0)-bimodule category) c(0)-bimodule equivalences Mg,h : c(g)�c(0) c(h)→ c(gh) (g, h ∈
{0, 1}). They are defined by linear functors respecting the fusion rule of Proposition 3.7:

M0,0 : t�s 7→ ts, M0,1 : t�M 7→ t ·M , M1,0 : M � t 7→M · t, M1,1 : M �N 7→ ⊕M=xN∗x

equipped with natural isomorphisms M l
g,h and Mr

g,h.

The c(0)-bimodule category structure on c(0) is defined by µl(s, t, x) = ω(s, t, x),

µr(x, t, s) = ω−1(x, t, s), χ(t, x, s) = ω(t, x, s), so the definition of a c(0)-bimodule functor

and relations (6), (7), (10), (11) give, for all t, x, y ∈ S, M ∈ S/A:

M l
0,0(t, x� y) = ω(t, x, y)idtxy, M

r
0,0(x� y, t) = ω−1(x, y, t)idxyt,

M l
1,0(t,M � x) = χ̃(t,M, x)idtMx, M

r
1,0(M � x, t) = µ̃r(M,x, t)idMxt,

M l
0,1(t, x�M) = µ̃l(t, x,M)idtxM , M

r
0,1(x�M, t) = χ̃−1(x,M, t)idxMt.

Lemma 3.8. Given c(1) := M(L, µ), there exists an equivalent c(0)-bimodule category

for which

µ̃l(s, t,M) = µ̃r((stM)∗, s, t). (17)
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In this equivalent category we have, up to a functor isomorphism:

M l
1,1(t,M �c(0) N) := ⊕

M=x·N∗
[µ̃r(M∗t−1, t, x)]−1idtx, (18)

Mr
1,1(M �c(0) N, t) := ⊕

M=x·N∗
[µ̃r(M∗, x, t)]−1idxt. (19)

Proof. M l
1,1 and Mr

1,1 must be defined by the equalities

M l
1,1(t,M �c(0) N) = ⊕

M=x·N∗
γl(t,M,N, x)idtx,

Mr
1,1(M �c(0) N, t) = ⊕

M=x·N∗
γr(x,M,N, t)idxt,

where the functions γl(t,M,N, x) and γr(x,M,N, t) satisfy, for all s, t ∈ S, M,N ∈
Irr(M), the conditions

ω(s, t, x)γl(st,M,N, x) = γl(t,M,N, x)γl(s, tM,N, tx)µ̃l(s, t,M),

ω−1(x, s, t)γr(x,M,N, st) = γr(x,M,N, s)γr(xs,M,Ns, t)µ̃r(N, s, t),

ω(s, x, t)γl(s,M,N, x)γr(sx, sM,N, t) = γr(x,M,N, t)γl(s,M,Nt, xt).

The first of them with M = N∗, x = e gives, denoting gl(t,M) := γl(t,M,M∗, e):

γl(t,M,N, x) =
gl(tx,N∗)

gl(x,N∗)
[µ̃l(t, x,N∗)]−1,

and, similarly, the second condition gives, denoting gr(t,M) := γr(e,M,M∗, t):

γr(x,M,N, t) =
gr(xt,M)

gr(x,M)
[µ̃r(M∗, x, t)]−1.

Now the last condition becomes equivalent to the relation

µ̃l(s, t,M) = µ̃r((stM)∗, s, t)
γ(t,M)γ(s, t ·M)

γ(st,M)
,

where γ(t,M) :=
gr(t, t ·M)

gl(t,M)
, and one can check that M l

1,1 and Mr
1,1 as above define

M1,1 as a surjective c(0)-bimodule functor.

Next, let us show that, passing to an isomorphic c(0)-bimodule functor, we can choose

gl(t,M) ≡ 1 and gr(t,M) = γ(t, t−1 · M). Indeed, the definition of a c(0)-bimodule

functor isomorphism implies that two equivalences, M1,1 and M ′1,1, corresponding to two

couples, (gl, gr) and (g′l, g′r), respectively, are isomorphic if and only if there is a natural

transformation

α(M �c(0) N) = ⊕
M=xN∗

α(M,x,N)idx,

where α(M,x,N) satisfies the following system of two equations:

α(M,x,N)
gl(tx,N∗)

gl(x,N∗)
=
g′l(tx,N∗)

g′l(x,N∗)
α(t ·M, tx,N),

α(M,x,N)
gr(xt,M)

gr(x,M)
=
g′r(xt,M)

g′r(x,M)
α(M,xt,N · t).

Putting M = N∗, x = e, and denoting δ(t,N∗) := α(t ·N∗, t, N), we have:

gl(t,N∗) = δ(t,N∗)g′l(t,N∗), gr(t,N∗) = δ(t, (N · t)∗)g′r(t,N∗).
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As δ(t,N∗) can be arbitrary, we can choose δ(t,N∗) = gl(t,N∗) and g′l(t,N∗) ≡ 1 which

gives g′r(t,N∗) = γ(t, (N · t)∗).

Finally, replacing µ̃l(s, t,M) by µ̃l(s, t,M)
γ(t,M)γ(s, t ·M)

γ(st,M)
and also χ̃(s,M, t) by

χ̃(s,M, t)
γ(s,M · t)
γ(s,M)

and taking the same µ̃r(M, s, t), we pass to the equivalent c(0)-

bimodule category, where the relations (17), (18) and (19) are true.

Let us deduce from (17) some properties of χ̃(s,M, t) (s, t ∈ S,M ∈ S/A).

Remark 3.9. Theorem 3.4(iii) from [16] and relation (11) imply the existence of η̃p(x) ∈
C1(S,C) (defined up to an element of Z1(S,C)) such that map χ̃(x,M, y)η̃p(x)(M,y) ∈
Z1(S,C), η̃1 ≡ 1. Similarly, (10) and (17) imply that, for any fixed y ∈ S, one must have

χ̃(x,M, y)η̃−1
p(y−1)((xM)∗, x) ∈ Z1(S,C). Then Shapiro’s lemma shows that χ̃(x,M, y) is

completely defined, up to a 1-coboundary, by one of its restrictions, χ̃(x,1, b) or χ̃(a,1, y),

where a, b ∈ A.

Lemma 3.10. For any x ∈ S, there is ηp(x) ∈ C1(A,C×) such that

χ̃(x,1, b) = χ(κ1,x, b)η
−1
p(x)(b).

Proof. Fixing η̃p(x) and applying the restriction map to (10), we have

η′p(x)(a)η′p(x)(b)

η′p(x)(ab)
=

χ̃(x,1, ab)

χ̃(x,1, a)χ̃(x,1, b)
,

where η′p(x)(b) := η̃p(x)(b,1). So, for any x ∈ S, b ∈ A, χ̃(x,1, b)η′p(x)(b) = rx(b) is a

character on A; this can be written as χ̃(u(p(x)),1, b)η′p(x)(b) = χ(κ1,x, b)
−1rx(b), where

the character in the right hand side depends only on p(x). Since η′p(x) is defined modulo

Â, we have the needed equality, where ηp(x)(b) := η′p(x)(b)χ(κ1,x, b)r
−1
x (b).

Corollary 3.11. (i) As χ̃(x,N, y) satisfies (9), then, putting there N = 1,M = p(y),

and z = b, we get

χ̃(x,M, b) =
χ(κM,x, b)ηM (b)

ηx·M (b)
.

Similar formula holds for χ̃(a,M, y) (a ∈ A, y ∈ S,M ∈ S/A). In particular, χ̃(a,M, b) =

χ(a, b), for all a, b ∈ A.

(ii) The following equalities hold, up to a product of two 1-coboundaries:

χ̃(a,M, x) = χ̃(x, x−1M∗, a), χ̃(x,M, a) = χ̃(a,M∗x−1, x) for all a ∈ A, x ∈ S.

Proof. (i) follows from Lemma 3.10, and (ii) from Lemma 3.10 and the symmetry of χ.

Rewriting (10) and (11) with the usage of (17), then comparing again with these

relations and, finally, taking into account Corollary 3.11 (ii), we get:

Corollary 3.12. If µ̃l and µ̃r satisfy (17), then the 2-cochain

β(z,N, x) :=
χ̃(x, x−1N∗z−1, z)

χ̃(z,N, x)
(20)

is a product of two 1-coboundaries.
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Vice versa, let µ̃r satisfy (7) and χ̃ satisfy the above mentioned properties. Then µ̃l

defined by (17) satisfies (6) and (10).

3.3. Vanishing of O3(c). Associativity isomorphisms. Main result

3.3.1. Quasi-tensor product on C = c(0)⊕ c(1). Now, according to [5], 8.4, we have

to equip C with a quasi-tensor product, i.e., with a bifunctor ⊗ : C × C → C such that

⊗◦(⊗×IdC) ∼= ⊗◦(IdC×⊗). If we know a group homomorphism c : Z/2Z→ π1 equipped

with c(0)-bimodule equivalences Mg,h : c(g)�c(0) c(h) ∼= c(gh), then [5], Theorem 8.4 says

that such a bifunctor exists if and only if the cohomological obstruction O3(c) vanishes

or, in other terms, if the following c(0)-bimodule autoequivalences are isomorphic to Id,

for all f, g, h ∈ Z/2Z:

Tf,g,h : Mfg,h(Mf,g �c(0) Idc(h))(Idc(f) �c(0) M
−1
g,h)M−1

f,gh : c(fgh)→ c(fgh). (21)

Equivalently, we have to find conditions on parameters of c such that the c(0)-bimodule

functors Ff,g,h := Mf,gh ◦ [id � Mg,h] : Cf �c(0) Cg �c(0) Ch → Cfgh and Gf,g,h :=

Mfg,h ◦ [Mf,g � id] : Cf �c(0) Cg �c(0) Ch → Cfgh are isomorphic. In this case, they define

the corresponding associativity isomorphisms:

αf,g,h : Mf,gh(Idc(f) �c(0) Mg,h) ∼= Mfg,h(Mf,g �c(0) Idc(h)). (22)

First, we compute F lf,g,h, F
r
f,g,h, G

l
f,g,h and Grf,g,h using the formulas for left and right

bimodule structures of a composition of two bimodule functors:

(F2 ◦ F1)l(t,M) = F l2(t, F1(M)) ◦ F2(F l1(t,M)),

(F2 ◦ F1)r(M, t) = F r2 (F1(M), t) ◦ F2(F r1 (M, t)).
(23)

This and the fact that [id�Mg,h]l and [Mf,g � id]r are identities, give:

F lf,g,h(t,X � Y � Z) = M l
f,gh(t,X � (Y · Z)),

F rf,g,h(X � Y � Z, t) = Mr
f,gh(X � (Y · Z), t)Mf,gh[idX �Mr

g,h(Y � Z, t)],

Grf,g,h(X � Y � Z, t) = Mr
fg,h((X · Y ) � Z, t),

Glf,g,h(t,X � Y � Z) = M l
fg,h(t, (X · Y ) � Z)Mfg,h[M l

f,g(t,X � Y ) � idZ ].

3.3.2. Associativity isomorphisms for C = c(0) ⊕ c(1). The associativity isomor-

phisms αf,g,h(X,Y, Z), if they exist, must satisfy the system of relations:

αf,g,h(t ·X,Y, Z)F lf,g,h(t,X � Y � Z) = αf,g,h(X,Y, Z)Glf,g,h(t,X � Y � Z),

αf,g,h(X,Y, Z · t)F rf,g,h(X � Y � Z, t) = αf,g,h(X,Y, Z)Grf,g,h(X � Y � Z, t).

At the same time, if this system has a solution, this means that the c(0)-bimodule

functors Ff,g,h and Gf,g,h are isomorphic. We compute step by step, using (17) and (20):

1) f = g = h = 0. F l0,0,0(t, x � y � z) = ω(t, x, yz)idtxyz, F
r
0,0,0(x � y � z, t) =

ω(x, yz, t)ω(y, z, t)idxyzt, G
r
0,0,0(x � y � z, t) = ω(xy, z, t)idxyzt, G

l
0,0,0(t, x � y � z) =

ω(t, xy, z)ω(t, x, y)idtxyz,

α0,0,0(x, y, z) = ω(x, y, z)idxyz.
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2) f = 1, g = h = 0. F l1,0,0(t,M � x � y) = χ̃(t,M, xy)idtMxy, F
r
1,0,0(M � x � y, t) =

µ̃r(M,xy, t)ω−1(x, y, t)idMxyt, G
r
1,0,0(M � x � y, t) = µ̃r(Mx, y, t)idMxyt, G

l
1,0,0(t,M �

x� y) = χ̃(t,M · x, y)χ̃(t,M, x)idtMxy,

α1,0,0(M,x, y) = [µ̃r(M,x, y)]−1idMxy.

3) f = g = 0, h = 1. F l0,0,1(t, x � y �M) = µ̃l(t, x, y ·M)idtxyM , F
r
0,0,1(x � y �M, t) =

χ̃−1(x, y·M, t)χ̃−1(y,M, t)idxyMt, G
r
0,0,1(x�y�M, t) = χ̃−1(xy,M, t)idxyMt, G

l
0,0,1(t, x�

y �M) = µ̃l(t, xy,M)ω(t, x, y)idtxyM ,

α0,0,1(x, y,M) = µ̃l(x, y,M)idxyM .

4) f = h = 0, g = 1. F l0,1,0(t, x � M � y) = µ̃l(t, x,M · y)idtxMy, F
r
0,1,0(x � M �

y, t) = χ̃−1(x,M · y, t)µ̃r(M,y, t)idxMyt, G
r
0,1,0(x � M � y, t) = µ̃r(x · M,y, t)idxMyt,

Gl0,1,0(t, x�M � y) = µ̃l(t, x,M)χ̃(t, x ·M,y)idtxMy,

α0,1,0(x,M, y) = χ̃(x,M, y)idxMy.

5) f = g = 1, h = 0. F l1,1,0(t,M�N�s) = ⊕M=xN∗ [µ̃
l(t, xs, (N ·s)∗)]−1idtxs, F

r
1,1,0(M�

N �s, t) = ⊕M=xN∗ [µ̃
r(M∗, xs, t)]−1µ̃r(N, s, t)idxst, also one gets Gr1,1,0(M �N �s, t) =

⊕M=xN∗ω
−1(x, s, t)idxst, G

l
1,1,0(t,M �N � s) = ⊕M=xN∗ω(t, x, s)[µ̃l(t, x,N∗)]−1idtxs

α1,1,0(M,N, s) = ⊕M=xN∗ µ̃
r(M∗, x, s)idxs.

6) f = 0, g = h = 1. F l0,1,1(t, s � M � N) = ⊕M=xN∗ω(t, s, x)idtsx, F
r
0,1,1(s � M �

N, t) = ⊕M=xN∗ω
−1(s, x, t)[µ̃r(M∗, x, t)]−1idsxt, G

r
0,1,1(s�M �N, t) = ⊕M=xN∗ [µ̃

r((s ·
M)∗, sx, t)]−1idsxt, G

l
0,1,1(t, s�M �N) = ⊕M=xN∗ [µ̃

l(t, sx,N∗)]−1 ×µ̃l(t, s,M)idtsx,

α0,1,1(s,M,N) = ⊕M=xN∗ [µ̃
l(s, x,N∗)]−1idsx.

7) f = h = 1, g = 0. F l1,0,1(t,M � s�N) = ⊕Ms=xN∗ [µ̃
l(t, x, (s ·N)∗)]−1idtx, F

r
1,0,1(M �

s � N, t) = χ̃−1(s,N, t) ⊕Ms=xN∗ [µ̃r(M∗, x, t)]−1idxt, and also Gr1,0,1(M � s � N, t) =

⊕Ms=xN∗ [µ̃
r((M ·s)∗, x, t)]−1idxt, and finally one gets Gl1,0,1(t,M�s�N) = χ̃(t,M, s)×

⊕Ms=xN∗ [µ̃
l(t, x,N∗)]−1idtx.

Then

α1,0,1(M, s,N) = ⊕Ms=xN∗α(M, s,N, x)idx,

where the function α(M, s,N, x) satisfies the following two equations:

α(t ·M, s,N, tx)[µ̃l(t, x, (s ·N)∗)]−1 = α(M, s,N, x)[µ̃l(t, x,N∗)]−1χ̃(t,M, s).

α(M, s,N · t, xt)[µ̃r(M∗, x, t)]−1χ̃−1(s,N, t) = α(M, s,N, x)[µ̃r((M · s)∗, x, t)]−1.

Putting M = (s · N)∗, x = e and denoting α(s,N) := α((s · N)∗, s,N, e), one can

deduce, for arbitrary M,N and x such that M · s = x ·N∗:

α(M, s,N, x) = α(s,N)χ̃(x, x−1 ·M, s),

α(M, s,N, x) = α(s,N · x−1)χ̃(s,N · x−1, x).

Comparing these equalities and using (20), where one can write

β(z,N, s) =
α(z,N)

α(z,N · s)
with α(z,N) ∈ C1(S,C),

one has the following
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Lemma 3.13. The c(0)-bimodule autoequivalence T1,0,1 is isomorphic to the identity, and

we have:

α1,0,1(M, s,N) = α(s,N)⊕Ms=xN∗ χ̃(x, x−1 ·M, s)idx. (24)

8) f = g = h = 1. F l1,1,1(t,M�N�K) = ⊕N=yK∗ χ̃(t,M, y)idtMy, F
r
1,1,1(M�N�K, t) =

⊕N=yK∗
µ̃r(M,y,t)
µ̃r(N∗,y,t) idMyt, G

r
1,1,1(M�N�K, t) = ⊕M=xN∗ χ̃(x,K, t)−1idxKt, G

l
1,1,1(t,M�

N �K) = ⊕M=xN∗
µ̃l(t,x,K)
µ̃l(t,x,N∗)

idtxK .

As α1,1,1(M,N,K) : ⊕M=xN∗x ·K 7→ ⊕N=yK∗M · y (let us note that x ·K = M · y),

this isomorphism is defined by an |A| × |A|-matrix

(α(M,N,K, x, y)idx·K)M=xN∗;N=yK∗ ,

whose coefficients satisfy the system of the following equations

α(t ·M,N,K, tx, y)χ̃(t,M, y) = α(M,N,K, x, y)
µ̃l(t, x,K)

µ̃l(t, x,N∗)
,

α(M,N,K · t, x, yt) µ̃
r(M,y, t)

µ̃r(N∗, y, t)
= α(M,N,K, x, y)χ̃(x,K, t)−1.

Putting here M = N∗ = K,x = y = e, we have that α(t · N∗, N,N∗, t, e) =

α(N∗, N,N∗, e, e) which we denote by τ(N), α(N∗, N,N∗ · t, e, t) = τ(N). Inserting

these expressions again into the above equations, we have

α(M,N,K, x, y) = τ(N)χ̃−1(x,N∗, y).

Thus, we have proved

Lemma 3.14. The associativity isomorphism α1,1,1(M,N,K) is defined by the matrix

(τ(N)χ̃−1(x,N∗, y)idx·K)M=xN∗;N=yK∗ . (25)

Remark 3.15. The above results show that the obstruction 03(c) vanishes.

3.3.3. Vanishing of the obstruction O4(c,M). As H4(Z/2Z,C×) = {0}, the obstruc-

tion O4(c,M) (see [5], 8.6) vanishes automatically, so there is a choice of αf,g,h satisfying

the pentagon equations (see [5], (51)) which can be given a form similar to that in [23]:

Mf,gh,k(idf �c(0) αg,h,k) ◦αf,gh,k(IdCf �c(0)Mg,h�c(0) IdCk) ◦Mfgh,k(αf,g,h�c(0) idk)

= αf,g,hk(IdCf �c(0) IdCg �c(0) Mh,k) ◦ αfg,h,k(Mf,g �c(0) IdCh �c(0) IdCk). (26)

Moreover, given two systems of associativity isomorphisms, αf,g,h and α′f,g,h, [5],

Theorem 8.9 shows that β(f, g, h) = αf,g,h(α′f,g,h)−1 can be viewed as an element of

Z3(Z/2Z,C×), and that they give equivalent Z/2Z-extensions of c(0) if and only if β ∈
B3(Z/2Z,C×). As the only nontrivial 3-cocycle on Z/2Z is defined by β(1, 1, 1) = −1,

there are exactly 2 different classes of associativity isomorphisms which differ by a sign of

τ(N). The simplest choice of representatives in these classes corresponds to α(t,M) ≡ 1

and τ(N) ≡ τ . Exactly like in [23], one can find easily from the pentagon equation for

α1,1,1, using the non-degenaracy of χ, that τ = ±|A|−1/2.
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3.3.4. Main result. Let us recall, for the convenience of the reader, some notations,

for other notations see Preliminaries. For a triple (µr, µl, χ), where µr ∈ (ΩA,ω)S , µl ∼=
(µr ◦ (∨×∨))−1, (x, y)∨ := (y−1, x−1), ∀(x, y) ∈ (S×Sop), we denote µ0((a, b), (c, d)) :=

µl(a, c)µr(b, d)χ(a, d) - the ω ⊗ ωop-2-cocycle on A × A; the action of S/A on A × A is

denoted by t(a, b) := (ta,ε(t) b), and we put tµ0((a, b), (c, d)) := µ0(t(a, b),t (c, d)). Finally,

we introduce the 3-cochain on S/A:

ζ(t, t′, t′′) := ψ(t, ρ(t′, t′′))
µ0(tρ(t′, t′′), ρ(t, t′t′′))

µ0(ρ(t, t′), ρ(tt′, t′′))
,

where ρ = (ρ, ρop) ∈ Z2(S/A,A × A) and ρ(t, t′), ρop(t, t′) =(t′t)−1

ρ(t′, t) are 2-cocycles

giving, together with the action a 7→t a of S/A on A, the structure of twisted semidirect

product on S and Sop, respectively.

Theorem 3.16. Z/2Z-extensions C of c(0) = V ecωS are parameterized, up to a tensor

equivalence, by collections (A,χ, µr, τ, ε, δ, ψ, ν), where:

• A is an abelian normal subgroup of S equipped with a symmetric non-degenerate

bicharacter χ, µr represents an equivalence class (ΩA,ω)S modulo restrictions on A of

Z2(S,C×), τ = ±|A|−1/2;

• ε ∈ Aut(S/A), δ ∈ S/A such that ε2 = Ad(δ), ε(δ) = δ, and the set

(BrPic(V ecωS))(A,ε) is not empty;

• ψ ∈ Z1(S/A,Fun(A × A,C×)) such that
µ0

tµ0

= ∂1ψ, for any t ∈ S/A, ν ∈

C2(S/A,C×) satisfying ζ = ∂2ν, µ0[µ0◦(∨×∨)] = ∂1k, ψ[ψ◦(ε×∨)] = ∂0k̃, ν[ν◦(ε×ε)] =
∂1q

k ◦ ρ
, where k ∈ C1(A×A,C×), q ∈ C1(S/A,C×), k̃ is constant map t 7→ k on S/A.

Namely, C = c(0) ⊕ c(1) with Irr(c(0)) = S, Irr(c(1)) = S/A, the fusion rule is:

x∗ = x−1,M∗ = ε−1(M−1)δ, x⊗ y = xy, x⊗M = p(x)M,M ⊗x = Mε(p(x)),M ⊗N∗ =

⊕x∈MN−1x (where x, y ∈ S, M,N ∈ S/A).

The associativity isomorphisms are defined, for any x, y, z ∈ S, K,L,M ∈ Irr(c(1)),

by 2-cochains µ̃r and χ̃ induced,respectively, from µr and from the extension of χ obtained

by ψ and ν:

α0,0,0(x, y, z) = ω(x, y, z)idxyz,

α1,0,0(K,x, y) = [µ̃r(K,x, y)]−1idKxy,

α0,1,0(x,K, y) = χ̃(x,K, y)idxKy,

α0,0,1(x, y,K) = µ̃r((xyK)∗, x, y)idxyK ,

α0,1,1(x,K,L) = ⊕K=sL∗ [µ̃
r(K∗x−1, x, s)]−1idxs,

α1,1,0(K,L, x)) = ⊕K=sL∗ µ̃
r(K∗, s, x)idsx,

α1,0,1(K,x, L) = ⊕Kx=sL∗ χ̃(s, (xL)∗, x)ids,

α1,1,1(K,L,M) is defined by the matrix (τ χ̃−1(s, L∗, t)idsM )K=sL∗;L=tM∗ .

Two such collections, (A,χ, µr, τ, ε, δ, ψ, ν) and (A′, χ′, µ′r, τ ′, ε′, δ′, ψ′, ν′), define

equivalent Z/2Z-extensions of V ecωS if and only if:



362 L. VAINERMAN AND J.-M. VALLIN

• A = A′, τ = τ ′ and there are F ∈ Aut(S) and ϕ ∈ C2(Sop,C×) such that ω ◦ (F ×
F × F )/ω = ∂2ϕ, F (A) = A (so F factors through A), F (δ) = δ′ and, modulo inner

automorphisms: µ′r ∼= ϕ|A×A · µr ◦ (F × F ), χ′ = χ ◦ (F × F ), F ◦ ε = ε′ ◦ F ;

• µ0 ◦ (F × F )

µ′0
= ∂1η,

ψ ◦ F
ψ′

= ∂0η̃,
ν ◦ F
ν′

=
∂1(φ ◦ F )

η ◦ ρ
, where η ∈ C1(A×A,C×),

η̃ : t 7→ η is constant function on S/A, and φ ∈ C1(S/A,C×).

Proof. (i) If C = c(0)⊕ c(1) is a fusion category, then c(1) ∼= c(1)op is an invertible c(0)-

bimodule category, so it corresponds to a collection (A,µr, χ, ε, ψ, ν) described in Lemma

3.5. The existence of δ and its properties follow from Proposition 3.7, the existence and

the value of τ , as explained above, from [5], Theorem 8.9 and from the pentagon equation

for α1,1,1. Thus, we have associated with C the collection (A,µr, χ, τ, ε, δ, ψ, ν).

(ii) Vice versa, given a collection (A,χ, µr, τ, ε, δ, ψ, ν) as above, Lemma 3.5 allows to

construct an invertible c(0)-bimodule category c(1) such that c(1) ∼= c(1)op, and Proposi-

tion 3.7 a fusion ring. Now, Lemmas 3.13, 3.14 and the triviality of H4(Z/2Z,C×) show

that there is a tensor product on C = c(0)⊕ c(1) giving a structure of a fusion category,

with two choices of τ .

(iii) Let (A,χ, µr, τ, ε, δ, ψ, ν) and (A′, χ′, µ′r, τ ′, ε′, δ′, ψ′, ν′) be two collections cor-

responding to equivalent Z/2Z-extensions, C and C′, respectively. By definition, a tensor

equivalence of C and C′ contains:

1) A tensor autoequivalence of c(0) defined by a couple (F,ϕ), where F ∈ Aut(S) and

ϕ ∈ C2(S,C×) are such that ω ◦ (F × F × F )/ω = ∂2ϕ (it is more convenient for us to

pass to c(0)op and so to deal with ϕ ∈ C2(Sop,C×)).

2) An equivalence of c(0)-bimodule categories c(1) = M(L(A, f), µ) and c(1)′ =

M(L(A′, f ′), µ′) which implies the following equalities with some f l, fr ∈ C1(S,C) (see

Remark 3.2):

χ̃′s

χ̃ ◦ (F × F )
=
∂0f l

∂0fr
,

(µ̃′r)s

µ̃r ◦ (F × F )
= ϕ · ∂1fr

whose restriction to A gives (χ′)s = χ ◦ (F × F ) and ϕ|A×A · µr ◦ (F × F ) ∼= (µ′r)s

(these equalities become simpler when considered modulo inner automorphisms: µ′r ∼=
ϕ|A×A · µr ◦ (F × F ), χ′ = χ ◦ (F × F )); Lemma 3.5 gives the remaining list of relations

between the components of the above collections.

3) An isomorphism of their fusion rings, so Proposition 3.7 implies that F (A) = A,

F (δ) = δ′, and F ◦ ε = ε′ ◦ F in Out(S/A).

Finally, the explicit formulas for the associativity isomorphisms for two given Z/2Z-

extensions of c(0) and the above relations between the two corresponding collections allow

to construct an equivalence of these categories.

Corollary 3.17. If S ∼= A o (S/A) is a usual semidirect product, i.e., ρ = 1, one

can omit µr in the above parameterization and the conditions on ψ and ν are simpler:

ν ∈ Z2(S/A,C×), ψ′ ◦ (ε⊗ ∨) = (ψ ◦ F )−1, ν′ ◦ (ε⊗ ε) ∼= (ν ◦ F )−1.

Proof. Let us fix a Z/2Z-extension c(0) ⊕ c(1) of c(0) and the ω-2-cocycle µr1 giving a

structure of right c(0)-bimodule category on c(1). Let C be any other Z/2Z-extension with



Z/2Z-EXTENSIONS OF POINTED FUSION CATEGORIES 363

its µr2. We want to show, using tensor equivalences of the form (Id, ϕ), ϕ ∈ Z2(Sop,C×),

that there is a Z/2Z-extension C′ equivalent to C for which µ′r2 = µr1. We have, on the

one hand, µ′r2 = ϕ|A×Aµr2, and on the other hand, µr2 = Z ·µr1, where Z ∈ Z2(A,C×). So,

it suffices to choose as ϕ any extension of Z−1, if it exists.

But the conditions imposed on (µr1, χ1) and (µr2, χ2) imply that Z =
µr2
µr1

satisfies all

the conditions of [12], Lemma 2.2.4, so its extension exists.

Thus, if S ∼= A o (S/A), one can omit µr in the above parameterization of Z/2Z-

extensions of c(0). Also, as µ′r2 = µr1, we have η = 1 in the conditions of Theorem 3.16,

so they take the above mentioned simpler form.

Remark 3.18. a) If ω = 1, the condition that (BrPic(V ecωS))(A,ε) is not empty follows

from other conditions (see Remark 3.6); if also S ∼= Ao (S/A), one can choose µr = 1.

b) If A = S, Theorem 3.16 gives the result of Tambara and Yamagami [23]. This

result was also obtained by the methods of graded fusion categories in [5], Proposition

9.3, Example 9.4.

c) The case A = {e} was treated in much more generality in [5].

4. Examples

4.1. Non-isomorphic fusion rings if S/A ∼= Z/pZ, p is prime

Lemma 4.1. If S/A ∼= Z/pZ, p is prime, and let n be the number of isomorphism classes

of Z/2Z-graded fusion rings with basis X = S ∪ S/A, then:

(i) if p = 2, one has n = 2;

(ii) if p ≥ 3, ρ = 1, i.e. S ∼= A o
α
Z/pZ is a usual semidirect product, where α is an

action of Z/pZ on A, then n = 3 if S is abelian and n = p+ 1 otherwise.

Proof. (i) If p = 2, then Proposition 3.7 gives f = Id and δ = 0 or δ = 1 give two

non-isomorphic fusion rings corresponding to the single subgroup L = Lop of S × Sop.
(ii) If p > 2, S/A ∼= Z/pZ = {0, 1, . . . , p − 1}, then f1 = id and f−1 : x 7→ −x

are the only involutive elements of Aut(S/A) which give two subgroups, L1 = Lop1 and

L−1 = Lop−1 - see Proposition 3.7.

Now, only δ = 0 satisfies equation f1(δ) = −δ; on the contrary, any δ ∈ S/A satisfies

equation f−1(δ) = −δ. As F ◦ id ◦ F−1 = id, for any F ∈ Aut(S/A), the fusion ring

corresponding to the couple (id, 0) is not isomorphic to any other. Similarly, as F (0) =

0, for any F ∈ Aut(S/A), the fusion ring corresponding to the couple (f1, 0) is not

isomorphic to any other. Let us also remark that F ◦ f−1 ◦ F−1 = f−1, for any F ∈
Aut(S/A).

Next, Proposition 3.7 shows that the only condition under which two couples, (f−1, δ)

and (f−1, δ
′) (δ, δ′ 6= 0), generate isomorphic fusion rings, is the existence of F ∈

Aut(S/A) such that F (δ) = δ′ and F can be extended to G ∈ Aut(S) such that G(A) = A.

If S = Ao
α
Z/pZ, this is equivalent to

αδ′δ−1xG(a) = G(αx(a)), for all a ∈ A, x ∈ Z/nZ.
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Putting here x = 1, we get αδ = αδ′ , i.e, δ′δ−1 ∈ Ker(α), where α : δ → αδ is a

homomorphism from S/A to Aut(A). Conversely, if δ′δ−1 ∈ Ker(α), then one can put

G(a) = a, for any a ∈ A, in order to extend F . As p is prime, Ker(α) is S when S is

abelian or {e} otherwise, and the result follows.

4.2. Number of non-equivalent Z/2Z-extensions in examples

Definition 4.2. If S is a finite group, ω ∈ H3(S,C×), A / S is abelian and such that

ω|A×A×A = 1 in H3(A,C×), we denote by n(S, ω,A) the number of Z/2Z-graded fusion

categories (up to equivalence) associated with it.

Proposition 4.3. If S is abelian, |S| = 2p (p is prime) and A is a nontrivial subgroup

of S, then n(S, 1, A) equals to 6 when S ∼= Z/2pZ, A ∼= Z/2Z, p > 2, to 8 when S ∼= Z/4Z
or S ∼= Z/2pZ, A ∼= Z/pZ, p > 2, and to 16 when S ∼= (Z/2Z)2, for any of 3 its nontrivial

subgroups.

Proof. If S 6= Z/4Z, all the subgroups L are direct products of A×A and S/A. If |A| = 2,

there is only one symmetric non-degenerate bicharacter on A; if A ∼= Z/pZ, p > 2, [26]

tells us that there are 2 orbits in the set of non-degenerate symmetric bicharacters on A

with respect to Aut(A). As S is abelian, Inn(A)={Id}, as S/A is cyclic,H2(S/A,C×)=0.

We have H1(S/A,A × A) = 0 when S ∼= Z/2pZ, p > 2 because |S/A| and |A| are

relatively prime; see [12], Proposition 1.3.1. According to Lemma 4.1, the number of

non-isomorphic fusion rings equals to 2 if |S/A| = 2 and to 3 otherwise. As in all cases

there are 2 choices for τ , we already have the needed result for S ∼= Z/2pZ, p > 2.

To complete the proof if S ∼= (Z/2Z)2, it suffices to remark that H1(Z/2Z, (Z/2Z)2),

with trivial action, is (Z/2Z)2.

If S ∼= Z/4Z, A ∼= Z/2Z, then S ∼= Ao
ρ
S/A with trivial action of S/A on A and the 2-

cocycle ρ : S/A→ A given by ρ(1, 1) = 1, and ρ = 0 otherwise. The subgroup L < S×Sop
is isomorphic to (A × A) o

ρ
S/A with trivial action and the 2-cocycle ρ : S/A → A × A

coming from ρ. As above, H1(S/A,A× A) = (Z/2Z)2; in order to check condition 3) of

Proposition 2.1, remark that the function γ(s, t, u) := α(0,S/A),(A×A,0)(s, ρ(t, u)) equals

identically 1 for two of them and equals the nontrival 3-cocycle on Z/2Z for two others.

Now, the equation ∂2α = γ has no solutions when γ is a nontrival 3-cocycle because

the left-hand side is clearly a 3-coboundary. For two elements of H1(S/A,A × A) for

which the solution of the above equation exists, it is unique because H2(Z/2Z,C×) = 0.

Thus, taking into account 2 choices for τ , we see that the number of non-equivalent

Z/2Z-extensions in this example is 4 for any of the two non-isomorphic fusion rings.

Remark 4.4. It was shown earlier in [2] (see also [14]) that the number of fusion cate-

gories coming from S ∼= Z/4Z, ω = 1, A ∼= Z/2Z, δ = 1 is 4.

Proposition 4.5. n(Dp, 1,Z/pZ) = 8, where Dp is dihedral group, p > 2 is prime,

A = Z/pZ.

Proof. Dp
∼= A o Z/2Z where A = Z/pZ, the subgroup L = Lop < Dp ×Dop

p is unique

and isomorphic to (A×A) oZ/2Z with the action (a, b) 7→ (−a,−b), so any bicharacter
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on A×A is S/A-invariant. Since [S : A] = 2, there are 2 non-isomorphic fusion rings; see

Lemma 4.1.

As above, there are two orbits in the set of non-degenerate symmetric bicharacters on

A with respect to automorphisms of S satisfying the conditions of Theorem 3.16.

Finally, H2(S/A,C×) = H2(Z/2Z,C×) = 1 and H1(S/A,A × A) = 1 because |S/A|
and |A×A| are relatively prime; see [12], Proposition 1.3.1.

Thus, non-equivalent Z/2Z-graded extensions of V ec1Dp
correspond to 2 choices of

fusion rings, to 2 choices of χ, and to 2 choices of τ .

Proposition 4.6. n(A4, 1,Z/2Z× Z/2Z) = 8.

Proof. A4
∼= Ao Z/3Z, where A = Z/2Z× Z/2Z, and both subgroups, L1 and L−1, are

isomorphic to usual semidirect products of type A2 o Z/3Z. Since [S : A] = 3, there are

4 non-isomorphic fusion rings (see Lemma 4.1), so we have to show that, for any fixed

ε, δ, there are exactly 2 fusion categories.

There are 4 symmetric non-degenerate bicharacters on A : χK((a0, a1), (b0, b1)) =

(−1)Σ1
i,j=0kijaibj , where ai, bj , kij ∈ {0, 1}, kij are matrix coefficients of a symmetric

invertible 2× 2-matrix K.

Due to Theorem 3.16, in order to find non-equivalent Z/2Z-graded extensions of

V ec1A4
, we have to look at the automorphisms of A4 under which A is stable. It is

straightforward to show that inner automorphisms of A4 generated by Z/3Z transform

one into another the three bicharacters χK with K 6= ( 0 1
1 0 ) and that the fourth one

is stable under Aut(A). A simple computation gives that in the case of L1 the three

bicharacters in the same orbit are S/A-cohomologically invariant but not the fourth one;

conversely, in the case of L−1 only the fourth one is S/A-cohomologically invariant.

Finally, H2(S/A,C×) = H2(Z/3Z,C×) = 1 and H1(S/A,A × A) = 1 because |S/A|
and |A×A| are relatively prime - see [12], Proposition 1.3.1.

Thus, non-equivalent Z/2Z-graded extensions of V ec1A4
correspond to 4 choices of

fusion rings, to 1 choice of χ, and to 2 choices of τ .
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