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Abstract. The paper surveys a uniform proof technique of the convexity property for three

different cooperative TU games arising from three different economical settings. The production

economy, common pool situation and oligopoly framework involve a cost function, but different

production functions. Each of the three corresponding game theoretic models refers to some

maximization problem described by optimizing a certain net profit function over all feasible pro-

duction levels. The current mathematical proof of the convexity of any of three cooperative TU

games is strongly based on the interchangeability of maximizers for the underlying maximiza-

tion problems. This uniform proof technique is inspired by the interchangeability of two players

concerning the convexity condition in terms of the marginal contributions of both players in the

TU game.

1. Introduction. A cooperative game with transferable utility (TU) is a pair 〈N, v〉,

where N is a nonempty, finite set and v : 2N → R is a characteristic function, defined

on the power set of N , satisfying v(∅) := 0. An element of N (notation: i ∈ N) and a

nonempty subset S of N (notation: S ⊆ N or S ∈ 2N with S 6= ∅) is called a player

and coalition respectively, and the associated real number v(S) is called the worth of
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coalition S. Concerning the modelling part of game theory, it is customary to investigate

whether or not the characteristic function of any appropriate class of cooperative TU

games satisfies one or another appealing property. Without going into details, we state

that the so-called convexity property of the characteristic function v is a known concept

through the game theory literature (cf. [12], [5], [1]). Any cooperative TU game 〈N, v〉 is

said to be a convex game (cf. [12]) if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N

or equivalently, for all i ∈ N , j ∈ N , i 6= j, and all S ⊆ N\{i, j},

v(S ∪ {i}) + v(S ∪ {j}) ≤ v(S) + v(S ∪ {i, j}).(1)

The main purpose of this survey paper is to highlight the uniform approach to establish

a new proof of the convexity property for the so-called oligopoly game (to be done in

Section 4) similar to the already existing proof of the convexity property for the so-

called common pool game (cf. [2], to be recalled in Section 3). The essential part of the

forthcoming proof technique is based on the interchangeability of both players i and j

concerning the convexity condition (1). That is, this convexity condition (in terms of

marginal contributions of two players in the TU game) does not change whenever players

i and j are replaced by each other. As an appealing preparation to both forthcoming

proofs of higher complexity, we illustrate how some uniform approach works in the less

complex framework of a simple production economy (cf. [9]). At the end of Section 3

we outline a uniform approach to prove the convexity property for classes of games

arising from maximization problems. The maximizers of any maximization problem are

not necessarily unique.

2. The convexity of simple production economy games. Let us start to consider

a class of TU games arising from a simple production economy. Any production level is

denoted by a non-negative variable x ∈ R+ that is supposed to be not bounded from

above. Each participating firm i ∈ N measures the utility of any production level by

its own utility function ui : R+ → R+, whereas the costs of production are described

by a single cost function c : R+ → R+. In the setting of a simple production economy

〈N, (ui)i∈N , c〉, the worth v(S) of any coalition S of firms is determined by some pro-

duction level that maximizes the sum of the utilities of its members minus its cost of

production. Notice that the data of the members of the complementary coalition N\S

do not influence the worth of coalition S.

Theorem 1 (cf. [9]). Consider a simple production economy 〈N, (ui)i∈N , c〉. The char-

acteristic function v of the associated production economy game 〈N, v〉 is given by

v(S) = max
x≥0

[

∑

k∈S

uk(x) − c(x)
]

for all S ⊆ N , S 6= ∅, while v(∅) = 0.(2)

Without any further assumptions on the cost function and the weakly increasing utility

functions, the production economy game 〈N, v〉 of (2) is a convex game (i.e., (1) holds).

Proof. For all T ⊆ N , T 6= ∅, let yT ≥ 0 denote a maximizer for the maximization

problem (2) with reference to coalition T , that is, v(T ) =
∑

k∈T uk(yT ) − c(yT ).

Let i ∈ N , j ∈ N , i 6= j, and S ⊆ N\{i, j}. Firstly, by the interchangeability of both

players i and j concerning the convexity condition (1), we may assume, without loss of
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generality, that the inequality yS∪{i} ≤ yS∪{j} holds. That is, in case yS∪{i} ≥ yS∪{j}, the

forthcoming proof applies where the roles of both players i and j are to be interchanged.

Secondly, we exploit that any utility function is supposed to be weakly increasing.

Thus, the essential interchangeability inequality yS∪{i} ≤ yS∪{j} may be reformulated as

another inequality in terms of the utility function ui evaluated at these two maximizers,

i.e.,

ui(yS∪{i}) ≤ ui(yS∪{j}).(3)

Finally, at the third and final stage, we claim that condition (3) suffices to prove the

convexity condition (1) for the production economy game v. For that purpose, we consider

the two maximizers yS∪{i} and yS∪{j} respectively for the maximization problems (2) with

reference to the two augmented coalitions S ∪ {i} and S ∪ {j} respectively as feasible

production levels for the maximization problems (2) with reference to the two coalitions

S and S ∪ {i, j} respectively in order to bound the worth v(S) and v(S ∪ {i, j}) from

below. By these appropriate choices, we arrive at the following (in)equalities:

v(S ∪ {i}) =
∑

k∈S∪{i}

uk(yS∪{i}) − c(yS∪{i}),(4)

v(S ∪ {j}) =
∑

k∈S∪{j}

uk(yS∪{j}) − c(yS∪{j}),(5)

v(S) ≥
∑

k∈S

uk(yS∪{i}) − c(yS∪{i}),(6)

v(S ∪ {i, j}) ≥
∑

k∈S∪{i,j}

uk(yS∪{j}) − c(yS∪{j}).(7)

In view of (4)–(7), together with (3), it follows immediately that the convexity con-

dition (1) for the production economy game v holds.

Clearly, the above reasoning does not apply if S = ∅. Fortunately, in case S = ∅, the

corresponding convexity inequality v({i}) + v({j}) ≤ v({i, j}) follows immediately from

the maximization problems (2) with reference to the coalitions {i}, {j}, and {i, j} respec-

tively, by considering the two maximizers y{i}, y{j} respectively as well as the feasible

production level max[y{i}, y{j}] in order to bound the worth v({i, j}) from below. This

completes the proof of the convexity property (1) for the production economy game of

(2). Notice that no property of the cost function is required (except to be non-negative).

3. The Common Pool Game: the case of a linear cost function

Definition 1 (cf. [2, 8, 4]). Let N be a finite set of individuals (players) and let wi ≥ 0

denote the endowment of player i. For any T ⊆ N , denote the total of the endowments

by wT :=
∑

j∈T wj , where w(∅) := 0. With any joint production function f : R+ → R+

satisfying f(0) = 0 as well as concavity (i.e., f ′′(x) ≤ 0 for all x > 0), there is associated

its weakly decreasing average joint production function h : R+ → R+, given by h(x) :=

f(x)/x for all x > 0. Further, let c : R+ → R+ be an arbitrary twice-differentiable cost

function satisfying c(0) = 0.

The corresponding common pool game 〈N, v〉 is defined such that its player set N

consists of the users of the common pool resource and its characteristic function v :
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2N → R is given by v(∅) := 0 and

v(S) := max
0≤x≤wS

[x · h(x + wN\S) − c(x)] for all S ⊆ N , S 6= ∅.(8)

Theorem 2. Let 〈N, v〉 be the common pool game of (8) supposing the cost function c is

linear, i.e., c(x) := c · x for all x ≥ 0 and a certain constant c ≥ 0. That is,

v(S) := max
0≤x≤wS

[x · [h(x + wN\S) − c]] for all S ⊆ N , S 6= ∅.(9)

Without any further assumptions on the weakly decreasing average joint production func-

tion h, the common pool game 〈N, v〉 of (9) is a convex game (i.e., (1) holds).

Proof. For all T ⊆ N , T 6= ∅, let yT ∈ [0, wT ] denote a maximizer for the maximization

problem (9) with reference to coalition T , that is, v(T ) = yT · [h(yT + wN\T ) − c].

Let i ∈ N , j ∈ N , i 6= j, and S ⊆ N\{i, j}. Firstly, by the interchangeability of both

players i and j concerning the convexity condition (1), we may assume, without loss of

generality, that yS∪{j}−wj ≤ yS∪{i}−wi. That is, in case yS∪{j}−wj ≥ yS∪{i}−wi, the

forthcoming proof applies where the roles of both players i and j are to be interchanged.

Secondly, we exploit that the average joint production function h is supposed to

be weakly decreasing. Thus, the essential interchangeability inequality yS∪{j} − wj ≤

yS∪{i} − wi may be reformulated as another inequality in terms of the average joint

production function h evaluated at certain adapted versions of these two maximizers,

i.e.,

h(yS∪{i} + wN\(S∪{i})) ≤ h(yS∪{j} + wN\(S∪{j})).(10)

Finally, at the third and final stage, we claim that condition (10) suffices to prove the

convexity condition (1) for the common pool game v. For that purpose, in addition to

the maximizers yS∪{i} and yS∪{j} respectively for the maximization problems (9) with

reference to the two augmented coalitions S ∪{i} and S ∪{j} respectively, we choose the

feasible production levels yS∪{j} + wi ∈ [0, wS∪{i, j}] as well as yS∪{i} − wi ∈ [0, wS ]

for the maximization problems (9) with reference to the two coalitions S ∪ {i, j} and

S respectively in order to bound the worth v(S ∪ {i, j}) and v(S) from below. By these

appropriate choices, we arrive at the following (in)equalities:

v(S ∪ {i}) = yS∪{i} · [h(yS∪{i} + wN\(S∪{i})) − c],(11)

v(S ∪ {j}) = yS∪{j} · [h(yS∪{j} + wN\(S∪{j})) − c],(12)

v(S ∪ {i, j}) ≥ [yS∪{j} + wi] · [h(yS∪{j} + wi + wN\(S∪{i, j})) − c],(13)

v(S) ≥ [yS∪{i} − wi] · [h(yS∪{i} − wi + wN\S) − c].(14)

In view of (11)–(14), together with (10), it follows immediately that the convexity

condition (1) for the common pool game v holds.

Clearly, the above reasoning does not apply if yS∪{i} ≤ wi (in which case the proposed

production level is not feasible). Fortunately, in case 0 ≤ yS∪{i} ≤ wi (which, in turn,

covers the subcase S = ∅ too because of 0 ≤ y{i} ≤ wi), a slightly adapted proof can be

presented as follows. Given 0 ≤ yS∪{i} ≤ wi as well as the validity of the assumption (10),

it is straightforward to observe that the inequality v(S ∪{i})+ v(S ∪{j}) ≤ v(S ∪{i, j})

already holds since the sum of the right hand sides of (11) and (12) is at most the right
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hand side of (13). This completes the proof of the convexity property (1) for the common

pool game assuming a linear cost function.

Remark 1. Notice that the essential interchangeability assumption wi − yS∪{i} ≤ wj −

yS∪{j} about the surplus of two maximizers (with respect to the endowments) in the

above proof of the convexity for the common pool game can be seen as the counterpart

of the essential interchangeability assumption yS∪{i} ≤ yS∪{j} about two maximizers in

the former proof of the convexity for the production economy game, as dealt within the

proof of Theorem 1 in Section 2.

In the context of the study on the convexity property for the common pool game 〈N, v〉

of (8), it turns out that the general framework needs additional assumptions about the

cost function c as well as the average joint production function h (cf. [2]). By Theorem 2,

for the special case with a linear cost function, the convexity of the common pool game

is valid without any further assumptions on the average joint production function h.

Remark 2. We aim to present a uniform approach to investigate convexity.

Consider the underlying game model 〈N, v〉. Let i ∈ N , j ∈ N , i 6= j, and S ⊆ N\{i, j}.

Concerning the left hand side of the convexity condition (1), describe the worth of both

augmented coalitions S ∪ {i} and S ∪ {j} in terms of their corresponding (yet unknown)

maximizers (deduced from the objective functions of their corresponding maximization

problems). Concerning the right hand side of the convexity condition (1), bound the worth

of both coalitions S and S ∪ {i, j} from below by evaluating the objective function of

the two corresponding maximization problems at appropriately chosen adaptations of the

former two maximizers. The more complex the game theory model, the more complex to

guess such adaptations of the former two maximizers. That is, at the first stage, we replace

the convexity condition (1) for the characteristic function v by one sufficient condition

with reference to four objective functions, each of one evaluated at (appropriately chosen

adaptations of) their maximizers. At the second stage, exploit, as far as possible, the

interrelationships among the various objective functions to simplify the former sufficient

condition with reference to the objective functions. At the third and final stage, claim that

the simplified sufficient condition holds true due to the interchangeability of both players

i and j concerning the convexity condition (1). Because of v(∅) = 0, it is necessary to

present a separate proof whenever the coalition S equals the empty set, but fortunately,

this separate proof is much less complex.

4. The Oligopoly Game: the case of linear cost functions

Definition 2. Let N be a finite set of firms and let wi > 0 denote the capacity of produc-

tion by firm i. An oligopoly situation 〈N, (wi)i∈N , (ci)i∈N , a〉 with linear cost functions

is determined by the capacities wi, i ∈ N , of the firms, their marginal costs ci ≥ 0,

i ∈ N , and the intercept a ≥ 0 of the inverse demand function p : R+ → R+ given by

p(z) := max [0, a − z] for all z ≥ 0. For any S ⊆ N , S 6= ∅, denote by ΠS := Πk∈S[0, wk]

the production space of S and write any feasible production schedule ~xS := (xk)k∈S ∈ ΠS

as well as ~xS(S) =
∑

k∈S xk.
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Theorem 3. Consider an oligopoly situation 〈N, (wi)i∈N , (ci)i∈N , a〉 with a linear in-

verse demand function and linear cost functions. The characteristic function v of the

corresponding oligopoly game 〈N, v〉 is defined as follows: v(∅) = 0 and

v(S) = max
~xS∈ΠS

[

[a−w(N\S)−~xS(S)]·~xS(S)−
∑

k∈S

ck ·xk

]

for all S ⊆ N , S 6= ∅.(15)

Without any further assumptions, the oligopoly game 〈N, v〉 of (15) with a linear inverse

demand function and linear cost functions is a convex game (i.e., (1) holds).

Proof. For the sake of notation, for all T ⊆ N , T 6= ∅, we write αT := a−w(N\T ) as well

as the price function pT (~xT ) := αT − ~xT (T ) for all ~xT = (xk)k∈T ∈ ΠT . In this setting,

the characteristic function v, as given by (15), can be reformulated as

v(S) = max
~xS∈ΠS

[

pS(~xS) · ~xS(S) −
∑

k∈S

ck · xk

]

for all S ⊆ N , S 6= ∅.(16)

For all T ⊆N , T 6=∅, let ~yT =(yk)k∈T ∈ΠT denote a maximizer for the maximization

problem (16) with reference to coalition T , that is v(T ) = pT (~yT ) · ~yT (T )−
∑

k∈T ck · yk.

Let i ∈ N , j ∈ N , i 6= j, and S ⊆ N\{i, j}. Concerning the proof of the corresponding

convexity property (1), we distinguish two cases: S = ∅ and S 6= ∅.

Case 1. Assume S = ∅. Instead of v({i}) + v({j}) ≤ v({i, j}), we prove the extended

version v(T ) + v({i}) ≤ v(T ∪ {i}) whenever T ⊆ N\{i}.

In addition to the maximizers ~yT and ~y{i} for the maximization problems (16) with

reference to the two coalitions T and {i} respectively, we choose the feasible production

schedule ~xT∪{i} = (~yT , ~y{i}) ∈ ΠT∪{i} for the maximization problem (16) with reference

to coalition T∪{i} in order to bound the worth v(T∪{i}) from below. By these appropriate

choices, we arrive at the following (in)equalities:

v({i}) = p{i}(~y{i}) · ~y{i} − ci · ~y
{i} and v(T ) = pT (~yT ) · ~yT (T ) −

∑

k∈T

ck · ~yT
k

while

v(T ∪ {i}) ≥ pT∪{i}(~xT∪{i}) · ~xT∪{i}(T ∪ {i}) −
∑

k∈T

ck · ~yT
k − ci · ~y

{i}.

In view of the three descriptions, we replace the convexity property v(T ) + v({i}) ≤

v(T ∪ {i}) for the oligopoly game v by the following weaker, but sufficient condition in

which the marginal costs cancel out, while three price functions are left:

pT (~yT ) · ~yT (T ) + p{i}(~y{i}) · ~y{i} ≤ pT∪{i}(~xT∪{i}) · ~xT∪{i}(T ∪ {i}).(17)

Clearly, by definition of any price function, the general relationship αT∪{i} = αT +wi, and

the choice of the schedule ~xT∪{i} = (~yT , ~y{i}), we get pT∪{i}(~xT∪{i}) = pT (~yT )+wi−~y{i}

and thus, the inequality (17) for price functions reduces to the following inequality:

pT (~yT ) · ~yT (T ) + p{i}(~y{i}) · ~y{i} ≤ [pT (~yT ) + wi − ~y{i}] · [~yT (T ) + ~y{i}],

i.e.,

[p{i}(~y{i}) − pT (~yT ) + ~y{i} − wi] · ~y
{i} ≤ [wi − ~y{i}] · ~yT (T ).(18)
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Note that p{i}(~y{i})− pT (~yT )+~y{i}−wi = ~yT (T )−w(T ) due to αT −α{i} = w(T )−wi.

Hence, the left hand side of the latter inequality (18) is non-positive, whereas its right

hand side is non-negative. That is, (18) holds which completes the proof of the convexity

property v(T ) + v({i}) ≤ v(T ∪ {i}) whenever T ⊆ N\{i}.

Case 2. Assume S 6= ∅. In addition to the maximizers ~yS∪{i} and ~yS∪{j} for the maxi-

mization problems (16) with reference to the two augmented coalitions S∪{i} and S∪{j}

respectively, we choose the feasible production schedules ~xS := (~y
S∪{i}
k )k∈S ∈ ΠS as well

as ~xS∪{i,j} = ((~y
S∪{j}
k )k∈S∪{j}, ~y

S∪{i}
i ) ∈ ΠS∪{i,j} for the maximization problems (16)

with reference to the two coalitions S and S ∪ {i, j} respectively in order to bound the

worth v(S) and v(S ∪ {i, j}) from below. By these appropriate choices, we arrive at the

following (in)equalities:

v(S ∪ {i}) = pS∪{i}(~yS∪{i}) · ~yS∪{i}(S ∪ {i}) −
∑

k∈S∪{i}

ck · ~y
S∪{i}
k ,(19)

v(S ∪ {j}) = pS∪{j}(~yS∪{j}) · ~yS∪{j}(S ∪ {j}) −
∑

k∈S∪{j}

ck · ~y
S∪{j}
k ,(20)

v(S) ≥ pS(~xS) · ~xS(S) −
∑

k∈S

ck · ~y
S∪{i}
k ,(21)

v(S ∪ {i, j}) ≥ pS∪{i,j}(~xS∪{i,j}) · ~xS∪{i,j}(S ∪ {i, j})(22)

−
∑

k∈S∪{j}

ck · ~y
S∪{j}
k − ci · ~y

S∪{i}
i .

In view of (19)–(22), we replace the convexity condition (1) for the oligopoly game v

by the following weaker, but sufficient condition in which the marginal costs cancel out,

while four price functions are left:

(23) pS∪{i}(~yS∪{i}) · ~yS∪{i}(S ∪ {i}) + pS∪{j}(~yS∪{j}) · ~yS∪{j}(S ∪ {j})

≤ pS(~xS) · ~xS(S) + pS∪{i,j}(~xS∪{i,j}) · ~xS∪{i,j}(S ∪ {i, j}).

According to the uniform approach to investigate convexity, at the second stage we are

going to simplify the former sufficient condition (23) by exploiting the interrelationships

among the four price functions. For the purpose of simplification, we aim to put forward

two price functions instead of four. Since ~yS∪{i} is an extension of ~xS as well as ~xS∪{i,j} is

an extension of ~yS∪{j}, we use the general relationship that, for any augmented production

schedule ~zT∪{i} = (~zT , ~z{i}) ∈ ΠT∪{i} it holds:

(24) pT∪{i}(~zT∪{i}) · ~zT∪{i}(T ∪ {i})

= pT∪{i}(~zT∪{i}) · ~z{i} + pT (~zT ) · ~zT (T ) + [wi − ~z{i}] · ~zT (T )

since the definition of the price function applied to pT∪{i}(~zT∪{i}) yields

pT∪{i}(~zT∪{i}) · [~zT (T ) + ~z{i}] = pT∪{i}(~zT∪{i}) · ~z{i} + [αT + wi − ~zT (T )− ~z{i}] · ~zT (T ).

By applying (24) to T = S and T = S∪{j} respectively we derive that the inequality (23)

about four price functions reduces to the following inequality about two price functions:
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pS∪{i}(~yS∪{i}) · ~y
S∪{i}
i + [wi − ~y

S∪{i}
i ] · ~yS∪{i}(S)

≤ pS∪{i,j}(~xS∪{i,j}) · ~y
S∪{i}
i + [wi − ~y

S∪{i}
i ] · ~yS∪{j}(S ∪ {j})

or equivalently,

~y
S∪{i}
i · [pS∪{i}(~yS∪{i}) − pS∪{i,j}(~xS∪{i,j})](25)

≤ [wi − ~y
S∪{i}
i ] · [~yS∪{j}(S ∪ {j}) − ~yS∪{i}(S)].

Due to the definition of the various price functions, we notice that the following holds:

pS∪{i}(~yS∪{i}) − pS∪{j}(~yS∪{j}) = wi − wj − ~yS∪{i}(S ∪ {i}) + ~yS∪{j}(S ∪ {j})

whereas

pS∪{i}(~yS∪{i}) − pS∪{i,j}(~xS∪{i,j}) = pS∪{i}(~yS∪{i}) − pS∪{j}(~yS∪{j}) − wi + ~y
S∪{i}
i .

In view of the latter relationships, the inequality (25) about two non-interchangeable

price functions is similar to the following inequality about two interchangeable price

functions:

~y
S∪{i}
i · [pS∪{i}(~yS∪{i}) − pS∪{j}(~yS∪{j}) − wi + ~y

S∪{i}
i ](26)

≤ [wi − ~y
S∪{i}
i ] · [pS∪{i}(~yS∪{i}) − pS∪{j}(~yS∪{j}) − wi + wj + ~y

S∪{i}
i ].

In summary, the convexity condition (1) is replaced by a sufficient condition (23) about

four price functions, which in turn is similar to the simplified condition (26) about two

interchangeable price functions. At the third and final stage, we claim that the simplified

sufficient condition (26) holds true since the left hand side turns out to be nonpositive,

whereas the right hand side turns out to be nonnegative. Concerning the right hand side

of (26), we claim, without loss of generality, that

pS∪{i}(~yS∪{i}) − pS∪{j}(~yS∪{j}) ≥ wi − wj(27)

due to the interchangeability of both players i and j concerning the convexity condition

(1). With respect to the left hand side of (26), we claim that

pS∪{i}(~yS∪{i}) − pS∪{j}(~yS∪{j}) ≤ wi − ~y
S∪{i}
i(28)

because of the following two monotonicity principles well known in economics:

~yS(S) ≤ ~yS∪{i}(S) (monotonicity of maximizers),

pS(~yS) ≤ pS∪{j}(~yS∪{j}) (monotonicity of price function at maximizers).

Given these two types of monotonicity, we derive the inequality (28) as follows:

pS∪{i}(~yS∪{i}) − pS∪{j}(~yS∪{j}) = pS∪{i}(~yS∪{i}) − pS(~yS) + pS(~yS) − pS∪{j}(~yS∪{j})

≤ pS∪{i}(~yS∪{i}) − pS(~yS)

= wi − ~y
S∪{i}
i + ~yS(S) − ~yS∪{i}(S)

≤ wi − ~y
S∪{i}
i .

This completes the proof of the convexity property (1) of the oligopoly game.

Remark 3. The interchangeability assumption pS∪{i}(~yS∪{i})−wi ≥ pS∪{j}(~yS∪{j})−wj

about two maximizers in the above proof of the convexity for the oligopoly game (cf. (27))

can be seen as the counterpart of the essential interchangeability assumption yS∪{i}−wi ≥
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yS∪{j} − wj about two maximizers in the former proof of the convexity for the common

pool game (cf. (10) within the proof of Theorem 2 in Section 3). In this context, recall also

the essential interchangeability assumption yS∪{i} ≤ yS∪{j} about two maximizers in the

former proof of the convexity for the production economy game (cf. (3) within the proof

of Theorem 1 in Section 2). In summary, the uniform approach to investigate convexity

is strongly based on an appropriately chosen interchangeability assumption about two

maximizers.

Remark 4. Concerning the oligopoly games of (15) with a linear inverse demand function

and linear cost functions, an alternative proof of its convexity property was established

in [10] (as well as in Chapter 3 of the Ph.D. thesis of Kim Hang Pham Do, cf. [11]).

In contrast to our uniform approach to investigate convexity, their alternative convexity

proof neither refers to maximizers, nor to any essential interchangeability assumption

about maximizers. In fact, their alternative convexity proof is extremely tedious, requires

a lot of mathematical notation, and its proof technique is based on some complicated

induction step to be applied to a slightly adapted oligopoly game. Moreover, the worth

of any coalition S in the initial oligopoly game 〈N, v〉 is treated as the following rather

complicated expression:

v(S) =
∑

k∈S

fwk

(

max

[

0, a − w(N\S) − ck − 2 ·
∑

ℓ∈S, ℓ<k

wℓ

])

.(29)

Here, for any x > 0, the associated function fx : R+ → R is given by fx(y) := y2

4 for all

0 ≤ y ≤ 2·x, whereas fx(y) := x·(y−x) whenever y > 2·x. Altogether, Norde et al.’s proof

of convexity for the oligopoly games of (15) is fully based on pure mathematics, whereas

our uniform approach to investigate convexity is accessible for a much broader readership,

including both economists and mathematicians. In [10], the oligopoly games of (15) are

called oligopoly games without transferable technologies. In case it is supposed that every

member in a coalition S can produce according to the cheapest technology available in the

coalition (that is, the marginal cost ci of any firm i ∈ S is replaced by cS := mink∈S ck),

then so-called oligopoly games with transferable technologies are considered. Necessary

and sufficient (but extremely complicated) conditions for the convexity of oligopoly games

with transferable technologies are presented in [13].

Remark 5. In the economic setting of an oligopoly market with n firms producing a

homogeneous good, let wi ≥ 0 represent the production capacity of firm i, denote the

corresponding cost function by c : R+ → R+ and let h : R+ → R+ represent a weakly

decreasing inverse demand function. For any S ⊆ N , S 6= ∅, the profit function πS :

R+ → R+ for coalition S is given by πS(x) := x · h(x + wN\S)− c(x) for all x ≥ 0, where

the variable x refers to the production level of coalition S (assuming all the opponents

of S produce full capacity). In other words, common pool TU games of (8) reduce to

oligopoly games as soon as the average joint production function h can be interpreted as

some inverse demand function. Notice that, for the oligopoly games of (8), the production

level of coalition S is limited by the total wS of the capacities of its members, whereas for

the oligopoly games of (15) the feasible production schedules are limited by the individual

capacities wi, i ∈ S, of members of coalition S.
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As a particular example of common pool games, let the average joint production

function h be an inverse demand function of the form h(x) := max [0, a − x] for all

x > 0. In other words, the underlying joint production function f is given by a quadratic

function, namely f(x) := x · (a − x) for all 0 ≤ x ≤ a and f(x) := 0 for all x ≥ a. Most

important, h is a weakly decreasing function.
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