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Abstract. The aspiration core of a TU game was introduced by Bennett [1] as a payoff vector

which is undominated and achievable in the sense that each player belongs to a coalition which

can obtain the specified payoff for its members, and which minimizes the distance to the set of

aggregate feasible payoffs among all such payoff vectors. In the paper a set of axioms is proposed

which characterize the aspiration core, which may be considered as an extension of the core

to a much larger set of games. The axioms involve the standard notions of reduced game and

converse reduced game although the notions have to be modified to allow for infeasible payoffs.

Also, a class of auxiliary games which are not TU games has to be added to the domain of the

abstract solution concept considered.

1. Introduction. The core of a cooperative game consists of the payoffs which can-

not be improved by any coalition. Since its introduction, the core has been one of the

game-theoretic solution concepts which has received most attention and has had most

applications, not surprisingly in view of its intuitive appeal as well as its tractability.

The class of games for which this solution concept is meaningful, in the sense that the

core is nonempty, was characterized in the seminal papers by Bondareva [2] and Shapley

[11] as the family of balanced games. On the other hand, in many situations there is a

need for a solution concept which agrees with the core on the family of balanced games

but takes nonempty values also on games which are not balanced. Such solution concepts

are core extensions; in the literature they come in two different versions, namely either (i)

as solutions in the strict sense, selecting payoffs that are feasible (can be effectuated by

the grand coalition), or (ii) aspiration payoffs which are not necessarily feasible but still

represent realistic expectations of each player as to what can be achieved in the game.

In the present paper, we consider the second version of core extensions; we present an

axiomatic characterization of the aspiration core, a core extension introduced by Bennett
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[1] which assigns to each game a set of aspiration payoffs which coincides with the core

when the latter is nonempty and captures most of the features of the core (with the

obvious exception of overall feasibility) when the core is empty. The axioms are largely

the standard ones (including a version of the consistency axiom used in most axioma-

tizations), and the approach follows at least initially that of Moldovanu and Winter [7]

giving an axiomatic characterization of the larger aspiration set, but in order to capture

the specific feature of the aspiration core consisting in minimization of distance to the

feasible set, we need to bring into our discussion a class of games which strictly speaking

are not TU (transferable utility) games but which arise naturally in our context, and to

which the standard axioms are readily extended.

The paper is structured as follows: Section 2 contains the necessary definitions, and in

Section 3 we present the basic axioms, narrowing down the solution concept to a subset

of the aspiration set. Then in Section 4 we introduce the family of almost TU games and

consider the core of an almost TU game. This is applied in Section 5 to give the full

axiomatic characterization of the aspiration core; Section 6 contains some final remarks

on the approach.

2. Definitions. In this section we introduce the basic notions which will be used through-

out this paper. A cooperative transferable utility game (shorthand a TU game or just a

game) is a pair (N, v), where N is a non-empty, finite set of players, and v a function

assigning to each non-empty subset (coalition) S of N a number v(S) interpreted as the

worth of the coalition S, an amount available for division between the members of the

coalition. With the notation P0(N) for the set of nonempty subsets of N , v : P0(N) → R

is called the characteristic function of the game (N, v). Let G(N) denote the set of all

TU games with player set N , and let G be the set of all TU games.

If (N, v) is a game, a > 0 a positive real number, and b ∈ RN , then the game av + b

is defined by (av + b)(S) = av(S) +
∑

i∈S bi for each S ∈ P0(N). We use the notation

λA for the set {λa | a ∈ A}, where λ ∈ R and A ⊂ Rd for some d ∈ N. Finally, A + B

denotes Minkowski addition of sets (in Rd).

We shall be considering TU games throughout this paper, but occasionally we shall

need also the concept of an NTU game: A cooperative non-transferable utility game is

a pair (N, V ), where as before, N is a nonempty finite set of players, and for each

S ∈ P0(N), V (S) is a subset of RS , such that for each S, V (S) is non-empty, closed,

comprehensive (i.e., if x ∈ V (S), y ∈ RS , and yi ≤ xi for all i ∈ S, then y ∈ V (S)), and

satisfies V (S) 6= RS). Clearly, a TU game (N, v) may be viewed as an NTU game (N, V )

where for each S, V (S) = {x ∈ RS |
∑

i∈S xi ≤ v(S)}.

We now return to the context of TU games. A payoff vector of the game (N, v)

is an element x of RN ; it is feasible if
∑

i∈N xi ≤ v(N), and individually rational if

xi ≥ maxV ({i}) for each i ∈ N ; more generally, a payoff vector is dominated via the

coalition S ∈ P0(N) if
∑

i∈S xi < v(S). The core of (N, v), written C(N, v), is the set of

payoffs x such that

(i)
∑

i∈N xi = v(N),

(ii) x is undominated.
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As is well-known, the subclass Gb of G consisting of games (N, v) for which C(N, v) 6= ∅,

consists of the balanced games: A subfamily B of P0 is said to be balanced if there are non-

negative numbers λB, B ∈ B (the balancing weights of B) such that
∑

B∈B λB1B = 1N

(here, 1S denotes the vector in R with ith coordinate 1 if i ∈ S and 0 otherwise), and a

game (N, v) is balanced if ∑

B∈B

λBv(B) ≤ v(N)

for each balanced family B with balancing weights (λB)B∈B.

Let G′ ⊆ G. A solution concept on G′ is a map Φ which to every game (N, v) ∈ G′

assigns a nonempty subset of RN . Thus, the core is a solution concept on Gb but not on

G. A solution concept defined on any G′ containing Gb such that

Φ(N, v) = C(N, v) for (N, v) ∈ Gb

is called a core extension.

An example of a core extension is the Gomez extension (cf. Gomez [3]) ΦG defined

on all (N, v) ∈ G such that v(S) ≥ 0 for all S, with

ΦG(N, v) = k(N, v)−1C(N, vk(N,v)),

where (N, vk) for k ≥ 0 is defined as the game with vk(S) = v(S) for S 6= N , vk(N) =

kv(N), and k(N, v) is the smallest k ≥ 0 such that C(N, v) 6= ∅. As it can be seen from

the definition, the Gomez extension first chooses a core element in a suitably chosen

balanced game resembling the given one, and secondly maps the core elements of this

game to feasible payoffs of the original game.

In the present paper we shall be interested in extensions which perform only the first

of the two steps mentioned above, so that it selects core elements from a suitably chosen

balanced game. The demand that this game should be closely related to the original one

may be further specified to leaving unchanged v(S) for every S ( N , and we are then

led to subsets of the aspiration set as introduced by Bennett [1] and reconsidered in the

context of NTU games as semi-stable demand vectors by Moldovanu and Winter [7].

For (N, v) ∈ G a game, define the aspiration set Asp(N, v) as the set of vectors x ∈ RN

which satisfy

(i) for each i ∈ N there is S ∈ P0(N) with i ∈ S such that
∑

j∈S xj ≤ v(S),

(ii) for each S ∈ P0(N),
∑

i∈S xi ≥ v(S).

While the last condition states that x should be undominated, a notion which has

already been introduced, the first condition, that each i belongs to a coalition S which

can attain (xi)i∈S , introduces a weaker notion of feasibility than the standard one (that

the payoff vector should be attainable by N); here we demand only that the payoff vector

is realistic in the sense that each player might attain her payoff in some coalition.

Before we proceed, we notice the following simple but nevertheless useful fact.

Lemma 1. Let x, x′ ∈ Asp(N, v), x 6= x′. Then there is at least one i ∈ N such that

xi > x′
i.

Proof. Assume to the contrary that x′
i ≥ xi for all i. Let i be such that x′

i > xi and choose

a coalition T containing i such that
∑

i∈T x′
i ≤ v(T ). Then

∑
i∈T xi <

∑
i∈T x′

i ≤ v(T ),

so that x is dominated via T , contradicting that x belongs to Asp(N, v).
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We may now define a central concept of the present paper, namely the aspiration core

AC(N, v), defined as the set of elements of Asp(N, v) for which
∑

i∈N xi is minimal. The

aspiration core extends the core in the sense that for all (N, v) ∈ Gb, AC(N, v) = C(N, v);

indeed, C(N, v) belongs to the aspiration set and trivially minimizes
∑

i∈N xi on this set.

The idea of considering payoffs which are not feasible in the strict sense is not new. The

aspiration set was introduced in Bennett [1] with the interpretation as player anticipations

of the payoffs to be obtained, and the aspiration core was introduced under the notion

of a balanced aspiration. The following result is due to Bennett:

Lemma 2. Let (N, v) ∈ G. Then AC(N, v) 6= ∅.

Proof. Let (N, V ) be the NTU game defined by

V (S) =
{

(xi)i∈S

∣∣∣
∑

i∈S

xi ≤ v(S)
}

for S ( N,

V (N) =
{

x ∈ RN | ∀i ∈ N ∃S ∈ P0(N),
∑

i∈S

xi ≤ v(S)
}
.

Let B be a balanced family of coalitions and suppose that x ∈ ∪S∈BV (S). Then for

each i, there is S ∈ B such that i ∈ S; consequently, if (xi)i∈S ∈ V (S) for all S, then

x satisfies condition (i) in the definition of Asp(N, v), or equivalently, x ∈ V (N). From

standard results (e.g. Scarf, [10]) on the nonemptieness of the core of NTU games it

follows that C(N, V ) 6= ∅. By our construction of (N, V ), this means that Asp(N, v) 6= ∅.

Since Asp(N, v) is closed and bounded from below, the result follows.

3. Axioms for the aspiration core: Standard axioms. In this section, we introduce

a set of axioms which characterize the aspiration core. As a beginning, we consider axioms

which are rather uncontroversial and which have proved useful in axiomatizations of the

(ordinary) core. Since this does not give us a full system of axioms, we add some further

axioms in the following sections.

Formally, we are concerned with maps Φ : G′ → P0(R
N ), where G′ is a set of games

containing Gb. A natural place to start is the following:

Axiom 1 (Triviality). Let (N, v) ∈ G′ be a trivial game, i.e. v(S) = 0 for all S ⊂ N .

Then Φ(N, v) = {0}.

Thus, if we are given a conflict situation where no individual or coalition can attain

anything for its members, then the solution concept assigns to this game the zero vector

0 as the only possible payoff.

The next axiom is similarly uncontroversial and has to do with changes of scale and

origin for measuring the payoffs of the players.

Axiom 2 (Invariance under affine transformations). Let (N, v) ∈ G′, and let a > 0 b ∈ RN

be arbitrary. Then (N, av + b) ∈ G′, and Φ(N, av + b) = aΦ(N, v) + b.

Here, the change of scale is the same for all players, whereas the individual displace-

ments of the origin may differ. The solution should not be essentially effected by such

changes.



AXIOMATIZATION OF THE ASPIRATION CORE 199

Now we turn to axioms that are less intuitively appealing but on the other hand

more powerful in restricting the set of possible solutions. We shall need some version of

consistency, which in its turn requires the construction of a reduced game. We follow here

the approach of Moldovanu and Winter [7], which takes into account that payoff vectors

may not be feasible.

Let (N, v) ∈ G′ be a game, let S ∈ P0(N) be a coalition and let x ∈ RN be a payoff

vector (not necessarily feasible) The reduced game of (N, v) w.r.t. S and x is the game

(S, vS,x) defined by

vS,x(T ) = max
Q⊆N\S

[v(T ∪ Q) −
∑

i∈Q

xi], all T ⊆ S.

With this notion of a reduced game we may introduce the following axiom.

Axiom 3 (MW-consistency). Let (N, v) ∈ G′, S ∈ P0(N), and x ∈ Φ(N, v). Then

(S, vS,x) ∈ G′, and xS ∈ Φ(S, vS,x).

The consistency property has a long record of use in axiomatizations of game theoretic

solution concepts. It was used (again in a slightly different form) for the characterization

of the core by Peleg [8].

The usefulness of the axioms formulated above can be seen from the following result

(first established by Gomez [4]).

Lemma 3. The aspiration core satisfies Axioms 1–3. Conversely, if a solution concept Φ

on G satisfies Axioms 1–3, then Φ(N, v) ⊆ Asp(N, v) for every (N, v) ∈ G.

Proof: Let x ∈ Φ(N, v). Assume first that (N, v) is a one-player game, that is N = {i}.

Then it may be considered as a transformation of a trivial game, and consequently by

Axiom 1 and 2, Φ({i}, v) = v({i}). In particular, for arbitrary (N, v) ∈ G we have that

Φ({i}, v{i},x) = v{i},x({i}). By Axiom 3, xi ∈ Φ({i}, v{i},x), so xi = v{i},x({i}).

Let S ∈ P0(N). Then, using the definition of the reduced game we obtain that

xi = v{i},x({i}) ≥ v({i} ∪ [S\{i}]) −
∑

j∈S\{i}

xi,

and rearranging, we have that
∑

i∈S xi ≥ v(S), which is (ii) in the definition of Asp(N, v).

To show that also (i) is fulfilled, we note that for each i ∈ N there is T ∈ P0(N) with

i ∈ T such that
∑

i∈T xi = v(T ). Since xi = v{i},x({i}), there must be Q ⊆ N\{i} such

that xi = v({i}∪Q)−
∑

j∈Q xj , and setting T = {i}∪Q, we have the desired conclusion.

4. Almost TU games. In this section, we introduce a class of games which are not

TU but on the other hand differ from TU games only with regard to the set of feasible

payoffs (of the grand coalition). Formally, an NTU game (N, W ) is almost TU if there

is a function w : P0(N)\{N} → R such that W (S) = {xS ∈ RS |
∑

i∈S xi ≤ w(S)}

for all S ( N , whereas W (N) does not necessarily have this form. We write the almost

TU game as (N, W, w) when we need to emphasize the function w. The class of almost

TU games, denoted G̃, will be used in our axiomatization of the aspiration core, and the

purpose of this section is to establish some results about the core and its axiomatization

for this class.
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For this, we introduce the reduced game of an almost TU game: Let (N, W, w) be

almost TU, let S ( N and let x ∈ W (N). Then the reduced game of (N, W, w) w.r.t. S

and x is defined by

WS,x(S) = {(x′
S | (x′

S, xN\S) ∈ W (N)},

WS,x(T ) = {x′
T | ∃Q ⊂ N\S, (x′

T , yQ) ∈ W (T ∪ Q)}, for T ( S,

that is, by the standard definition of a reduced game of an NTU game (cf. Peleg and

Südhölter [9]). It is easily seen that the reduced game of an almost TU game is again

almost TU (so that the property of being almost TU is hereditary).

An almost TU game is said to be nonlevel if for each x, y ∈ ∂W (N) (the boundary of

W (N)), the inequality x ≥ y implies x = y. If (N, W ) is nonlevel, then so is any reduced

game (N, WS,x). The core of an almost TU game, C(N, W ), consists of all x ∈ W (N)

such that no coalition S ∈ P0(N) dominates x, which for nonlevel almost TU games

(N, W, w) means that x ∈ ∂W (N) and
∑

i∈S xi ≥ w(S) for each S ( N . If x ∈ C(N, W ),

and S ⊆ N is arbitrary, then clearly xS ∈ C(S, WS,x), so the family of almost TU games

with nonempty core is stable under reduction.

The notion of a solution concept extends to the class of almost TU games; thus a

solution concept on a family G̃ of almost TU games is a map Φ which to each (N, W, w)

in G̃ assigns a nonempty subset of R, and the Axioms 1, 2 are meaningful also for such

extended solution concepts. We restate the reduced game property introduced in the

previous section, since we use the ordinary definition of reduction for almost TU games

rather than the MW-reduction.

Axiom 4 (Consistency). Let (N, W ) ∈ G̃b, let S ⊂ N , and let x ∈ Φ(N, W ). Then

xS ∈ Φ(S, WS,x).

In our application of almost TU games, we shall need that the solution concept Φ

coincides with the core on G̃b. To this purpose we might use an axiom stating some

property of converse consistency (such as the reconfirmation property, cf. Hwang and

Südhölter [6]). To simplify proofs, we use the following less elegant but rather powerful

property:

Axiom 5 (Monotonicity). Let (N, W ), (N, W ′) ∈ G̃b, and assume that W (N) = W ′(N),

W (S) ⊆ W ′(S) for all S ⊂ N . Then Φ(N, W ′) ⊂ Φ(N, W ).

We now have the following:

Lemma 4. Assume that Φ is a solution concept defined on the set G̃b of all almost TU

games with nonempty core. If Φ satisfies Axiom 1, 2, and 4, then Φ(N, W ) ⊆ C(N, W )

for each (N, W ) ∈ G̃b. If, in addition, Φ satisfies Axiom 5, then Φ(N, W ) = C(N, W ) for

all (N, W ) ∈ G̃b.

Proof. Let x ∈ Φ(N, W ). Arguing as in the proof of Lemma 3, by Axioms 1 and 2 we have

that for each i ∈ N , Φ(N, WN\{i},x) = maxW {i},x({i}), and by Axiom 3, we therefore

get that xi = max W {i},x({i}); in particular, x is Pareto optimal in W (N) (that is, if

y ∈ W (N) and yi ≥ xi, all i, then y = x). If S ⊆ N , then
∑

i∈S xi ≥ w(S) (again

following the reasoning of Lemma 3), so that no proper subcoalition of N dominates x.

It follows that x belongs to the core of (N, W ).
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Next, let (N, W, w) ∈ G̃b, x ∈ C(N, W ). We must show that x ∈ Φ(N, W ). Define a

new almost TU game (N, W ′) by W ′({i}) = {x′
i | x′

i ≤ xi} for each i ∈ N , W ′(S) = W (S)

for all S ∈ P0(N) with |S| > 1. Then (N, W ′) ∈ G̃b, and (N, W ) is nonlevel, so by Lemmas

1 and 2 we have that x is the unique core element of (N, W ′). By the first part of the

proof, x ∈ Φ(N, W ′), and using Axiom 5 we now get that x ∈ Φ(N, W ).

5. Axioms for the aspiration core II: The debt-extended game. In Section 3, we

have considered a family of axioms which are rather uncontroversial but on the other hand

are not sufficient to characterize the aspiration core; we lack a property which reflects the

choice of a minimal element of the aspiration set. This may be remedied by being explicit

on the fact that the solution concept may choose non-feasible payoffs, whereby the set of

all players (the “grand coalition”) gets into a position as net debtor to its environment.

Let (N, v) be a TU-game, and define the d-extended game to be the NTU game

(N ∪ {∗}, Wd,v), where the characteristic function Wd,v : P0(N ∪ {∗} → P(RN+1) is

defined by

Wd,v(N ∪ {∗}) =
{
(x, x∗)

∣∣∣ x ∈ Asp(N, v),
∑

i∈N

xi + x∗ ≤ v(N)
}

for the grand coalition N ∪ {∗}, and Wd,v(T ) = {xT |
∑

i∈T xi ≤ v(T )} if T ⊆ N ,

Wd,v(T ) =
{
(xT , x∗)

∣∣∣∃(x′, x′
∗) ∈ Wd,v(N),

∑

i∈T

x′
i ≤ v(T\{∗}),

∑

i∈T

xi + x∗ ≤
∑

i∈T

x′
i + x′

∗

}

if T ( N .

Thus, the d-extended game involves a new player, denoted ∗, holding the debt con-

tracted by the coalition N in order to achieve a payoff in Asp(N, v), which therefore

is achievable by the players of N in the game (N ∪ {∗}, Wd,v). The original coalitions

T ⊂ N can achieve the same payoffs in (N ∪ {∗}, Wd,v) as they could in (N, v), but

cannot contract debt, whereas coalitions containing ∗ can contract debt which however

must not exceed what can occur at payoffs belonging to Asp(N, v) and sustainable by

the coalition. It should be noted that the game (N ∪ {∗}, Wd,v) is almost TU in the

sense that for S ( N , if xS ∈ Wd,v(S), then so is any x′
S such that

∑
i∈S x′

i =
∑

i∈S xi

(whether or not the new player ∗ belongs to the coalition S). It is, however, important for

the construction that the transferability of utility does not extend to the new, artificial

player in the set of feasible (for N ∪ {∗}) payoffs.

Intuitively, the d-extension amounts to including an artificial outside “creditor” whose

payoff at some vector x in the original game is minus the amount by which
∑

i∈N xi

exceeds v(N) (the “debt” at x). This artificial player can of course block feasible outcomes

x in (N, Wd,v) for which the “debt” is larger than it is at AC(N, v), thus providing a link

between this solution concept and the core, albeit in another context. The d-extended

game is not a TU game, but it is an almost TU game, and moreover, by Lemma 1, it is

nonlevel. The connection between the original TU game (N, v) and the d-extended game

(N, Wd,v) is considered in the following lemma.
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Lemma 5. Let (N, v) be a TU game, and assume that x ∈ Asp(N, v) belongs to the

aspiration core of (N, v). If S ⊂ N is arbitrary, then (xS , x∗) belongs to the core of

(S ∪ {∗}, W
S∪{∗},(x,x∗)
d,v ), the d-reduced game of (N, v) w.r.t. S and x.

Proof. Assume to the contrary that (xS , x∗) does not belong to the core of

(N ∪ {∗}, W
S∪{∗},(x,x∗)
d,v ). We show that this leads to a contradiction.

First of all, it follows trivially from our construction that

(xS, x∗) ∈ W
S∪{∗},(x,x∗)
d,v (S ∪ {∗}),

so that (xS , x∗) is feasible. Suppose that there is a coalition T which dominates (xS, x∗)

in the game (N ∪ {∗}, W
S∪{∗},(x,x∗)
d,v ). Then either (i) T ⊂ N , and from

(xS
i )i∈T ∈ int W

S∪{∗},(xS ,x∗)
d,v (T )

we get that
∑

i∈T xS
i < v(T ) showing that T dominates x, contradicting that x belongs

to the aspiration core, or (ii) ∗ ∈ T ; in this case, there must be Q ⊂ N\S such that

((xS
i )i∈T∪Q, x∗) ∈ int W

S∪{∗},(xS ,x∗)
d,v (T ∪ Q)

we get that there is (x′, (x′)∗) ∈ asp(N, v) such that
∑

i∈(T∪Q)\{∗}

xi <
∑

i∈(T∪Q)\{∗}

x′
i < v(T ∪ Q\{∗})

and (x′)∗ > x∗, a contradiction.

The d-reduced game is admittedly a somewhat tedious construction, but it turns out

useful in the characterization of the aspiration core.

Lemma 6. Let (N, v) be a TU game, and let x be a payoff which is in the aspiration set

Asp(N, v) and is undominated but does not belong to the aspiration core. Then there is

S ⊂ N such that ((xi)i∈T , x∗) does not belong to the core of (S ∪ {∗}, W
S∪{∗},(x,x∗)
d,v ).

Proof. By our assumptions, there exists x′ ∈ Asp(N, v) such that x′ is undominated and

(x′)∗ > x∗. Let T ⊂ N be such that
∑

i∈T x′
i = v(T ). Then T 6= N ; let S = N\T and

consider the d-reduced game (S ∪ {∗}, W
S∪{∗},(x,x∗)
d,v ). By definition of the d-reduction,

we have that

(x′)∗ ∈ W
S∪{∗},(x,x∗)
d,v ({∗}),

(since ((x′
i)i∈T , (x′)∗) belongs to Wd,v(T ∪{∗})), consequently ((xi)i∈S , x∗) is dominated

via {∗} in (S ∪{∗}, W
S∪{∗},(x,x∗)
d,v ) and therefore does not belong to its aspiration core.

We may now return to the problem of axiomatizing the aspiration core of a TU

game. The approach to be followed will be to transfer the problem to G̃b and use the

results obtained in the previous sections. For this, we need a final axiom connecting the

solutions chosen on G and on G̃b; it may be thought of as an extension of the consistency

requirements already specified in Axioms 4 and 5.

Axiom 6. Let Φ be a solution concept on G′ ∪ G̃′
b with Gb ⊂ G′. If (N, v) ∈ G and

x ∈ Φ(N, v), then (x, x∗) ∈ Φ(N, Wd,v).

Now we may state and prove the main results:
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Theorem 1. Let Φ be a solution concept on G′ ∪ G̃′
b with Gb ⊂ G′. If Φ satisfies Axioms

1–6 , then Φ(N, v) = AC(N, v) for every (N, v) ∈ G′.

Proof. Assume that Φ satisfies Axioms 1–3 and 5. Let (N, v) ∈ G be arbitrary, and let

x ∈ Φ(N, v). We claim that x ∈ Asp(N, v).

For each i ∈ N , consider the game ({i}, v{i},x) is a game with only one player. Using

Axiom 1 and 2, we get that Φ({i}, v{i},x) = v{i},x({i}). From Axiom 3 we have that

xi ∈ Φ({i}, v{i},x), so xi = v{i},x({i}).

Next, let S ⊂ N be arbitrary. For each i ∈ S we have that

xi = v{i},x({i}) ≥ v({i} ∪ [S\{i}]) −
∑

i∈S\{i}

xi,

and rearranging we have that
∑

i∈S xi ≥ v(S), which is condition (ii) in the definition

of Asp(N, v). To show that also condition (i) is fulfilled, choose i ∈ N arbitrarily. Since

xi = v{i},x, by the definition of the reduced game there must be some coalition Q ∈

P0(N\{i}) such that xi = v({i} ∪Q)−
∑

j∈Q xj , and clearly T = Q∪ {i} contains i and

satisfies
∑

i∈T xi ≤ v(T ). This proves our claim.

To prove that x ∈ AC(N, v), we assume on the contrary that x does not belong to

the aspiration core of (N, v). Then by Lemma 6, we have that there is S ( N such that

(xS , x∗) does not belong to the core of the d-reduced game (S ∪ {∗}, vS∪{∗},(x,x∗)). On

the other hand, the d-reduced game belongs to G̃b, and since by Lemma 4, Φ(N, W ) ⊆

C(N, W ) for every (N.W ) ∈ G̃b, we have a contradiction to Axiom 6. We conclude that

x ∈ Asp(N, v).

Thus far we have obtained that the solution concept which satisfies our axioms must

pick some subset of Asp(N.v). To get a characterization of AC(·) we need to supplement

by some conditions which guarantees that every element of AC(N, v) is indeed in Φ(N, v).

An obvious approach consists in adding a converse of Axiom 6 to our list:

Axiom 7. Let Φ be a solution concept on G′ ∪ G̃′
b with Gb ⊂ G′. If (N, v) ∈ G and x is a

payoff vector in (N, v) such that (x, x∗) ∈ Φ(N, Wd,v), then x ∈ Φ(N, v).

We can now derive the final version of our result.

Theorem 2. Let Φ be a solution concept on G ∩ G̃b which satisfies Axioms 1–7. Then

Φ(N., v) = AC(N, v) on each (N, v) ∈ G.

Proof. From Theorem 1, we have that Φ(N, v) ⊆ AC(N, v) for every (N, v) ∈ G. Let

(N, v) ∈ G and x ∈ AC(N, v) be arbitrary; by Lemma 6, (x, x∗) ∈ C(N, Wd). Using

Lemma 5, we have that (x, x∗) ∈ Φ(N, Wd), and by Axiom 7, we have that x ∈ Φ(N, v).

6. Concluding remarks. In this paper we have proposed a system of axioms charac-

terizing the aspiration core, which selects those elements of the aspiration set which has

smallest distance to the set of aggregate feasible payoff vectors. In this axiomatization,

we have used axioms each of which is well-known and much used. However, we have used

them in a context which is not quite commonplace; instead of reducing the number of

players and applying a consistency axiom to the smaller game, we have transformed the

game to another one, which may have as many players as the original game and which
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may not even be a TU game. However, further reduction in this class of games will work

just as it does within the class of TU games, and the extension is anyway not very dras-

tic, since we add only games which look as TU games for all coalitions except the grand

coalition.

On the other hand, though it may be argued that NTU games are more basic than TU

games so that involving some games which retain a certain degree of non-transferability

of utility is permitted, it still would seem more appealing if the the axiomatization of a

solution concept for TU games does not involve extensions of the solution to games that

do not belong to this class. A consideration of such axioms is however a task for future

research.

References

[1] E. Bennett, The aspiration approach to predicting coalition formation and payoff distri-

bution in sidepayment games, International Journal of Game Theory 12 (1983), 1–28.

[2] O. N. Bondareva, Some applications of linear programming methods to the theory of co-

operative games, Problemy Kibernetiki 10 (1963), 119–139 (in Russian).

[3] J. C. Gomez, An extension of the core solution concept, Discussion Paper 04-01, Institute

of Economics, University of Copenhagen, 2004.

[4] J. C. Gomez, Axiomatizing a nonempty core extension, Mimeo, Institute of Economics,

University of Copenhagen, 2004.

[5] T. Hokari and O. Kıbrıs, Consistency, converse consistency, and aspirations in TU games,

Mathematical Social Sciences 45 (2003), 313–331.
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