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Abstrat.We disuss stohasti dynamis of �nite populations of individuals playing symmetrigames. We review reent results onerning the dependene of the long-run behavior of suhsystems on the number of players and the noise level. In the ase of two-player games withtwo symmetri Nash equilibria, when the number of players inreases, the population undergoesmultiple transitions between its equilibria.1. Introdution. Many soio-eonomi and biologial proesses an be modeled as sys-tems of interating individuals; see for example Santa Fe olletion of papers on eonomiomplex systems [1℄, eonophysis bulletin [2℄, and statistial mehanis and quantitativebiology arhives [3℄.Here we will onsider game-theoreti models of many interating agents [4, 5, 6℄. Insuh models, agents have at their disposal ertain strategies and their payo�s in a gamedepend on strategies hosen both by them and by their opponents. A on�guration ofa system, that is, an assignment of strategies to agents, is a Nash equilibrium if forany agent, for �xed strategies of his opponents, hanging the urrent strategy will notinrease his payo�. One of the fundamental problems in game theory is the equilibriumseletion in games with multiple Nash equilibria. In two-player symmetri games with twostrategies we may have two Nash equilibria: a payo� dominant (also alled e�ient) anda risk-dominant one. In the e�ient equilibrium, players reeive highest possible payo�s.The strategy is risk-dominant if it has a higher expeted payo� against a player playingboth strategies with equal probabilities. It is played by individuals averse to risks.One of the seletion methods is to onstrut a dynamial system where in the long runonly one equilibrium is played with a high frequeny. Here we will disuss an adaptive2000 Mathematis Subjet Classi�ation: 91A10, 91A22, 92D15, 92D25.Key words and phrases: evolutionary game theory, Nash equilibrium, equilibrium seletion,adaptive dynamis, stohasti stability.The paper is in �nal form and no version of it will be published elsewhere.
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238 J. MIĘKISZdynamis introdued by Robson and Vega-Redondo [7℄. In their model, at any timeperiod, individuals play only one game with randomly hosen opponents (they do notplay against an average strategy as in the repliator dynamis or the adaptive model ofKandori, Mailath, and Rob [8℄). The seletion part of the dynamis ensures that if themean payo� of a given strategy at the time t is bigger than the mean payo� of the otherone, then the number of individuals playing the given strategy should inrease in t + 1.In addition, with a small probability representing the noise of the system, players maymake mistakes.To desribe the long-run behavior of stohasti dynamis, Foster and Young [9℄ in-trodued a onept of stohasti stability. A state of a system (a number of individualsplaying the �rst strategy in our models) is stohastially stable if it has a positive proba-bility in the stationary state in the limit of zero noise. It means that in the long run weobserve it with a positive frequeny.Here we review reent results onerning the dependene of the long-run behaviorof the above desribed dynamis on the number of players and the noise level. We willombine these results to show that in the ase of two-player games with two symmetriNash equilibria, when the number of players inreases, the population undergoes multipletransitions between its equilibria.2. Adaptive dynamis with mistakes. We will onsider a �nite population of nindividuals who have at their disposal one of two strategies: A and B. At every disretemoment of time, t = 1, 2, ..., they are randomly paired (we assume that n is even) to playa two-player symmetri game with payo�s given by the following matrix:
A B

A a b

U =

B c dwhere the ij entry, i, j = A, B, is the payo� of the �rst (row) player when he plays thestrategy i and the seond (olumn) player plays the strategy j. We assume that bothplayers are the same and hene payo�s of the olumn player are given by the matrixtransposed to U ; suh games are alled symmetri.An assignment of strategies to both players is a Nash equilibrium if for eah player,for a �xed strategy of his opponent, hanging the urrent strategy will not inrease hispayo�. If a > c and d > b, then (A, A) and (B, B) are two Nash equilibria. If a+b < c+d,then the strategy B has a higher expeted payo� against a player playing both strategieswith equal probabilities. We say that B risk dominates the strategy A (the notion of therisk-dominane was introdued and thoroughly studied by Harsányi and Selten [10℄). If inaddition a > d, then we have a seletion problem of hoosing between the payo�-dominant(also aled e�ient) equilibrium (A, A) and the risk-dominant (B, B).At every disrete moment of time t, the state of our population is desribed by thenumber of individuals, zt, playing A. Formally, by the state spae we mean the set
Ω = {z, 0 ≤ z ≤ n}.



EQUILIBRIUM TRANSITIONS 239Now we desribe the dynamis of our system. It onsists of two omponents: seletion andmutation. The seletion mehanism ensures that if the mean payo� of a given strategy,
πi(zt), i = A, B, at the time t is bigger than the mean payo� of the other one, then thenumber of individuals playing the given strategy should inrease in t + 1.Let pt denote the random variable whih desribes the number of ross-pairings, i.e.the number of pairs of mathed individuals playing di�erent strategies at the time t. Letus notie that pt depends on zt. For a given realization of pt and zt, mean payo�s obtainedby eah strategy are as follows:

πA(zt, pt) =
a(zt − pt) + bpt

zt

, (1)
πB(zt, pt) =

cpt + d(n − zt − pt)

n − zt

,provided 0 < zt < n.The probability that a given player may hange his strategy should be proportionalto the length of the time period (whih we normalized to 1 in our models). We assumethat in any time period, eah individual has a revision opportunity with a small positiveprobability τ and adopts a strategy with the higher mean payo�. This is a dynamisintermediate between the parallel (all individuals may hange their strategies at anytime period) and the sequential one (only one randomly hosen individual may revise hisstrategy).Players may make mistakes. At every time period, eah player who has a revisionopportunity, instead of following the seletion rule may adopt the other strategy with asmall probability ǫ. It is easy to see, that for any two states of the population, there is apositive probability of the transition between them in some �nite number of time steps.We have therefore obtained an irreduible Markov hain with n+1 states. It has a uniquestationary state (a probability mass funtion) whih we denote by µǫ
n. For any z ∈ Ω,

µǫ
n(z) is the frequeny of visiting the state z in the long run. The following de�nition wasintrodued by Foster and Young [9℄.Definition. z ∈ Ω is stohastially stable if limǫ→0 µǫ

n(z) > 0.3. Equilibrium transitions. We review here reent results onerning the dependeneof stohasti stability of equilibria on the number of players.They are based on a ertain tree representation of stationary states of irreduibleMarkov hains ([11, 12, 13℄; see also Appendix). Beause at any time period, eah indi-vidual has a positive probability of hanging his strategy, there are no other reurrenelasses besides the two absorbing states, z = 0 and z = n. After a �nite number of stepsof the noise-free dynamis, we arrive at one of these two states and stay there forever.Therefore to obtain a stationary state in the limit of zero noise, it is enough to ount anumber of mistakes the population needs to evolve between these states. If one requires,for example, fewer mistakes to evolve from z = 0 to z = n than from z = n to z = 0,then z = n is stohastially stable.Robson and Vega-Redondo proved that for a su�iently big number of players, thee�ient strategy A is stohastially stable [7℄. They showed that limǫ→0 µǫ
n(n) = 1 whihmeans that in the long run, in the limit of no mistakes, all individuals play A.



240 J. MIĘKISZHowever, their proof requires the number of players to be su�iently big. It wasshowed in [14℄ that the risk-dominant strategy B is stohastially stable if the number ofplayers is below (2a − c − b)/(a − c).Let us reall the proof. If the population onsists of only one B-player and n − 1

A-players and if c > [a(n−2)+ b]/(n−1), that is n < (2a− c− b)/(a− c), then πB > πA.It means that one needs only one mistake to evolve from z = n to z = 0. It is easy to seethat two mistakes are neessary to evolve from z = 0 to z = n whih �nishes the proof.To see stohastially stable states, we need to take the limit of the zero noise level. Itwas showed in [14℄ that for any arbitrarily low �xed noise level, if the number of players isbig enough, then in the long run only a small fration of the population plays the e�ientstrategy A. Smaller the noise level is, fewer individuals play A.Let us note that the above theorem onerns an ensemble of states, not an individualone. In the limit of the in�nite number of players, that is the in�nite number of states ofthe system, every single state has zero probability in the stationary state. It is an ensembleof states that might be stable. Ensemble and stohasti stability in spatial games withloal interations were reently disussed in [15, 16, 17℄. For an interesting disussion onthe importane of the order of taking di�erent limits (τ → 0, n → ∞, and ǫ → 0) inevolutionary models (espeially in the Aspiration and Imitation model) see [18℄.Now we ombine the above theorems and obtainTheorem. For any δ > 0 and β > 0 there exists ǫ(δ, β) suh that, for all ǫ < ǫ(δ, β),there exist n1 < n2 < n3(ǫ) < n4(ǫ) suh that
• if n < n1 = 2a−c−b

a−c
, then µǫ

n(z = 0) > 1 − δ,

• if n2 < n < n3(ǫ), then µǫ
n(z = n) > 1 − δ,

• if n > n4(ǫ) and τ < ǫ/n3, then µǫ
n(z ≤ βn) > 1 − δ.Small τ means that our dynamis is lose to the sequential one. The quantities

n3(ǫ), n4(ǫ), n3(ǫ) − n2, and n4(ǫ) − n3(ǫ) all tend to ∞ as ǫ → 0.We see that for a �xed noise level, when the number of players inreases, the popula-tion undergoes twie a transition between its two equilibria. Let us reall that if n > n2,then z = n is stohastially stable. Therefore, for any �xed number of players, n > n2, ifthe noise level is su�iently small, then almost all individuals will play in the long runthe e�ient strategy A.In order to study the long-run behavior of stohasti population dynamis, we shouldestimate the relevant parameters to be sure what limiting proedures are appropriate inspei� examples. Equilibrium transitions in other stohasti dynamis of �nite popula-tions were reently investigated in [19, 20℄.Appendix. The following tree representation of stationary distributions of Markovhains was proposed by Freidlin and Wentzell [11, 12℄, see also [13℄. Let (Ω, P ) be anirreduible Markov hain with a state spae Ω and transition probabilities given by
P ǫ : Ω × Ω → [0, 1]. It has a unique stationary distribution, µǫ, also alled a station-ary state. For X ∈ Ω, let an X-tree be a direted graph on Ω suh that from every
Y 6= X there is a unique path to X and there are no outoming edges at X. Denote by



EQUILIBRIUM TRANSITIONS 241
T (X) the set of all X-trees and let

qǫ(X) =
∑

d∈T (X)

∏

(Y,Y ′)∈d

P ǫ(Y, Y ′), (2)where the produt is over all edges of d. We have that
µǫ(X) =

qǫ(X)∑
Y ∈Ω qǫ(Y )

(3)for all X ∈ Ω.Let us assume now that after a �nite number of steps of the noise-free dynamis, i.e.
ǫ = 0, we arrive at one of two absorbing states, say X and Y , and stay there forever -there are no other reurrene lasses. Let Z be any state di�erent from X and Y . qǫ(Z) in(2) is of higher order in ǫ than qǫ(X) and qǫ(Y ). It follows from the tree representation (3)that Z has zero probability in the stationary distribution in the zero-noise limit. Considera dynamis in whih P ǫ(Z, W ) for all Z, W ∈ Ω, is of order ǫm, where m is the number ofmistakes involved to pass from Z to W . Then one has to ompute the minimal numberof mistakes, mXY , needed to make a transition from the state X to Y and the numberof mistakes, mY X , to evolve from Y to X. qǫ(X) is of order ǫm(Y X) and qǫ(Y ) is of order
ǫm(XY ). Let us assume for example that mY X < mXY . We then take the limit ǫ → 0 in(3) and obtain that limǫ→0 µǫ(X) = 1 hene X is stohastially stable.
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