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Abstract. An exchange network is a socioeconomic system in which any two actors are allowed

to negotiate and conclude a transaction if and only if their positions—mathematically repre-

sented by the points of a connected graph—are joined by a line of this graph. A transaction

consists in a bilaterally agreed-on division of a profit pool assigned to a given line. Under the

one-exchange rule, every actor is permitted to make no more than one transaction in each ne-

gotiation round. Bienenstock and Bonacich ([1]) proposed to represent a one-exchange network

with an n-person game in characteristic function form. A special case, known as a two-sided

assignment game, was studied earlier by Shapley and Shubik ([10]) who proved that the game

representing any one-exchange network has a nonempty core if the underlying graph is bipartite.

This paper offers a graph-theoretic criterion for the existence of a nonempty core in the game

associated with an arbitrary not necessarily bipartite homogeneous one-exchange network where

network homogeneity means that every line of the transaction opportunity graph is assigned a

profit pool of the same size.

1. Exchange networks. While economic theory focuses on exchange processes in free

markets where every two actors with complementary interests are allowed to trade with

each other, sociologists who invented the concept of an exchange network have always

been more interested in studying power and ensuing reward inequality in social systems

in which partner choice and bargaining are subject to network restrictions. Since the

publication of the special issue of the journal Social Networks (Vol. 14 (1992), Nos. 3–4)

“location of power in exchange networks” has become the topic of mathematical investi-

gations which are still going on ([3], [13], [14]) along with experimental work.
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In this paper, we define an exchange network as an abstract mathematical object

made up of three components.

(1) A transaction opportunity graph G = (N, L).

G is a connected undirected graph whose point set N represents the positions occupied

by n actors (n = |N |) who are allowed to negotiate and conclude bilateral transactions

with the restriction that a deal between the actors in positions P and Q can be made only

if PQ is in the line set L of G. A line joining P and Q, written as PQ or QP is a couple

{P, Q} of distinct points. Since no loops are allowed, L ⊂ {{P, Q} : P, Q ∈ N, P 6= Q}.

(2) A profit pool network C over G.

C is a mapping which assigns to any line PQ in L a number CPQ > 0 interpreted

as the size of a profit pool to be divided between the occupants of positions P and Q.

The term transaction in a network line PQ refers to any ordered pair (xPQ, xQP ) of real

numbers such that xPQ ≥ 0, xQP ≥ 0, and xPQ + xQP = CPQ, xPQ (xQP ) being the

share negotiated by P (Q).

(3) An exchange regime defined as a family T of subsets of L.

Elements of T will be called transaction sets or trading patterns (Bonacich’s term).

It is assumed that ∅ ∈ T and for any line PQ ∈ L there exists a transaction set T ∈ T

such that PQ ∈ T . That is, the networkwide negotiation process can end up with no

transaction and every line has a chance to be the locus of a transaction.

Transaction sets represent all configurations of bilateral agreements which may hap-

pen in a single negotiation round in accordance with a given rule which imposes some

limitations on the arrangement and number of transactions across the network. The name

“exchange regime” and the germ of the idea elaborated by the author come from Friedkin

([7]).

A transaction set T is called maximal if there is no U in T such that T ⊂ U and

T 6= U . That is, once for every line PQ in T the bargainers in positions P and Q have

come to terms, no more transactions may follow, the negotiation round comes to an end,

and P and Q get their negotiated shares of CPQ.

A cumulative exchange regime is defined by the following condition: any subset U of

any T in T is also in T . Under a cumulative exchange regime, any one-line set {PQ} is

in T so that any two actors who have settled on a pool split can safely wait for the end

of a round because their payoffs do not depend on transactions subsequently concluded

elsewhere in the network.

An exchange regime is called additive if T ∪U ∈ T for any two point-disjoint transac-

tion sets T, U ∈ T , T and U being point-disjoint if there is no point P such that PQ ∈ T

and PQ′ ∈ U for some points Q and Q′.

To give an example of a cumulative and additive exchange regime, consider the

k-exchange regime Tk(G) generated by the k-exchange rule which permits to every actor

to make at most k transactions per round. Clearly, T ∈ Tk(G) if and only if T ⊂ L and

degT (P ) ≤ k for any P ∈ N where degT (P ) stands for the degree of P in the subgraph

(N, T ) of G = (N, L). Formally, degT (P ) = |{Q : PQ ∈ T}|, deg(P ) = degL(P ).
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Experimental research and formal theorizing has so far focused almost exclusively on

one-exchange networks, or those with 1-exchange regime T1(G). T ∈ T1(G) if and only if

no two lines in T have a common endpoint. In graph theory (see Chapter 10 in [8]), any

subset T of L with this property is called a matching or an independent set of lines.

The structural parameter of G = (N, L) known as the line independence number is

defined as
β1(G) = Max{|T | : T ∈ T1(G)}

where |T | stands for the cardinality of T . A matching T is called optimal if |T | = β1(G).

Clearly, every optimal matching is maximal (that is, there is no matching U such that

T ⊂ U and T 6= U), but not conversely.

Maximality with respect to inclusion, as applied to matchings, has so far been given

little attention in graph theory. We need this concept to define relations of exclusion and

elementary power in the node set of a one-exchange network. We say that P can exclude

Q if there exists a maximal matching T which covers P and does not cover Q. A subset

M of the line set L covers a point P if P is an endpoint of a line in M . P has elementary

power over Q if P can exclude Q and Q can’t exclude P .

In this paper, we consider the dual covering relation obtained by reversing the roles

of points and lines, namely, we say that a subset S of the node set N covers a line PQ

in L if P ∈ S or Q ∈ S. The structural parameter known as the point covering number,

noted α0(G), is defined ([8], Chapter 10) as the smallest number of nodes which cover all

lines of G. Formally,
α0(G) = Min{|S| : S is a point cover of G}

where the term point cover refers to any S ⊂ N covering all lines in L.

2. Multiperson games in characteristic function form. An n-person game in char-

acteristic function form is formally defined ([9]) as a couple (N, v) made up of a finite set

of players N = {P1, . . . , Pn} and a characteristic function v which assigns a real number

v(S) to any subset S of N . The subsets of N are called coalitions. The number assigned

by v to S, called the value (worth) of S, is interpreted as the total payoff the members

of S can gain independently of whether other players coordinate their actions within the

complementary coalition N−S, few smaller coalitions, or play each on one’s own account.

It is convenient to assume that v(∅) = 0.

Since the games we consider later in this paper have nonnegative individual and

collective payoffs, we add the assumption that v(S) ≥ 0 for any S and adopt the standard

interpretation of v(S) as the amount of a divisible good the coalition S can secure for

itself through concerted action. This quantity can be seen as a “cake” from which each

coalition member receives a portion provided that all players in S agree to coalesce and

are able to settle on how to divide the “cake” among themselves. As regards the actors’

goal-orientation, it is assumed that each player wants to gain as much as possible of the

good in question and considers every potential coalition solely as a means to this end.

A game (N, v) is called superadditive if v(S ∪ S′) ≥ v(S) + v(S′) for any two disjoint

coalitions S and S′. Superadditivity is often included in the definition of an n-person

game in characteristic function form. For any superadditive game, we define a payoff
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vector as a sequence x = (x1, . . . , xn) of real numbers such that

xi ≥ 0 for i = 1, . . . , n and x1 + · · · + xn ≤ v(N)

where xi is the number of resource units earned by player Pi at the end of the game. By

assumption, all payoffs are nonnegative and can be jointly paid from the pool allocated

to the grand coalition N .

We say that a payoff vector x is feasible for a coalition S if
∑

(S, x) ≤ v(S) where
∑

(S, x) stands for the total payoff of the members of S. By definition, every payoff vector

is feasible for N .

We also assume that every time the game is played there arises a coalition structure

{S1, . . . , Sk} which is a partition of N into nonempty, pairwise disjoint subsets whose

union is N . The coalition structures {{P1}, . . . , {Pn}} and {N} represent two simplest

contrasting ways of playing the game: the actors fail to create any alliance or all ally to

form the grand coalition.

Feasibility of x for a coalition structure {S1, . . . , Sk} is defined by the condition:
∑

(Sj , x) = v(Sj) for j = 1, . . . , k. The pair made up of a payoff vector and a coali-

tion structure for which the payoff vector is feasible is called payoff configuration.

The condition by which we defined the feasibility of x for a coalition structure is

stronger than the requirement that x is feasible for every Sj . However, the payoff vectors

such that
∑

(Sj , x) < v(Sj) for some Sj need not be counted as outcomes of a super-

additive game, since every payoff vector x with this property can be replaced by an x′

such that
∑

(Sj , x
′) = v(Sj) for all j, and x′

i ≥ xi for every player Pi. To obtain x′,

each undistributed surplus v(Sj)−
∑

(Sj , x) is divided evenly among the members of Sj .

Then, without any loss to the members of other coalitions, all players in Sj are better off

(x′
i > xi). The inequality

∑

(N, x′) ≤ v(N) which is required of any payoff vector is met

by x′ in virtue of superadditivity, namely, v(N) ≥ v(S1) + · · · + v(Sk).

A payoff vector x is feasible if there exists at least one coalition structure for which x

is feasible. Feasible payoff vectors form the most comprehensive “space of solutions” of a

game in characteristic function form.

An additional restriction which is usually imposed on the outcomes of a superadditive

game is the condition of individual rationality:

xi ≥ v({Pi}) for all i.

This natural postulate means that no player will accept a lower payoff than the payoff

he can safely gain by acting as a single actor coalition.

The group (collective) rationality condition is given by the equation
∑

(N, x) = v(N).

The equation means that x is feasible for the coalition structure {N} made up of one

coalition containing all players.

For any superadditive game (N, v) we have v(N) ≥ v({P1})+ · · ·+v({Pn}). Superad-

ditive games for which v({P1}) + · · · + v({Pn}) = v(N) are called inessential. Then, for

any S, v(S) is the sum of v({Pi}) over all Pi ∈ S, which implies in turn that xi = v({Pi}),

i = 1, . . . , n, is the only feasible, individually rational payoff vector. Since in these cir-
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cumstances the players gain nothing by forming larger coalitions, the theory focuses on

essential games, or those satisfying the inequality v(N) > v({P1}) + · · · + v({Pn}).

For essential games, the set of imputations (payoff vectors which meet the conditions

of individual and group rationality) is usually too large so that further restrictions need

to be imposed on theoretically predicted outcomes of the game. The condition of coalition

rationality has the form
∑

(S, x) ≥ v(S) for all S ⊂ N.

The set Cr(v) of coalitionally rational payoff vectors is called the core of the game (N, v).

Coalition rationality implies that xi ≥ v({Pi}) for i = 1, . . . , n. Thus, all payoff vectors

in the core satisfy the condition of individual rationality. Group rationality condition
∑

(N, x) = v(N) is also met because the inequality
∑

(N, x) ≤ v(N) is assumed for

every payoff vector and the inequality
∑

(N, x) ≥ v(N) results from coalition rational-

ity. Thus, the core can be equivalently defined as the set of all coalitionally rational

imputations ([9]).

Group rationality condition implies that every payoff vector in the core is feasible

for the coalition structure {N}. Below we prove a theorem which specifies the range of

coalition structures for which every payoff vector in Cr(v) is feasible. We say that a

coalition structure S = {S1, . . . , Sk} is optimal if it satisfies the condition

v(S1) + · · · + v(Sk) = v(N).

Theorem 2.1. Any payoff vector x from the core of the game (N, v) x is feasible for a

coalition structure S if and only if S is optimal.

Proof. Assume that x ∈ Cr(v). Consider an optimal coalition structure S = {S1, . . . , Sk}.

We show that the optimality condition implies that x is feasible for S. By applying the

coalition rationality condition to every Sj and adding up the right and left hand sides

of the respective inequalities, we arrive at the inequality
∑

j

∑

(Sj , x) ≥
∑

j v(Sj), or
∑

(N, x) ≥ v(N). Since
∑

(N, x) = v(N), none of the inequalities
∑

(Sj , x) ≥ v(Sj) can

be sharp, which means that x is feasible for S. The proof of the necessity of the condition
∑

j v(Sj) = v(N) for the feasibility of x for the coalition structure {S1, . . . , Sk} is even

simpler: v(N) =
∑

(N, x) =
∑

(S1, x) + · · · +
∑

(Sk, x) = v(S1) + · · · + v(Sk) by group

rationality and feasibility of x.

Theorem 2.1 will help us to derive many results for the class of games we define in the

next section after Bienenstock and Bonacich ([1]) who were first to apply game theory to

exchange networks.

3. The n-person game associated with an exchange network. The n-person game

associated with an exchange network over G = (N, L) with an exchange regime T and

a profit pool network C is defined as (N, vC,T ) where N—the set of network nodes—

becomes the set of players, and the value of the characteristic function vC,T for any

coalition S ⊂ N is given by the formula

vC,T (S) = Max
{

∑

(T, C) : T ∈ T ; if PQ ∈ T, then P ∈ S and Q ∈ S
}

where
∑

(T, C) stands for the sum of CPQ over all PQ in T (
∑

(∅, C) = 0). The maximum
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of
∑

(T, C) is taken over all transaction sets T such that both endpoints of any line in

T lie in S. Note that under any exchange regime

vC,T ({P}) = 0.

Assume that T is cumulative. Then {PQ} ∈ T . Since {PQ} is the only transaction set

meeting the condition given in the definition of vC,T (S) for S = {P, Q}, we have

vC,T ({P, Q}) = CPQ for any PQ ∈ L; vC,T ({P, Q}) = 0 for any PQ /∈ L.

The values of vC,T for triplets and larger coalitions depend on a concrete exchange

regime. For now, more specific results are available solely for one-exchange networks,

Thus, we must conclude this section with just one general theorem.

Theorem 3.1. If the exchange regime in an exchange network is cumulative and addi-

tive, then the associated game is superadditive and essential.

The proof of Theorem 3.1 is an immediate consequence of the definitions, so it can

be omitted.

By associating the characteristic function game (N, vC,T ) with an exchange network

(N, L, C, T ) we obtain a functor from the category of exchange networks to the category

of superadditive and essential games. The structuralist methodology of mathematics ne-

cessitates defining for any category at least the class of isomorphisms. In general, an iso-

morphism of two mathematical objects with base sets N and N ′ and structures S and S′ of

the same type is a 1–1 mapping π of N onto N ′ which induces a 1–1 correspondence be-

tween S and S′. In particular, π is an isomorphism of two exchange networks (N, L, C, T )

and (N ′, L′, C ′, T ′) if: (1) π is an isomorphism of graphs (N, L) and (N ′, L′), that is, for

any P, Q ∈ N such that P 6= Q, PQ ∈ L if and only if π(P )π(Q) ∈ L′; (2) There exists

a number s > 0 such that for any line PQ in L we have C ′

π(P )π(Q) = sCPQ; (3) For any

T ⊂ L, T ∈ T if and only if π(T ) ∈ T ′ where π(T ) = {π(P )π(Q) : PQ ∈ T}.

Notice that every automorphism (the term “automorphism” is used when two math-

ematical objects are identical) of a graph G = (N, L) automatically satisfies condition 3

under the k-exchange regime Tk(G).

Two characteristic function games (N, v) and (N ′, v′) are isomorphic under π if there

exists a scaling factor s > 0 such that v′(π(S)) = sv(S) for any S ⊂ N . Clearly, every

isomorphism of two exchange networks is also an isomorphism of the games associated

with them. Thus, the functor from the category of exchange networks to the category of

characteristic function games—which is defined for objects as (N, L, C, T ) → (N, vC,T )—

becomes the assignment π → π for isomorphisms.

Let (N, v) be a superadditive essential game with nonnegative values. Does there exist

an exchange network (N, L, C, T ) with cumulative and additive exchange regime T such

that v = vC,T ? For now we can only state an obvious necessary condition: v({P}) = 0

for any P ∈ N , and every S such that v(S) > 0 contains some points P and Q such that

v({P, Q}) > 0.

4. Generalized assignment games. Let vC = vC,T1(G) denote the characteristic func-

tion of the n-person game associated with a one-exchange network over G = (N, L). To

compute vC(S) for any S ⊂ N , one needs to determine the maximum of
∑

(T, C) across
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all matchings which consist of lines having both endpoints in S. The subset of T1(G)

made up of these matchings coincides with T1(GS) where GS = (S, LS) is the subgraph

of G = (N, L) generated by S (LS stands for the subset of L made up of all lines with

both endpoints in S).

A special case of the game (N, vC) known as a two-sided assignment game is obtained

by assuming that the transaction opportunity graph is bipartite, that is, N is the union

of two nonempty, disjoint sets N1 and N2 such that every line in L has one point in N1

and the other point in N2.

Under a common economic interpretation, the members of N1 are potential sellers

and the members of N2 are potential buyers of, say, used cars. Every seller (he) and

every buyer (she) aims at maximizing his/her profit from a bilateral transaction with a

member of the opposite class. A seller’s profit is the difference between the negotiated

price and the minimum price acceptable to him; a buyer’s profit is the difference between

maximum price she would pay for the car offered by a given seller and the negotiated

price. If the minimum price of a seller P is lower than the maximum price of a buyer

Q, then the two parties can bargain over the division of the difference between the two

prices. Assuming that every seller has and every buyer needs only one car, one can model

this simple market as a bipartite one-exchange network, and use its game representation

to predict an outcome of the bargaining process.

Shapley and Shubik ([10]) who were first to study two-sided assignment games proved

that every game of the kind has a nonempty core (see [9], 221–223; [11], Chapter 8).

They showed also that the core determines an “assignment” of buyers to sellers (hence

the name “assignment game”).

The concept defined by Shapley and Shubik was generalized by Bienenstock and

Bonacich ([1]) whose later papers ([2], [3], [4], [5], [6]) provided further results on the

existence and shape of the core for the games associated with one-exchange networks. I

propose to call these games generalized assignment games. The term “the Bienenstock-

Bonacich game” will be used interchangeably.

This paper offers a graph-theoretic characterization of the core for the games associ-

ated with homogeneous one-exchange networks, or those in which every line is assigned

a profit pool of the same size, that is, for any PQ ∈ L, CPQ = C0 for some C0 > 0.

Since the context makes confusion impossible, the letter C will be used to denote both

the profit pool matrix and the constant pool size. The choice of C > 0 affects only the

scale for measuring the value of each coalition.

It is not difficult to verify that the characteristic function of a homogeneous generalized

assignment game is given by the following formula

vC(S) = Cβ1(GS)

which holds for any subset S of N . In particular, we have vC(N) = Cβ1(G).

All terms introduced in Section 2 for characteristic function games can be applied

to generalized assignment games. However, if such a representation of a one-exchange

network is to be a tool for analyzing the network itself, then one needs to study those

“solutions” of the network game which are compatible with the assumption that the

networkwide payoff allocation should arise from two-party transactions.
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The network-oriented approach prompts the following definition. A payoff vector x is

said to be feasible for a matching T if x is feasible for the coalition structure determined

by T , that is, the coalition structure made up of two-player coalitions coinciding with lines

in T and of single-player coalitions corresponding to points not covered by T . Similarly,

we call x a network-feasible payoff vector if x is feasible for some matching T .

Once the nodes of an exchange network and the players of the associated game have

been noted P1, . . . , Pn we can represent the profit pool network C over G = (N, L) as

an n × n matrix C = (Cij) where Cij = CPiPj
for PiPj ∈ L and Cij = 0 for PiPj /∈ L.

The C matrix uniquely determines the adjacency matrix G = (Gij) of the transaction

opportunity graph: Gij = 1 if Cij > 0, Gij = 0 if Cij = 0.

A simple consequence of network feasibility is that Pi’s payoff xi in the Bienenstock-

Bonacich game can be identified with the number of profit points Pi gets in a transaction

with one of its neighbors in G, formally, xi ≤ Cij for some node Pj such that PiPj ∈ L.

A matching T is called network-optimal if
∑

(T, C) = vC(N). In a homogeneous

one-exchange network, vC(N) = Cβ1(G) and
∑

(T, C) = C|T | for every matching T , so

that T is network-optimal if and only if |T | = β1(G), that is, network-optimality reduces

to optimality defined in Section 1. The theorem which follows shows how network-optimal

matchings are related to the core of a generalized assignment game.

Theorem 4.1. If a payoff vector x is in the core of a generalized assignment game, then

x is feasible for a matching T if and only if T is network-optimal.

Proof. Let {S1, . . . , Sk} be the coalition structure generated by a matching T , that is,

Sj = {P, Q} for some PQ in T or Sj = {P} for some P . Since vC({P, Q}) = CPQ for any

PQ in T and vC({P}) = 0 for any P , we have vC(S1) + · · · + vC(Sk) =
∑

(T, C). As a

consequence, the conditions
∑

(T, C) = vC(N) and vC(S1) + · · · + vC(Sk) = vC(N) are

equivalent, but the latter was given in Theorem 2.1 as a necessary and sufficient condition

for the feasibility of x ∈ Cr(vC) for {S1, . . . , Sk}.

5. The core of a generalized assignment game. Unlike the Shapley value, the core

can be empty, which may be a serious problem if one resorts to the game representation

of an exchange network to predict results of the negotiation process.

Consider the Triad network with 3 positions A1, A2, A3 and 3 lines A1A2,A1A3

and A2A3, and assume that C12 = Max{C12, C13, C23} so that vC(N) = C12. Let x =

(x1, x2, x3) be a payoff vector. If x ∈ Cr(vC), then x is feasible for the network-optimal

matching {A1A2}, which means that x1+x2 = C12 and x3 = 0. By applying the coalition

rationality condition to {A1, A3} and {A2, A3}, we arrive at the inequalities x1 ≥ C13

and x2 ≥ C23 which imply in turn that C12 ≥ C13 + C23. Therefore, the latter inequality

is the necessary condition of the existence of a nonempty core for vC . Clearly, it is a

sufficient condition as well. It is not met if C12 = C13 = C23. Thus, the homogeneous

Triad is the simplest one-exchange network for which the Bienenstock-Bonacich game

has an empty core.

The game associated with a one-exchange network over the 3-node graph of the form

B1−A−B2 has a nonempty core under any weights assigned to AB1 and AB2. The core re-

duces to exactly one payoff vector such that xB1
= xB2

= 0 and xA = Max{CAB1
, CAB2

}.
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Although such an extreme imbalance of benefits rarely occurs in the games played by

experimental subjects, the core reflects structural power that the nonexcludable position

A has over its excludable neighbors B1 and B2.

Let P be a node of a one-exchange network G = (N, L). We say that P is excludable

if there exists a maximal matching T which does not cover P . P is called nonexcludable

if it is covered by all maximal elements in T1(G). The game-theoretic counterpart of

excludability is introduced by the following definition: P is game-excludable if there exists

a network-optimal matching T which does not cover P . Since every network-optimal

matching is maximal, every game-excludable point is excludable. The converse is not

true, as there exist excludable points that are not game-excludable. To give an example,

consider the homogeneous one-exchange network with transaction opportunity graph

drawn in the form B1 − A1 − A2 − B2 and labeled 4-Chain or 4-Line. Positions B1 and

B2 are excludable—they are not covered by the maximal matching {A1A2}—yet they

are game-nonexcludable because they are covered by the matching {A1B1, A2B2} which

is the only optimal matching in this network.

Theorem 5.1 implies that game-excludable positions gain nothing if the network game

ends up with an outcome in the core.

Theorem 5.1. If a payoff vector x is feasible for all network-optimal matchings, then

xi = 0 for every game-excludable point Pi.

The proof of Theorem 5.1 is straightforward. Let T be an network-optimal matching

which does not cover Pi. The feasibility of x for T implies that xi = vC({Pi}) = 0. In

particular, if x ∈ Cr(vC), then xi = 0 for any game-excludable Pi.

The property of game-excludability can be defined for any superadditive game (N, v)

by the following statement: a coalition S ⊂ N is game-excludable if v(N) = v(N − S), in

other words, the group does not need the participation of the members of S to achieve the

maximum possible collective profit. A player P ∈ N is said to be game-excludable if coali-

tion {P} is game-excludable. The generalization of Theorem 5.1 takes the following form:

If a payoff vector x is feasible for all optimal coalition structures in a superadditive game

(N, v) and coalition S is game-excludable, then xi = 0 for all Pi in S. To prove this fact,

notice that v(N) ≥ v(N−S)+v(S), v(N) ≥ v(N)+v(S), 0 ≥ v(S), and v(S) = 0, in virtue

of superadditivity, game-excludability of S, and the assumption, made in Section 2, that a

characteristic function takes nonnegative values. Since v(S)+v(N −S) = v(N), the coali-

tion structure {S, N −S} is optimal. The feasibility of x for this coalition structure means

that
∑

(S, x) = v(S) = 0. Since xi ≥ 0, by assumption, theremust be xi = 0 for any Pi ∈ S.

There are many homogeneous one-exchange networks in which all positions are game-

excludable, the homogeneous Triad being the smallest example. Theorem 5.1 implies that

the game associated with every network of the kind is coreless (that is, its core is empty).

Indeed, if every position Pi is game-excludable and x ∈ Cr(vC), then xi = 0 for all

i so that
∑

(N, x) = 0, which contradicts the group rationality condition
∑

(N, x) =

vC(N) > 0.

Coreless homogeneous one-exchange networks can contain game-nonexcludable

nodes. The smallest example can be drawn as a “triangle with a two-line tail” (the chain
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A − C − D is added to Triad with nodes relabeled as A, B1, B2). In this network, node

C is nonexcludable, so it is also game-nonexcludable.

In coreless generalized assignment games, game-excludable players are not always

doomed to being “exploited” by their game-nonexcludable neighbors. Two game-exclud-

able players can be connected with each other, which gives them the opportunity to

evenly split the pool between themselves. However, if a Bienenstock-Bonacich game has

a nonempty core, the situation of game-excludable players is much worse: their only

potential partners are game-nonexcludable. This results from the following theorem.

Theorem 5.2. If a generalized assignment game has a nonempty core, then no two

game-excludable nodes are tied with each other in the network.

Proof. Assume that there exists a payoff vector x in Cr(vC). Theorem 5.1 implies that

xi = 0 and xj = 0 for any two game-excludable nodes Pi and Pj . If line PiPj were in G,

then 0 = xi + xj ≥ vC({Pi, Pj}) = Cij > 0, which is a contradiction.

The two subsequent theorems were first demonstrated by Bonacich and Bienenstock

([5], [6]). Theorem 5.3 simplifies the verification of the coalition rationality condition,

namely, it suffices to consider only the dyadic coalitions in which utility transfer is pos-

sible. If all connected dyads are coalitionally rational, then so is every larger coalition.

Theorem 5.3. An n-dimensional vector x is in the core of the game (N, vC) associated

with the one-exchange network C over G = (N, L) if and only if x satisfies the following

three conditions:

(1) xi ≥ 0 for all Pi ∈ N ;

(2) xi + xj ≥ Cij for all PiPj ∈ L;

(3) x1 + · · · + xn = vC(N).

Proof. The only thing we have to demonstrate is that condition 2 implies the rationality

of any S ⊂ N such that |S| > 2. Let T be a matching in GS such that
∑

(T, C) = vC(S)

and S′ be a subset of S made up of points covered by T . Then
∑

(S, x) =
∑

(S′, x) +
∑

(S − S′, x) ≥
∑

(S′, x) because
∑

(S − S′, x) ≥ 0 in virtue of condition 1. Clearly,
∑

(S′, x) is the sum of xi + xj over all PiPj ∈ T . Since xi + xj ≥ Cij by condition 2, we

arrive at the inequality
∑

(S′, x) ≥
∑

(T, C), which implies that
∑

(S, x) ≥ vC(S).

Condition 3 in Theorem 5.3 can be replaced by a weaker condition 3′ x1 + · · ·+ xn ≤

vC(N) because conditions 1 and 2 imply that x1 + · · ·+xn ≥ vC(N). Conditions 1 and 3′

amount to the assumption that x is a payoff vector. Thus, Theorem 5.3 can also be stated

as the following equivalence: a payoff vector x is in the core if and only if xi + xj ≥ Cij

for any network line PiPj .

To solve a system of inequalities is a more difficult task than to solve a system of

equations. Therefore, the problem of whether the network game has a nonempty core

and what payoff vectors are in there would be easier to cope with if one could replace

with equations at least some of the inequalities of the form xi + xj ≥ Cij . It turns out

that equations xi + xj = Cij and sharp inequalities xi + xj > Cij occur in two distinct

types of lines in L: network-optimal and network-suboptimal.
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A line PQ in L is called network-optimal if PQ ∈ T for some network-optimal match-

ing T . Let Lo denote the subset of L which consists of network-optimal lines. Network-

suboptimal lines are the elements of L − Lo. Since for homogeneous networks the terms

“network-optimal matching” and “optimal matching” mean the same, the term “optimal

line” will be used instead of “network-optimal line” in this case.

Theorem 5.4. If a payoff vector x is in the core of the game (N, vC) and PiPj is a

network line, then xi + xj = Cij if and only if PiPj is network-optimal.

Theorem 5.4 which is a trivial consequence of Theorem 4.1 shows which lines are most

likely to be used for bilateral transactions if the game associated with a one-exchange

network C has a nonempty core.

6. A graph-theoretic criterion for the existence of a nonempty core in a homo-

geneous generalized assignment game. Henceforth we consider only homogeneous

one-exchange networks. Since the choice of the constant C is inessential, we put C = 1,

and write vG instead of vC to mark that the characteristic function game is now deter-

mined uniquely by G = (N, L) according to the formula: vG(S) = β1(GS).

We show in this section that the existence of a nonempty core for the game (N, vG)

depends on two structural parameters of G, defined in Section 1, the line independence

number β1(G) and point covering number α0(G).

Let T be an optimal matching. To cover all lines in L, one needs to pick at least one

point from each line in T , and possibly add some points taken from the lines in L − T .

Therefore, α0(G) ≥ β1(G). If α0(G) = β1(G), G is said to have a line-core (the line-core

itself is defined as the union of all matchings T such that |T | = α0(G); see [8], 98).

We are now in a position to prove the following sufficient condition for the existence

of a nonempty core for the Bienenstock-Bonacich game.

Theorem 6.1. If β1(G) = 1
2n or β1(G) = α0(G), then the game associated with a

homogeneous one-exchange network over G has a nonempty core.

Proof. If vG(N) = β1(G) = 1
2n, we put xi = 1

2 for all i. Since all three conditions

in Theorem 5.3 are met, the payoff vector so defined is in the core. Assume now that

β1(G) = α0(G). Let S be a minimum point cover for G, that is, |S| = α0(G). Put

xi = 1 for all Pi ∈ S and xi = 0 for all Pi ∈ N − S. We will show that x ∈ Cr(vG).

Clearly, xi ≥ 0 for all Pi ∈ N so that condition 1 in Theorem 5.3 is satisfied. Since
∑

(N, x) = |S| = α0(G) = β1(G) = vG(N), condition 3 holds as well. To complete the

proof one needs to show that xi +xj ≥ 1 for every line PiPj ∈ L. Since S is a point cover

for G, for every line PiPj ∈ L we have Pi ∈ S or Pj ∈ S. Therefore, xi = 1 or xj = 1,

and xi + xj ≥ 1.

Theorem 6.1 gives two different sufficient conditions for the existence of the core:

β1(G) = 1
2n and β1(G) = α0(G). The complete 4-node graph K4 satisfies the first

condition but not the second (β1(K4) = 2 and α0(K4) = 3). B1 − A − B2 satisfies

the second condition but not the first. In many graphs with even number of nodes both

hold true, the Dyad A1 − A2 being the simplest example.
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The union β1(G) = 1
2n or β1(G) = α0(G) of two conditions is not necessary for the

existence of the core. However, there are only 8 one-exchange networks with at most 8

nodes for which both conditions are not met and the associated game has a nonempty core.

These networks are obtained by connecting the central node in a 2-Star or 3-Star with one

or more nodes in K4. A k-Star is a graph whose line set has the form {ABi : i = 1, . . . , k}.

Theorem 6.1 implies that every homogeneous assignment game has a nonempty core.

To demonstrate this, one needs a non-trivial theorem proved by König (Theorem 10.2

in [8]) which states that β1(G) = α0(G) for any bipartite graph G. However, Shubik

and Shapley’s ([10]) existence theorem is stronger than our corollary as it applies to all

assignment games, not only homogeneous.

Following Bonacich ([2]) we consider for every graph G = (N, L) its subgraph

Go = (N, Lo) whose line set Lo consists of all optimal lines in G. If Go is connected,

that is, any two distinct points are joined by a chain made up of lines in Lo, we say that

the one-exchange network over G is game-indecomposable.

Theorem 6.2. If the homogeneous one-exchange network over G is game-indecompos-

able, then the core of the associated game (N, vG) is not empty if and only if β1(G) = 1
2n

or β1(G) = α0(G).

Proof. We have already proven (Theorem 6.1) that condition β1(G) = 1
2n or β1(G) =

α0(G) suffices for the existence of a nonempty core for any G. Assume now that G is

game-indecomposable. To prove necessity, assume that x ∈ Cr(vG) for some x. Consider

an optimal matching T in G. Suppose that β1(G) < 1
2n. The proof of Theorem 6.2 will

be completed if we show that α0(G) = β1(G). Since |T | < 1
2n, there exists a point Pi

not covered by T . Theorem 5.1 implies that xi = 0. The connectedness of Go = (N, Lo)

means that for every Pj 6= Pi there exists a chain from Pi to Pj made up of optimal lines.

It follows from Theorem 5.4 that the x values assigned to the endpoints of any line in

this chain sum up to 1. As a consequence, xh = 0 or xh = 1 for all Ph ∈ N .

We define the set of points S by means of the condition Pj ∈ S if xj = 1 and PjPk ∈ T

for some Pk. Let S′ be the set of the remaining points which occur in lines in T . Since for

every line PjPk ∈ T we have xj + xk = 1, either Pj is in S and Pk is in S′ or conversely.

Therefore, |S| = |T | = β1(G). To derive the conclusion that α0(G) = β1(G), we must

only show that S is a point cover for G.

Suppose for an indirect proof that Pi /∈ S and Pj /∈ S for some PiPj ∈ L. Pi /∈ S

implies that Pi ∈ S′ or Pi ∈ N−(S∪S′). If Pi ∈ S′, then xi = 0. If Pi ∈ N−(S∪S′), then

xi = 0 as well, which results from Theorem 5.1 and the fact that Pi is game-excludable

as a point not covered by the optimal matching T . Similarly, Pj /∈ S implies that xj = 0.

The conclusion that xi + xj = 0 contradicts the inequality xi + xj ≥ 1 which must hold

for every PiPj ∈ L according to condition 2 in Theorem 5.3. The proof of Theorem 6.2

is completed.

7. Decomposition of a homogeneous one-exchange network into game-

components. Consider now an arbitrary homogeneous one-exchange network over

G = (N, L). If Go = (N, Lo) is not connected, then there exists a partition of N into
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pairwise disjoint nonempty subsets N1, . . . , Nm such that all subgraphs Go
i = Go

Ni
of Go

generated by the Ni are connected. The subgraphs Gi = GNi
of G generated by the

same subsets of N will be called game-components of G. In general, a component of an

unconnected graph may reduce to an isolated point. This is not possible for Go.

Theorem 7.1. Each game-component of a homogeneous one-exchange network has at

least two nodes.

Proof. Suppose that a single point Pi forms a game component. Since G is connected, Pi

must be tied to a point Pj in another game component by a suboptimal line PiPj . Pj does

not form another single point game-component for otherwise line PiPj could be added to

any optimal matching in G, which is impossible. Thus, Pj lies within a game-component

with at least two points and there exists an optimal matching T covering Pj . By replacing

the line in T which covers Pj with PiPj we obtain a matching with the same number of

lines as T . Hence line PiPj is optimal, which is a contradiction.

Theorem 7.1 is important due to the corollaries one can derive from it. First, all

hanging lines are optimal. PQ is a hanging line if deg(P ) = 1 and deg(Q) > 1 or

deg(P ) > 1 and deg(Q) = 1.

The second corollary is that every P is covered by an optimal matching. In other

words, every player can contribute to the maximization of group payoff.

In any superadditive game (N, v), the players can be divided into three categories with

respect to how the maximization of the group payoff depends on each player. The least

“powerful” players are those who are not members of any minimal coalition S such that

v(S) = v(N). The second set consists of those players who participate each in at least

one minimal coalition but not in all minimal coalitions with this property. The third

set is formed by the players who are members of every minimal coalition maximizing

the group payoff. The game associated with a homogeneous one-exchange network may

have only the second and third type of players. This distinction is exactly that between

game-excludable and game-nonexcludable positions.

To each game component Gi = (Ni, Li) of a connected graph G = (N, L) there

corresponds the Bienenstock-Bonacich game (Ni, vGi
). It is not difficult to verify that

vGi
coincides with the restriction of vG to the subsets of Ni.

If T is an optimal matching in G, then T∩Li is an optimal matching in Gi. Hence, each

optimal line in G located in Gi is optimal in Gi. On the other hand, the union of optimal

matchings taken from all game-components is an optimal matching in G. Therefore, a

line in Li is optimal in Gi if and only if it is optimal in G. The type of a position in a

game-component coincides with its type in the whole network. For any point P in Gi, P is

game-(non)excludable in Gi if and only if P is game-(non)excludable in G. Theorems 7.2

and 7.3 are simple consequences of these facts.

Theorem 7.2. The game-components of a homogeneous one-exchange network are game-

indecomposable.

Theorem 7.3. If G1, . . . , Gm are game-components of G, then vG(N) =
∑

i vGi
(Ni),

or, in graph-theoretic terms, β1(G) =
∑

i β1(Gi).
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The game-power of position P over Q is defined by the condition: there exists an

optimal matching which covers P and does not cover Q (P can game-exclude Q) and every

optimal matching which covers Q covers P (Q cannot game-exclude P ). Theorem 7.4

implies that the dyads in game- power relation can be found only inside game-components.

Theorem 7.4. A game-excludable point in G can be tied only to points in the same

game-component of G.

Proof. Consider two points P and Q in two distinct game-components Gi and Gj . If both

P and Q are game-excludable, then P is game-excludable in Gi and Q is game-excludable

in Gj . This implies the existence of an optimal matching T in G covering neither P nor

Q. If line PQ were in G, it could be added to T , and T would not be optimal. If P is

game-excludable and Q is game-nonexcludable, we consider an optimal T which covers

Q and does not cover P . If line PQ were in G, then the line in T covering Q in Gj

could be replaced with PQ to obtain from T a matching T ′ containing PQ and having as

many lines as T . Then line PQ would be optimal, but all lines joining points in distinct

components are suboptimal.

We are now in a position to demonstrate the second main theorem which together

with Theorem 6.2 provides a complete graph-theoretic characterization of one-exchange

networks for which the Bienestock-Bonacich game has a nonempty core.

Theorem 7.5. The game (N, vG) associated with a homogeneous one-exchange network

over G = (N, L) has a nonempty core if and only all games (Ni, vGi
) associated with

game-components Gi = (Ni, Li) of G have nonempty cores.

Proof. Assume that the payoff vector x is in the core of (N, vG). Theorem 7.3 implies

that vG(N) =
∑

i vGi
(Ni) =

∑

i vG(Ni). Thus, the coalition structure {N1, . . . , Nm} is

optimal and x is feasible for it. As a consequence, the sum of xj over all Pj in Ni equals

vG(Ni) = vGi
(Ni). The x payoffs which go to the players in Ni satisfy (group rationality)

condition 3 in Theorem 5.3 with respect to (Ni, vGi
). Clearly, conditions 1 (individual

rationality) and 2 (dyadic rationality) are also met for any game (Ni, vGi
).

Assume in turn that every game (Ni, vGi
) has a nonempty core. We show how to

construct a payoff vector that will be in the core of (N, vG) through selecting a certain

payoff vector from Cr(vGi
). Since the core payoffs allotted to the players in each Ni

sum up to vGi
(Ni), the overall payoff sum equals vG(N) by Theorem 7.3. Therefore, any

payoff vector constructed in such a way satisfies the group rationality condition. Clearly,

the individual rationality condition is also met. It remains to be shown that core payoffs

in each component can be chosen so that the dyadic rationality condition is met for any

P and Q such that PQ ∈ L, P ∈ Ni, Q ∈ Nj where Gi = (Ni, Li) and Gj = (Nj , Lj) are

two distinct game-components of G. If β1(Gi) = 1
2ni where ni = |Ni|, then the payoff

vector such that xP = 1
2 for any P ∈ Ni is in the core of (Ni, vGi

). If β1(Gi) < 1
2ni, then

2β1(Gi) < ni so that Ni must contain at least one point P not covered by a matching T in

Gi such that |T | = β1(Gi). Then, for any P ∈ Ni, xP = 0 or xP = 1 for any payoff vector

in the core of the game (Ni, vGi
). If PQ ∈ L where Q ∈ Nj , then the case xP = 0, or the

case where P is game-excludable, is impossible in virtue of Theorem 7.4. We conclude

that one can always find a payoff vector in Cr(vGi
) such that xP ≥ 1

2 for any P in Ni
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connected to a Q in Nj , which implies in turn that xP + xQ ≥ 1 for any line PQ ∈ L

joining two points from distinct game-components of G. The proof of Theorem 7.5 is

completed.

For odd n, coreless networks occur fairly frequently in the set of n-node connected

graphs. To determine the frequencies, given below with the numbers of all connected

n-node graphs, I wrote a computer program for which I used as input the list of adjacency

matrices (generated by John Skvoretz, see [12]) of all nonisomorphic connected graphs

with the number of nodes ranging from 2 to 8.

2 3 4 5 6 7 8

0 1 0 12 3 626 279

1 2 6 21 112 853 11117

According to Theorem 7.5, to check if a one-exchange network is coreless, one has to

decompose it into game-components and verify if each component satisfies the necessary

and sufficient condition given in Theorem 6.2. Only 15 out of 921 coreless networks with

up to 8 nodes have 2 game-components, all other are game-indecomposable of which 797

have no suboptimal lines.

The construction of the core for the whole network from the cores of particular game-

components entails imposing additional constraints on the payoffs in each component.

One can illustrate this using the simplest homogeneous one-exchange network with two

game components, namely, the 4-Chain network B1 − A1 − A2 − B2.

Any payoff vector (a1, 1 − a1), where a1 and 1 − a1 are the payoffs of A1 and B1, is

in the core of the first game-component for any a1 from the [0, 1] interval. Similarly, the

core of the second game-component consists of payoff vectors of the form (a2, 1 − a2).

The combination of two vectors (a1, 1− a1) and (a2, 1− a2) is in the core of the 4-Chain

game if and only if a1 and a2 satisfy the inequality a1 + a2 ≥ 1. With this restriction the

square [0, 1] × [0, 1] shrinks to the triangle with vertices (0,1, (1,0), (1,1).
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