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Abstrat. This paper deals with two-person stohasti games of resoure extration under boththe disounted and the mean payo� riterion. Under some onavity and additivity assumptionsonerning the payo� and the transition probability funtion a stationary Nash equilibrium isshown to exist. The proof is based on Shauder-Tyhono�'s �xed point theorem, applied to asuitable payo� vetor spae.1. Introdution. The games of resoure extration were introdued by Levhari andMirman [14℄. In suh a dynami game the players extrat some amount of ommonrenewable resoure at eah stage of the game. The amount of available resoure in anext stage depends on the amount of the resoure left by the players in the previousstage (investment). Extration of small amount of the resoure results in small payo�s ofthe players. Extration of great amount of the resoure redues potential payo�s in thefuture.In the models of Sundaram [25℄ or Majumdar and Sundaram [15℄ the strategies of theplayers were lower semiontinuous funtions of the game state and utilities were the samefor all the players. In those models the existene of Nash equilibria in pure stationarystrategies was proved.A similar model was onsidered by Amir [1℄. He used the Topkis Theorem (see [27℄)�about monotoniity of a maximand of a submodular funtion on a lattie�and theShauder �xed point theorem (see [23℄).The models of resoure extration games were also onsidered by Dutta and Sun-daram [9℄, Cave [6℄, Fisher and Mirman [11℄, Mendelsohn and Sobel [16℄, Sobel [24℄ andWi�ek [28℄.2000 Mathematis Subjet Classi�ation: Primary 91A15.This paper is a part of the dissertation of the author. The author wishes to thank hissupervisor, Prof. Andrzej Nowak, for inspiration and muh help.The paper is in �nal form and no version of it will be published elsewhere.
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292 P. SZAJOWSKIThis paper also deals with suh models. Unlike in the papers of Amir [1, 2℄, the statespae of the game does not have to be unbounded from above. The main assumptionsdeal with the struture of transition probabilities (they have to be additive) and utilityfuntions of the players. The existene of a stationary pure Nash equilibria in both asesof disounted and�under some additional assumptions�mean payo�s are proved.Some models with similar transition probability struture were also onsidered byNowak and Szajowski [22℄ and Szajowski [26℄. In those papers it is assumed that thereexists an absorbing state of total resoure extration (of resoure level zero). This addi-tional assumption allows for a onstrution of sequenes onverging to Nash equilibria.However, in the model from this paper it was not the ase. Similar approah an be foundin the paper of Nowak [20℄ and also in the one of Balbus and Nowak [3℄, in whih thesymmetri games were onsidered.A survey on the Nash and orrelated equilibria in stohasti games with in�nite statespae an be found in the paper of Nowak [21℄.This paper is organized in the following way: in the �rst setion we de�ne the model,in the seond one we formulate and prove the main results onerning the disountedgame model, and in the third one, the results onerning the model with mean payo�s.In the last setion and in the appendix the results needed for the proofs in the previoussetions are disussed.2. The model of the game�de�nitions, notation and assumptions. In this paperwe deal with a model of a stohasti game of resoure extration:Definition 2.1. The 2-person stohasti game of resoure extration is de�ned as a4-tuple (S, D, ū, p) of the following objets:(i) S is an interval in (0,∞) open from the left (alled later the set of all possibleresoure stoks or the state spae),(ii) D := {(s, x̄) : s ∈ S, x̄ = (x1, x2), xi ∈ Ai(s) for i = 1, 2}, where Ai(s) :=

[0, ai(s)] represents the set of admissible deisions of player i in state s ∈ S. The funtions
ai : S → R+ := [0, +∞) are Borel and satisfy

a1(s) + a2(s) < s − inf S for eah s ∈ S.(iii) ū = (u1, u2), where ui : R+ → R+ (for i = 1, 2) is a ontinuous utility funtionof player i,(iv) p is a transition probability from the set D into S.The game takes plae in disrete time. If in some moment the state of the game is
s, then player i hooses xi ∈ Ai(s) ⊆ R+ and obtains the payo� ui(xi) and the stateof the game hanges aording to the transition probability distribution p(·|s, x̄), where
x̄ = (x1, x2).

xi may be interpreted as an amount of resoure onsumed by the player i in thatmoment. It must be nonnegative and is bounded from above by the quantity ai(s), whihrepresents the maximal admissible level of onsumption of player i in state s. If the gameis in a state s, it re�ets the situation that the amount s of the resoure is present inthe environment. The ommon level of players' onsumption should not lead to overon-



GAMES OF RESOURCE EXTRACTION 293sumption, that is, the amount of the resoure after players' onsumption must be greaterthan some minimal level.Definition 2.2. Let H1 = S and for n ≥ 2

Hn = D1 × · · · × Dn−1 × S,where Dk := D, k = 1, · · · , n − 1. Hn is alled the spae of histories of the game up tothe n-th state.Let H∞ = D ×D × · · · This is alled the spae of all histories of the in�nite horizongame.Remark 2.1. (a) The spaes Hn and H∞ are endowed with the produt σ-algebras.(b) This paper deals with the models of investment/onsumption in whih randomizedstrategies do not have natural interpretation. Therefore we shall restrit attention tonon-randomized strategies.() The players have full information about the entire history of the game at anystage.Definition 2.3. A strategy of player i is de�ned as a sequene
πi = (πi,1, πi,2, · · · ),where πi,n is a Borel mapping from Hn into [0, +∞) suh that for every

hn = (s1, x1,1, x2,1, s2, · · · , sn) ∈ Hn,we have
πi,n(hn) ∈ Ai(sn).The set of strategies of player i will be denoted by Πi.Definition 2.4. A strategy πi = (πi,1, πi,2, · · · ) of player i suh that πi,n depends on nand the state sn (in the urrent moment n) only will be alled Markovian.Definition 2.5. A Markovian strategy of player i of the form πi = (f, f, · · · ), where fassoiates with any s ∈ S a point f(s) ∈ Ai(s) will be alled stationary.The set of stationary strategies of player i will be denoted by Fi.For every strategy pro�le π̄ = (πi)

2
i=1 of both players and any initial state of thegame s1 = s ∈ S the stohasti proess {(sn, x̄n)} (where x̄n = (x1,n, x2,n)) is de�ned on

H∞ in the anonial way (see Chapter 7 in [4℄), where the random variables sn and x̄nare the state of the game and the pro�le of players' strategies on n-th step of the game,respetively.Remark 2.2. Existene of the stohasti proess {(sn, x̄n)} and the unique probabilitymeasure on H∞ generated by the initial state of the game s and the transition probabil-ities follow from the Ionesu-Tulea Theorem (see Proposition V.1.1 in Neveu [19℄).Let us denote the above mentioned probability measure by P π̄
s and the expeted valueoperator assoiated with this measure by Eπ̄

s .



294 P. SZAJOWSKIDefinition 2.6. Put Π = Π1 ×Π2, hoose π̄ ∈ Π. Let β be a disount fator. Assumingthat β ∈ (0, 1), de�ne the β-disounted expeted payo� of player i in the in�nite horizongame as
γi(π̄)(s) := Eπ̄

s

(

∞
∑

n=1

βn−1ui(xi,n)
)

,where Eπ̄
s is the expeted value operator with respet to the probability measure P π̄

s and
xi,n is the i-th oordinate of the vetor x̄n.Definition 2.7. The expeted mean payo� of player i is de�ned as

φi(π̄)(s) := lim inf
m→∞

Eπ̄
s (

∑m

n=1 ui(xi,n))

m
.Definition 2.8. A strategy pro�le π̄∗ ∈ Π is alled a Nash equilibrium in the disountedin�nite horizon stohasti game i�

γ1(π̄
∗)(s) ≥ γ1(π1, π

∗
2)(s),

γ2(π̄
∗)(s) ≥ γ2(π

∗
1 , π2)(s)for all πi ∈ Πi, s ∈ S.A Nash equilibrium in the in�nite horizon stohasti game with the expeted meanpayo� funtions is de�ned analogously.In this paper we make the following additional assumptions:Assumption 2.1. For every (s, x1, x2) ∈ D the transition probability p(·|s, x1, x2) hasthe form

p(·|s, x1, x2) = l(s − x1 − x2)H1(·|s) + (1 − l(s − x1 − x2))H2(·|s),where(i) l : S → [0, 1] is inreasing, onave and twie di�erentiable,(ii) H1(·|s), H2(·|s) are transition probabilities from S into S suh that there is aprobability measure µ on the set S, for whih
Hi(·|s) ≪ µ(·), i = 1, 2.The term l(s − x1 − x2) indiates (indiretly) how muh of the resoure is left afterplayers' onsumption in a previous stage. So, the in�uene of the transition probability

H1 on the probabiliy p inreases with the ommon players' investment and the in�ueneof H2 inreases with the onsumption.Additionally we assume that the utility funtions satisfy:Assumption 2.2. ui are inreasing, nonnegative, bounded, twie di�erentiable (at zero�from the right-hand side) and u′′
i (x) < 0 for eah x ∈ (0, +∞).By b > 0 we shall denote a ommon upper bound of the funtions ui, i = 1, 2.3. Nash equilibria in disounted stohasti gamesTheorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold in the onsidered model ofthe stohasti game with the β-disounted expeted payo�. Then there exists a stationaryNash equilibrium (f∗

1 , f∗
2 ) in this game.



GAMES OF RESOURCE EXTRACTION 295For the proof two additional de�nitions and a lemma are needed. First, onsider anauxiliary game:Definition 3.1. Let Γ(v1, v2, s) be a one-shot game, where the payo� funtion of player
i is:

ri
vi

(s, x1, x2) := (1 − β)ui(xi) + β

∫

S

vi(s
′)p(ds′|s, x1, x2),where

(v1, v2) ∈ B := B1 × B2,

Bi := {v : S → R+ : ||v||∞ ≤ b},and
||v||∞ := esssup

s∈S

|v(s)|.It is obvious that Bi ⊆ L∞(µ). Endow L∞(µ) with the weak*-topology. It is wellknown that a sequene {fn} ⊂ L∞(µ) onverges to f ∈ L∞(µ) in weak*-topology i� forall g ∈ L1(µ)

lim
n→∞

∫

S

fn(s)g(s)µ(ds) =

∫

S

f(s)g(s)µ(ds).Remark 3.1. It is obvious that B is onvex. From the Banah-Alaoglu Theorem (see[8℄), it follows that Bi is ompat in the relative weak*-topology. Hene B = B1 × B2 isalso ompat.Definition 3.2. Let (v1, v2) ∈ B. Put
wi(s) := ri

vi
(s, x̃1(s), x̃2(s)),

x̃1(s) := argmax
x1∈[0,a1(s)]

r1
v1

(s, x1, x̃2(s)),

x̃2(s) := argmax
x2∈[0,a2(s)]

r2
v2

(s, x̃1(s), x2).De�ne
W (v1, v2) := (w1, w2).The above de�nition is orret, beause if s ∈ S is �xed, then the game Γ(v1, v2, s)ful�ls the assumptions of Lemma 5.3. Thus there exists a unique Nash equilibrium

(x̃1(s), x̃2(s)) in Γ(v1, v2, s).Lemma 3.1. The mapping W is ontinuous when B is endowed with the produt weak*-topology.Proof. Consider a sequene {(vn
1 , vn

2 )} ⊂ B onverging to some (v1, v2) ∈ B. We will showthat the sequene {W (vn
1 , vn

2 )} onverges to W (v1, v2) ∈ B.Denote:
x̃n

1 (s) := argmax
x1∈[0,a1(s)]

r1
vn

1

(s, x1, x̃
n
2 (s)),

x̃n
2 (s) := argmax

x2∈[0,a2(s)]

r2
vn

2

(s, x̃n
1 (s), x2),



296 P. SZAJOWSKI

x̃1(s) := argmax
x1∈[0,a1(s)]

r1
v1

(s, x1, x̃2(s)),

x̃2(s) := argmax
x2∈[0,a2(s)]

r2
v2

(s, x̃1(s), x2).

(x̃n
1 (s), x̃n

2 (s)) is a Nash equilibrium in the game Γ(vn
1 , vn

2 , s), and (x̃1(s), x̃2(s)) in thegame Γ(v1, v2, s). Lemma 5.3 implies that these Nash equilibria are unique.Note that for �xed s ∈ S the sequene ri
vn

i

(s, x1, x2) onverges to ri
vi

(s, x1, x2) (as
n → ∞) uniformly in x1 and x2:
|r1

vn

1

(s, x1, x2) − r1
v1

(s, x1, x2)| =

∣

∣

∣

∣

(1 − β)u1(x1) + β

[
∫

S

vn
1 (s′)l(s − x1 − x2)H1(ds′|s)

+

∫

S

vn
1 (s′)(1 − l(s − x1 − x2))H2(ds′|s)

]

−(1 − β)u1(x1) − β

[
∫

S

v1(s
′)l(s − x1 − x2)H1(ds′|s)

+

∫

S

v1(s
′)(1 − l(s − x1 − x2))H2(ds′|s)

]∣

∣

∣

∣

= β

∣

∣

∣

∣

l(s − x1 − x2)

∫

S

[vn
1 (s′) − v1(s

′)]H1(ds′|s)

+(1 − l(s − x1 − x2))

∫

S

[vn
1 (s′) − v1(s

′)]H2(ds′|s)

∣

∣

∣

∣

. (1)By the Radon-Nikodym Theorem, for any �xed state s ∈ S, the probability measure
Hj(·|s) has a density funtion, say gj . Therefore (1) an be rewritten in the followingway:
|r1

vn

1

(s, x1, x2) − r1
v1

(s, x1, x2)| = β

∣

∣

∣

∣

l(s − x1 − x2)

∫

S

[vn
1 (s′) − v1(s

′)]g1(s
′)µ(ds′)

+ (1 − l(s − x1 − x2))

∫

S

[vn
1 (s′) − v1(s

′)]g2(s
′)µ(ds′)

∣

∣

∣

∣

. (2)Sine l(s − x1 − x2) ∈ [0, 1] and the integrals in (2) onverge to zero as n → ∞(by the onvergene of the sequene {(vn
1 )} to v1 in the weak*-topology) we an on-lude that r1

vn

1

(s, x1, x2) onverges uniformly to r1
v1

(s, x1, x2). The ase of the sequene
{r2

vn

2

(s, x1, x2)} follows along the same lines.Fix s ∈ S. For any n ≥ 1, x1 ∈ [0, a1(s)] and x2 ∈ [0, a2(s)] we have
r1
vn

1

(s, x1, x̃
n
2 (s)) ≤ r1

vn

1

(s, x̃n
1 (s), x̃n

2 (s)), (3)
r2
vn

2

(s, x̃n
1 (s), x2) ≤ r2

vn

2

(s, x̃n
1 (s), x̃n

2 (s)). (4)Let (x0
1(s), x

0
2(s)) be any aumulation point of the sequene {(x̃n

1 (s), x̃n
2 (s))}. Thenthere exists a subsequene {(x̃kn

1 (s), x̃kn

2 (s))} suh that
lim

n→∞
x̃kn

1 (s) = x0
1(s), lim

n→∞
x̃kn

2 (s) = x0
2(s).Obviously, with x̃kn

1 (s) and x̃kn

2 (s) the inequalities (3) and (4) hold. From the unifomonvergene of the sequenes {r1
vn

1

(s, x1, x2)} and {r2
vn

2

(s, x1, x2)} we an onlude:
r1
v1

(s, x1, x
0
2(s)) ≤ r1

v1
(s, x0

1(s), x
0
2(s)), r2

v2
(s, x0

1(s), x2) ≤ r2
v2

(s, x0
1(s), x

0
2(s)),



GAMES OF RESOURCE EXTRACTION 297for any x1 ∈ [0, a1(s)] and x2 ∈ [0, a2(s)]. It means that (x0
1(s), x

0
2(s)) is a Nash equilib-rium in the game Γ(v1, v2, s). Lemma 5.3 implies that the equilibrium is unique, so weobtain

lim
n→∞

(x̃n
1 (s), x̃n

2 (s)) = (x̃1(s), x̃2(s))and
wi(s) = ri

vi
(s, x̃1(s), x̃2(s)) = lim

n→∞
ri
vn

i

(s, x̃n
1 (s), x̃n

2 (s)) = lim
n→∞

wn
i (s).By the Lebesgue dominated onvergene theorem wn

i → w in the weak*-topology on
Bi. Thus the result follows.Proof of Theorem 3.1. The above lemmas and the Shauder-Tyhono� Fixed Point The-orem (see [23℄) imply the existene of vi ∈ Bi suh that

W (v1, v2) = (v1, v2) µ-a.e. (5)Let (f∗
1 (s), f∗

2 (s)) be the unique Nash equilibrium in the game Γ(v1, v2, s), s ∈ S. Thenfrom (5), it follows that
v1(s) = max

x1∈[0,a1(s)]

[

(1 − β)u1(x1) + β

∫

S

v1(s
′)p(ds′|s, x1, f

∗
2 (s))

]

,

v2(s) = max
x2∈[0,a2(s)]

[

(1 − β)u2(x2) + β

∫

S

v2(s
′)p(ds′|s, f∗

1 (s), x2)

]

for all s ∈ S \ E with µ(E) = 0.Let (v∗1 , v∗2) be the pair of the Nash equilibrium payo�s in the game Γ(v1, v2, s) forevery s ∈ S. We have v∗i (s) = vi(s) for eah s ∈ S \ E, so the pair (f∗
1 (s), f∗

2 (S)) is alsothe Nash equilibrium point in the game Γ(v∗1 , v∗2 , s) for s ∈ S \ E. Observe that sine
p(·|s, x1, x2) ≪ µ(·) for every s ∈ S, xi ∈ Ai(s), i = 1, 2. We have

v∗1(s) = max
x1∈[0,a1(s)]

[

(1 − β)u1(x1) + β

∫

S

v1(s
′)p(ds′|s, x1, f

∗
2 (s))

]

= max
x1∈[0,a1(s)]

[

(1 − β)u1(x1) + β

∫

S

v∗1(s′)p(ds′|s, x1, f
∗
2 (s))

]

, (6)
v∗2(s) = max

x2∈[0,a2(s)]

[

(1 − β)u2(x2) + β

∫

S

v2(s
′)p(ds′|s, f∗

1 (s), x2)

]

= max
x2∈[0,a2(s)]

[

(1 − β)u2(x2) + β

∫

S

v∗2(s′)p(ds′|s, f∗
1 (s), x2)

] (7)for eah s ∈ S.Let w∗
i (s) =

v∗
i
(s)

1−β
. The above equations may be rewritten in the form

w∗
1(s) = max

x1∈[0,a1(s)]

[

u1(x1) + β

∫

S

w∗
1(s′)p(ds′|s, x1, f

∗
2 (s))

]

, (8)
w∗

2(s) = max
x2∈[0,a2(s)]

[

u2(x2) + β

∫

S

w∗
2(s′)p(ds′|s, f∗

1 (s), x2)

]

, (9)for every s ∈ S.



298 P. SZAJOWSKIFrom Blakwell's work on disounted dynami programming [5℄ and the above equa-tions ((8) and (9)), it follows that
w∗

1(s) = γ1(f
∗
1 , f∗

2 )(s) = max
π1∈Π1

γ1(π1, f
∗
2 )(s)and

w∗
2(s) = γ2(f

∗
1 , f∗

2 )(s) = max
π2∈Π2

γ2(f
∗
1 , π2)(s)for eah s ∈ S. So the pair (f∗

1 , f∗
2 ) is also a Nash equilibrium in the stohasti game withthe β-disounted expeted payo�.4. Nash equilibrium in stohasti games with expeted mean payo�s. Let usmake an additional assumption on our game model:Assumption 4.1. (i) The probabilities Hi(·|s) do not depend on s (for simpliity ofnotation we shall denote them by Hi(·)).(ii) There exist a probability measure ν on S and a onstant δ ∈ (0, 1) suh that forany measurable set A ⊆ S we have

Hi(A) ≥ δν(A)for any i ∈ {1, 2}.Remark 4.1. From the above assumption we onlude immediately that p(A|s, x1, x2) ≥

δν(A) and
Hi ≪ µ :=

H1 + H2

2
.Theorem 4.1. If Assumptions 2.1, 2.2 and 4.1 hold in our model of the in�nite horizongame with the expeted mean payo�s of the players, then a Nash equilibrium exists.Proof. Note that for the disounted game in whih the transition probabilities are of theform

p̃(·|s, x1, x2) =
p(·|s, x1, x2) − δν(·)

1 − δand the disount fator is equal β = 1 − δ, both Assumptions 2.1 and 2.2 are satis�ed.Theorem 3.1 implies that in suh a game there exists a stationary Nash equilibrium
(f∗

1 , f∗
2 ) and the Bellman optimality equations are satis�ed:

v1(s) = max
x1∈[0,a1(s)]

[

u1(x1) + (1 − δ)

∫

S

v1(s
′)p̃(ds′|s, x1, f

∗
2 (s))

]

, (10)
v2(s) = max

x2∈[0,a2(s)]

[

u2(x2) + (1 − δ)

∫

S

v2(s
′)p̃(ds′|s, f∗

1 (s), x2)

]

. (11)Denote:
di := δ

∫

S

vi(s
′)ν(ds′).



GAMES OF RESOURCE EXTRACTION 299Equations (10) and (11) an be rewritten in the following form:
v1(s) = max

x1∈[0,a1(s)]

[

u1(x1) +

∫

S

v1(s
′)p(ds′|s, x1, f

∗
2 (s)) − d1

]

,

v2(s) = max
x2∈[0,a2(s)]

[

u2(x2) +

∫

S

v2(s
′)p(ds′|s, f∗

1 (s), x2) − d2

]

.These are the optimality equations for the game with the expeted mean payo�s (see [13℄).Thus (f∗
1 , f∗

2 ) is a stationary Nash equilibrium in the in�nite game with the expeted meanpayo�s and the Nash equilibrium payo� of player i in this game is φi(f
∗
1 , f∗

2 )(s) = di (itdoes not depend on s).Remark 4.2. (a) The transformation to the disounted game used in the proof wasintrodued in dynami programming by Dynkin and Yushkevih in their book [10℄.(b) Assumption 4.1 implies that the Markov proess generated by the strategies in theNash equilibrium (f∗
1 , f∗

2 ) is geometrially ergodi (see [13℄) and has a stationary distri-bution. The existene of a stationary distribution is an important question in studyingvarious eonomi models, see [2, 7℄.5. The uniqueness of the Nash equilibria in a one-shot game. In this setion weshall onsider the problem of uniqueness of the Nash equilibrium in an auxiliary game.In the lemmas below we shall onsider funtions
wi : X1 × X2 → Rfor i = 1, 2, where X1, X2 are ompat intervals. The funtion wi is stritly onave inthe i-th variable and its seond partial derivatives are ontinuous.Remark 5.1. From the well known result of Nash (see [18℄) the two-person one-shotgame with the payo� funtions wi and the ations sets Xi has a Nash equilibrium.Assumption 5.1. Assume that for any x̄ = (x1, x2) ∈ X1 × X2 and i = 1, 2 it holds
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. (12)For any x̄ = (x1, x2) ∈ X1 × X2 de�ne the norm
||x̄||∞ = max

i∈{1,2}
|xi|.The �rst lemma in this setion is a result of Moré (see [17℄). The proof of this lemma,based on the Rolle Theorem an be found in the paper of Gabay and Moulin [12℄.Lemma 5.1 (Moré). If Assumption 5.1 holds and x̄, ȳ ∈ X1 × X2 are di�erent, then

∂wi

∂xi

(x̄) =
∂wi

∂xi

(ȳ)implies that
|xi − yi| < ||x̄ − ȳ||∞.The following lemma is a slight modi�ation of Theorem 4.1 from [12℄.



300 P. SZAJOWSKILemma 5.2. Let Assumption 5.1 be ful�lled and wi be stritly onave in xi. Then in thetwo-person game in whih wi(x1, x2) are the payo�s of the players, there exists a uniqueNash equilibrium.Proof. The strit onavity of wi in xi implies that for any i and �xed xi, w3−i(x̄) attainsits maximum at a unique point x3−i. Thus we may de�ne the mapping:
A : X1 × X2 → X1 × X2suh that for (x1, x2) = A(y1, y2) we have

x1 = argmax
x∈X1

w1(x, y2), x2 = argmax
x∈X2

w2(y1, x). (13)Put Ai(y1, y2) := xi for i = 1, 2. We will prove now that
||A(x̄) − A(ȳ)||∞ < ||x̄ − ȳ||∞ (14)for x̄, ȳ ∈ X1 × X2.Consider the ase in whih both Ai(x̄) and Ai(ȳ) are inside the interval Xi. Then

∂w1

∂x1
(A1(x̄), x2) =

∂w1

∂x1
(A1(ȳ), y2) = 0and Lemma 5.1 implies

|A1(x̄) − A1(ȳ)| < ||(A1(x̄), x2) − (A1(ȳ), y2)||∞ = |x2 − y2|. (15)A similar inequality an be obtained for A2:
|A2(x̄) − A2(ȳ)| < ||(x1, A2(x̄)) − (y1, A2(ȳ))||∞ = |x1 − y1|. (16)From (15) and (16) it an be easily onluded that (14) holds.If any of the values Ai(x̄) or Ai(ȳ) belongs to the edge of the interval Xi, we mayde�ne (thanks to the fat that the derivatives wi are �nite and Xi are losed) the funtion

w̃i : R × R → R suh that w̃i(x̄) = wi(x̄) for x̄ ∈ X1 × X2 with the same properties like
wi, that is strit onavity in xi and Assumption 5.1.For these funtions we ondut similar reasoning, as in the ase of Ai(x̄) and Ai(ȳ)inside the set X1 × X2.De�ne Ã for the funtion w̃i just as A was de�ned for wi. Note that

Ai(x̄) ∈ [Ãi(x̄), Ãi(ȳ)].This implies that
|Ai(x̄) − Ai(ȳ)| ≤ |Ãi(x̄) − Ãi(ȳ)| < ||x̄ − ȳ||∞,and this ends the proof of (14).Note that there exists a Nash equilibrium in the onsidered game (see Remark 5.1).Assume that there exist two di�erent Nash equilibria: x̄∗ ∈ X1 × X2 and ȳ∗ ∈ X1 × X2.Note that these are �xed points of the mapping A, i.e. x̄∗ = A(x̄∗) and ȳ∗ = A(ȳ∗). Thus
||x̄∗ − ȳ∗||∞ = ||A(x̄∗) − A(ȳ∗)||∞ < ||x̄∗ − ȳ∗||∞and so we have obtained a ontradition. Therefore the game has a unique Nash equilib-rium.



GAMES OF RESOURCE EXTRACTION 301Lemma 5.3. For a �xed s ∈ S ⊆ (0,∞) onsider a two-person game with the payo� ofplayer i given by
ui(xi) + kil(s − x1 − x2),where xi ∈ [0, ai(s)], a1(s) + a2(s) < s and(i) ui : [0,∞) → [0,∞) ful�ls u′′

i (x) < 0 for all x ∈ (0, +∞) and it is inreasing andtwie di�erentiable,(ii) ki ∈ R,(iii) l : [0,∞) → [0,∞) is onave, inreasing and twie di�erentiable.This game has a unique Nash equilibrium.Proof. (a) Consider the ase that k1 ≤ 0 or k2 ≤ 0. Assume that k2 ≤ 0 (for k1 ≤ 0 theproof is similar). Note that the payo� of player 2: u2(x2) + k2l(s− x1 − x2) is inreasingin x2. Thus, the optimal hoie of player 2 (independent of the hoie of player 1) is
x∗

2 = a2(s).If k1 > 0, then the payo� of player 1, u1(x1) + k1l(s− x1 − x2), is stritly onave in
x1, thus there exists a unique point

x∗
1 = argmax

x1∈[0,a1(s)]

[u1(x1) + k1l(s − x1 − x∗
2)].

(x∗
1, x

∗
2) is then a unique Nash equilibrium.(b) If ki ≤ 0 for i = 1, 2 then a unique Nash equilibrium is (x∗

1, x
∗
2), where x∗

1 = a1(s),
x∗

2 = a2(s).() Let us onsider the ase that ki > 0, i = 1, 2.Note that the payo� of player i is stritly onave in xi and both payo�s ful�l As-sumption 5.1. Thus the uniqueness of the Nash equilibrium is implied by Lemma 5.2.
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