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Abstract. A new axiomatization of the serial method for heterogeneous cost sharing problems

is given. One of the axioms is common ordinality. It requires invariance of the method w.r.t.

common ordinal transformations of individual utilities.

1. Introduction. The fair division of a joint cost (or a jointly produced output) among

agents with different shares of input or output commodities is a central theme of the

theory of cooperative games with transferable utility as well of public utility pricing,

accounting, joint production of public or private goods etc.

The problem of rationing a single commodity according to a profile of claims (de-

mands, liabilities) is the simplest example of fair division problems (see the surveys [6],

[10]). Rationing problems have many interpretation e.g., taxation, bankruptcy, and in-

heritance.

Formally, a rationing problem is a triple 〈N, T ; g〉, where N is a set of agents, g ∈ R
N
+

is a vector of demands (claims), and T ≤
∑

i∈N gi is the total amount to be divided. A

rationing method (rule) is a mapping associating with each rationing problem 〈N, T ; g〉 a

vector of shares x(T ; g) ∈ R
N
+ such that

∑

i∈N xi(T ; g) = T.

The more general model where the values of a cost function C : R
N
+ → R

N
+ are to be

shared may be considered either as a cost sharing or as an output-sharing one. In the cost

sharing version each agent demands a different good, and the technology specifies the total

cost C(x1, . . . , xn) to be divided. In the output sharing version each agent i contributes

the amount xi of his input. Then the total output C(x1, . . . , xn) should be divided among

the participants. The function C is considered here as a production function, so the goods
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are identified with the agents. All information about the costs involved with bringing

production up to a certain level is given by the cost function. Thus, the cost sharing rule

must rely exclusively on the cost function and agents’ demands.

Examples of cost sharing problems include sharing the cost of a network connecting

dispersed users, where heterogeneity of demands comes from heterogeneity of space, or

of a telecommunication network in which the users need different service. In an output

problem various divisions of the firm can contribute heterogeneous inputs in a common

project. At the same time the divisions may share a common service and another cost

sharing problem how to pay for this service arises.

A heterogeneous cost sharing problem is a triple 〈N, C; q〉, where N is a finite set of

agents, C : R
N
+ → R+ is a nondecreasing cost function such that C(0) = 0, and q ∈ R

N
+

is a profile of demands. When the set N is fixed we shall denote the problem 〈N, C, q〉

simply by 〈C, q〉.

Note that the mathematical complexity of the last model is much more above the

rationing one. For example, the binary cost sharing problem when xi (and also qi) are

equal to 0 or 1 for all i ∈ N is equivalent to a cooperative game with transferable utilities

(N, v), where v(S) = C(qS , 0) ∀S ⊂ N, qS is the projection of vector q on the space R
S
+.

If the function C depends only on the sum of demands: C(x) = C0(x1 + . . . + xn),

where C0 : R+ → R+ is a non-decreasing function, then we have a homogeneous problem.

A solution of the problem 〈N, C, q〉 is a vector y ∈ R
N
+ such that

∑

i∈N yi = C(q).

A cost sharing method (rule) is a mapping ϕ associating with any problem 〈N, C, q〉

a solution y = ϕ(N, C, q).

Many cost sharing rules have been defined and studied [6]. Three different methods

have received the main attention in the literature. They are the Shapley-Shubik cost

sharing method which is defined as the Shapley value of the TU game generated by the

cost sharing problem, the Aumann-Shapley method [1] which generalizes the proportional

method for homogeneous problems to the general case, and the serial method or the

Friedman-Moulin method [3] which charges each agent by the integral of his marginal

cost along the piecewise diagonal curve linking (in case of q1 < q2 < . . . < qn) the origin

to (q1, . . . , q1), then to (q1, q2, . . . , q2) etc. to q = (q1, q2 . . . , qn).

The axiomatizations of all the methods have been given in [3]. However, opposite to

the first two methods, the axiomatization of the serial method is not enough compelling,

because it uses an axiom placing a restriction on the method over the restricted class of

cost functions with homogeneous goods.

In the paper a new axiom—Common Ordinality—is defined as a weakening of Or-

dinality introduced by Sprumont [8]. It requires that a change in a common ordinal

scale of goods or agents’ efforts should have no effect. This axiom is compelling when

different goods or agents’ efforts are genuinely comparable. The main result is the new

axiomatization of the serial cost sharing method using the axiom Common Ordinality.

Section 2 briefly reviews the model and the known properties of cost sharing methods.

The integral representation of all methods satisfying the Additivity and Dummy axioms

due to Moulin–Friedman [3] is also presented. The axiomatic characterization of the serial

cost sharing method is given in Section 3.
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2. Properties of cost sharing methods. The agents’ cost shares yi should reflect

responsibilities in generating the costs. A minimal requirement to that effect is that an

agent who is not generating any cost should pay nothing. The Dummy axiom conveys

just that idea.

Dummy (DUM). If the function C does not depend on the i-th variable: C(q) =

C(qN\{i}, 0), then yi = ϕ(N, C, q) = 0 for every q ∈ R
N
+ .

The additivity axiom is formulated as usual:

Additivity (ADD).

ϕ(N, C1 + C2), q) = ϕ(N, C1, q) + ϕ(N, C2, q) for all N, C, q.

The set of all methods satisfying Dummy and Additivity is denoted by F(DUM, ADD).

A similar notation will be used in the sequel for cost sharing methods satisfying other

properties as well.

Demand Continuity (DCONT). The function ϕ(N, C, q) is continuous in q.

Demand Monotonicity (DM). For any C, q

qi ≤ q′i =⇒ ϕi(q; C) ≤ ϕi(q‖q
′
i); C),

where the vector q‖q′i is defined by

(q‖q′i)j =

{

qj , if j 6= i,

q′i, if j = i.

Symmetry (SYM). A cost sharing method ϕ is symmetric if for any problem 〈N, C, q〉

with a cost function C symmetric in the demands i, j ∈ N the equality qi = qj implies

ϕi(N, C, q) = ϕj(N, C, q).

Scale Invariance (SI). For any problem 〈N, C, q〉 and vector a ∈ R
N
++ ϕ(N, Ca, q/a) =

ϕ(N, C, q), where Ca(x) = C(ax), ax = (aixi)i∈N , q/a = (qi/ai)i∈N .

A path γ to a point q ∈ R
N
+ is a continuous nondecreasing curve connecting the origin 0

with q. Hence, there exists a parametric representation γ(t, q), t ∈ [0, T ] for every path γ:

x ∈ γ ⇐⇒ xi = γi(t, q) for all i ∈ N and some t ∈ [0, T ].(1)

In representation (1) the functions γi(q, t) are continuous and nondecreasing in t. From

the representation it follows that γ(q, 0) = 0, γ(q, 1) = q for all q ∈ R
N
+ .

Denote by C the set of all continuously differentiable cost functions. With any path

γ we can associate the cost sharing method xγ such that for any C ∈ C

xγ
i (C, q) =

∫ T

0

∂iC(γ(q, t))dγi(q, t),(2)

where ∂iC denotes the i-th partial derivative of C.

Such path generated methods form the extreme points of the set F(ADD, DUM).

The converse result was proved by Haimanko [4]:

Theorem 1 (Haimanko (1998)). ϕ(q, ·) ∈ extF(ADD, DUM) is an extreme point of

the set F(ADD, DUM) (for fixed q) if and only if there exists a path γ(q, ·) such that

ϕ(q, ·) = xγ(q, ·). In such a case the method ϕ is called path-generated.
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Friedman and Moulin [3] proved the following representation theorem:

Theorem 2 (Friedman, Moulin (1999)). If ϕ ∈ F(ADD, DUM) then there exists a

measure ν on Γ(q) such that

ϕ(q, ·) =

∫

Γ(q)

xγ(q, ·)dν(γ),(3)

where Γ(q) is the set of all paths from 0 to q.

Theorems 1 and 2 establish one-to-one correspondence between the set of extreme

points of F(ADD, DUM) and the set of rationing methods. In fact, the locus of the

vector of shares chosen by a rationing method when the total amount varies from 0 to

the sum of the claims is the monotonic path γ(t, q), t ∈ [0, T ] connecting zero (at t = 0)

with the demand vector q at t = T.

Y. Sprumont [8] introduced a property of the cost sharing methods known as Ordinal-

ity. This property formally reminds the ordinal measurability property of social welfare

functions and requires robustness of cost sharing methods with respect to independent

ordinal transformations of measuring scales. To define Ordinality we give some notation.

Let N be a fixed finite set. Consider a list (f1, . . . , fn) of n bijections from R+ onto

itself. For each cost function C : R
N
+ → R+ define another cost function Cf : R

N
+ → R+

by

Cf (q) = C(f(q)), where f(q) = (f1(q1), . . . , fn(qn)).

We call the problem 〈Cf , f−1(q)〉 the ordinal transformation of the problem 〈C, q〉. Here

f−1(q) = (f−1
1 (q1), . . . , f

−1
n (qn)).

When we consider a special class of cost functions (e.g. continuous, differentiable etc.)

we will suppose that the functions fi possess the same properties in order the ordinal

transformations belong to the same class.

Two problems 〈C, q〉 and 〈C ′, q′〉 are ordinally equivalent if there exists an ordinal

transformation f such that

C ′ = Cf and q = f(q′).

Ordinality (ORD). Let N be an arbitrary fixed set. If 〈C, q〉 and 〈C ′, q′〉 are two

ordinally equivalent problems, then ϕ(C, q) = ϕ(C ′, q′).

Evidently, Scale Invariance is a weakening of Ordinality. In fact, Scale Invariance is

defined in the same way as Ordinality, but only for linear functions fi(x) = aix, ai > 0.

It is easy to note that if all path-generated methods belonging to the “mixing set”

Γ(q) in representation formula (3) satisfy Ordinality then so does the method ϕ.

Each cost allocation problem 〈N, C, q〉 generates a TU (cost) cooperative game 〈N, Cq〉

by

Cq(S) = C(qS, 0N\S).

The game 〈N, Cq〉 is called the stand-alone (cost) game.

Simplicity (SIM). The method ϕ satisfies Simplicity if for any problem 〈N, C, q〉 the

solution ϕ(N, C, q) depends only on the values Cq(S), S ⊂ N.
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Evidently, Simplicity implies Ordinality, but not vice versa. In fact, Ordinality allows

to use much more information than just “stand-alone cost data”.

However, it turns out that among the methods from F(ADD, DUM) Ordinality im-

plies Simplicity: Sprumont and Wang [9] have proved that any cost sharing method

ϕ ∈ F(ADD, DUM, ORD) is a random order value.

A random order value is the method being a convex combination of the incremen-

tal methods. Each incremental method ϕπ is an extreme method from F(ADD, DUM)

and is defined by the marginal solution of the stand alone game corresponding to the

permutation π : N → N.

Definition of path-generated methods implies that the path defining the incremental

method ϕπ is going through the following edges of the rectangle [0, q]:

[0, (qi1 , 0)], [(qi1 , 0), (qi1 , qi2 ; 0)], . . . , [(qi1 , . . . , qin−1
, 0), q].

From the Sprumont and Wang theorem it follows that the class F(ADD, DUM, SY M,

ORD) consists only of the Shapley value of the corresponding stand-alone game. This

method is called the Shapley-Shubik method. First this fact was proven earlier by Spru-

mont [8]. Friedman and Moulin [3] have characterized the Shapley–Shubik method by

ADD, DUM, SYM, Scale Invariance (SI) and Demand Monotonicity (DM). Thus, the

Shapley–Shubik method has the compelling axiomatic characterizations.

However, another popular method from F(ADD, DUM) – the serial method—has a

less convincing characterization due also to Friedman and Moulin [3].1 Let us give some

definitions.

The next axiom describes a property of cost sharing methods for homogeneous prob-

lems:

Upper bound for homogeneous goods (UBH). ϕi(q, C0) ≤ C0(kqi), where k ≤ n is

the number of nondummy agents (goods).

When goods are homogeneous, the axiom requires that no agent should pay more

than the cost of producing n times his own demand. This bound protects the agent with

a demand below the average from being charged too much: if marginal costs increase, the

low demand agent should not be held responsible for the high marginal cost generated by

demands larger than his own. Symmetrically, in the output sharing interpretation, UBH

places a ceiling on the share awarded to an agent who contributes less than the average

contribution.

The serial cost sharing method s is given by the following formula:

si(q, C) =

∫ qi

0

∂iC((te) ∧ q)dt,(4)

where e = (1, . . . , 1), (a ∧ b)i = min{ai, bi}. In other words, the serial method is a path-

generated method whose paths correspond to the uniform gains rationing method.

1Recently Friedman [2] defined the consistency property of heterogeneous cost sharing meth-
ods satisified by the serial method. He obtained sufficient conditions for consistency cost sharing
methods. With the help of consistency it would be possible to obtain another characterization
of the serial method.
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Theorem 3 (Friedman, Moulin (1999)). The serial method is the unique method satis-

fying ADD, DUM, DM and UBH.

In this theorem axiom UBH seems to be not compelling because it prescribes the

property only for homogeneous problems, and it is not clear how the methods for het-

erogeneous and homogeneous problems should be connected. It would be more natural

if the agents receive similar protections through some other properties mostly concerned

with Independence and Monotonicity.

3. An axiomatization of the serial method. The main result of the paper is a

new axiomatization of the serial method. Note that the serial method does not satisfy

ordinality. In fact, independent bijections fi, i ∈ N, participating in the definition of

ordinal transformations of a problem 〈C, q〉 can change relative values of demands, e.g.

there may arise the inequalities

qi < qj and fi(qi) > fj(qj),

but the serial method distinguishes the agents with greater and smaller demands. Thus,

we weaken Ordinality replacing independent bijections fi, i ∈ N by identical ones:

f, . . . , f : R+ → R+ (compare the Ordinal Measurability and Ordinal Full Compara-

bility properties of social welfare functions).

Let N be fixed. For each cost function C : R
N
+ → R+ define another cost function

Cf : R
N
+ → R+ by

Cf (q) = C(f(q)), where f(q) = (f(q1), . . . , f(qn)).

We call the problem 〈Cf , f−1(q)〉 the coordinal transformation of the problem 〈C, q〉.

Here f−1(q) = (f−1(q1), . . . , f
−1(qn)).

Common ordinality (COORD). Let N be an arbitrary fixed set. If 〈Cf , f−1(q)〉 is a

coordinal transformation of 〈C, q〉 then ϕ(C, q) = ϕ(Cf , f−1(q)).

The last definition means that if a method satisfies COORD then every agent’s utility

is measured in a common ordinal scale. Evidently, ORD implies COORD. The problems

〈C, q〉, 〈C ′, q′〉 which are coordinally equivalent preserve the order between the numbers

qi, i ∈ N, i.e. the correspondence “poor–rich” that is essential in the serial method.

Proposition 1. The serial method satisfies COORD.

Proof. Let 〈C, q〉, 〈Cf , f−1(q)〉 be two coordinally equivalent problems. Then, by (4),

si(C
f , f−1(q)) =

∫ f−1(qi)

0

∂iC
f ((te) ∧ (f−1(qi))dt

=

∫ f−1(qi)

0

∂iC((f(t)e) ∧ q)f ′(t)dt =

∫ qi

0

C((τe) ∧ q)dτ = si(C, q).

Thus, s ∈ F(ADD, DUM, COORD). The next lemma describes the extreme points

of the set F(ADD, DUM, COORD).

Lemma 1. If a method ϕ(q, ·) is an extreme point of the set F(ADD, DUM, COORD),

then the path γϕ(t, q), t ∈ [0, T ], corresponding to ϕ, is piecewise linear. The i-th coor-

dinate γϕ(t, q) of the end point of each segment of the path is equal either to zero or to
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qj , j ∈ N, qj ≤ qi for arbitrary i ∈ N . On each segment α the coordinates γϕ
i (t, q), i ∈ Sα

are equally increasing for some Sα ⊂ N, and other coordinates γi(t, q) for i ∈ N \Sα are

constant (and equal to 0 or qj for some j ∈ N. such that qj ≤ qk ∀k ∈ Sα).

Proof. Let ϕ(N, q, ·) ∈ ext F(ADD, DUM, COORD). By Haimanko’s theorem

ϕi(N, q, C) =

∫ T

0

∂iC(γ(t, q))dγϕ
i (t, q),(5)

where γϕ(t, q) is the path generating the method ϕ, γϕ(0, q) = 0, γϕ(T, q) = q.

Consider the following possibilities for the path γϕ :

Case 1. γϕ is a strictly monotone path from 0 to g. Then it is possible to parametrize this

path in such a way that γϕ
1 (t, q) = t, t ∈ [0, q1], and γϕ

i (t, q), i 6= 1 are strictly increasing

functions with the domain [0, q1]. Then equality (5) can be rewritten as follows:

ϕ1(N, C, q) =

∫ q1

0

∂1C(t, γϕ
2 (t, q), . . . , γϕ

n (t, q))dt,

ϕi(N, C, q) =

∫ q1

0

∂iC(t, . . . , γϕ
i (t, q), . . .)dγϕ

i (t, q), i ∈ N, i 6= 1.

(6)

Equalities (6) hold for any cost function C. Consider the function C(x) = x1 ·xi for some

i ∈ N, i 6= 1. For this function the first equality (6) is written as

ϕ1(C, q) =

∫ q1

0

γϕ
i (t, q)dt.(7)

Consider now a coordinal transformation 〈Cf , f−1(q)〉 of 〈C, q〉. For it equality (7) looks

as:

ϕ1(N, Cf , f−1(q)) =

∫ f−1(q1)

0

f(γϕ
i (t, f−1(q))f ′(t)dt = ϕ1(N, C, q).(8)

By COORD equalities (8) hold for any increasing function f including continuously

differentiable functions f.

Let such a function satisfy also the equalities f(qi) = qi, f(q1) = q1. Then from (8) it

follows

ϕ1(N, Cf , f−1(q)) =

∫ q1

0

f(γϕ
i (t, q))df(t)

=

∫ q1

0

f
(

γϕ
i (f−1(z), q

)

dz =

∫ q1

0

γϕ
i (t, q)dt.

The last equality means that for every strictly increasing function f such that f(0) = 0,

f(qi) = qi and every fixed q > 0 the function γϕ
i as a function of t satisfies the functional

equation

f ◦ γϕ
i = γϕ

i ◦ f.

This can happen only if γϕ
i (t, q) ≡ t for all q > 0.

Thus, the assumption that the path γϕ is strictly increasing leads to γϕ
1 (t) = γϕ

i (t) =

t, t ∈ [0, q1] for all i ∈ N, i 6= 1, implying q1 = qi ∀i ∈ N, and for this case the method ϕ

coincides both with the Aumann–Shapley method and with the serial method.
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Case 2. γϕ
i (t, q), i ∈ S ⊂ N are strictly increasing on an interval t ∈ [τ1(q), τ2(q)]. Let

1 ∈ S. Then the inverse function (γ1)
ϕ−1

(z, q) is well-defined for z ∈ [z1, z2], where

z1 = γϕ
1 (τ1(q), q), z2 = γϕ

1 (τ2(q), q).

Consider a cost function Ci ∈ C, i ∈ S \ {1} such that ∂iC
i(x) = 0 for all x1 ∈

[0, q1] \ [z1, z2] and Ci(x) = (γϕ
1 )

−1
(x1, q) · xi for all xi and x1 ∈ [z1, z2]. Further in the

proof we write for simplicity γ instead of γϕ. Then

ϕi(N, Ci, q) =

∫ τ2(q)

τ1(q)

tdγi(t, q).(9)

By COORD ϕ(Ci, q) = ϕ(Cif , f−1(q)) for all increasing functions f : [0, maxj qj ] → R

including those for which

f(τk(q)) = τk(q), k = 1, 2; fj(qj) = qj ∀j ∈ N.(10)

For such functions

ϕi(N, Cif , f(q)) = ϕi(N, Cif , q) =

∫ τ2(q)

τ1(q)

γ−1
1 (f(γi(t, q)), q)f

′(γi(t, q))dγi(t, q).(11)

Introducing the new variable τ = γ−1
i (f(γi(t, q), q) we obtain γi(τ, q) = f(γi(t, q)) and

the integral in (11) becomes equal to
∫ τ2(q)

τ1(q)

γ−1
1 (γi(τ, q), q)dγi(τ, q).(12)

By COORD the integrals in (9) and (12) are equal. Moreover, we can consider analogous

functions Ci, increasing in x1 only on subintervals [z′1, z
′
2] ⊂ [z1, z2]. Then we obtain that

integrals in (9) and (12) are equal for any limits contained in [τ1(q), τ2(q)]. This fact

implies γ1(t, q) ≡ γi(t, q) for t ∈ [τ1(q), τ2(q)].

Therefore, we have proved that in each point t ∈ [0, T ] all increasing coordinates

γi(t, q) of the path γ are equally increasing.

We shall call extreme methods from the set F(ADD, DUM, COORD) compositions of

incremental and serial methods, because by Lemma 1 every piece of the path correspond-

ing to such a method is either an edge of the rectangle [0, q], or the path corresponding

to the serial method on some “sub-rectangle” [(qS1
, 0N\S1

), (qS1
, qS2

, 0N\(S1∪S2))] with

S1 ∩ S2 = ∅.

Consider the partition of R
N
+ =

⋃

α Oα into the “orthants” containing the vectors

having the same ordering of coordinates:

x, y ∈ Oα ⇐⇒
xi < xj ↔ yi < yj ,

xi = xj ↔ yi = yj .

Then for each common ordinal transformation f = (f, . . . , f)

x ∈ Oα =⇒ f(x) = (f(x1), . . . , f(xn)) ∈ Oα.

Therefore, in order to describe the set extF(ADD, DUM, COORD) it suffices to

describe the sets of corresponding paths for demands belonging to orthants with no

equal coordinates, with two equal coordinates, etc, with n − 1 equal coordinates. Then
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any independent combination of such paths for all orthants will completely define the

common ordinal path generated method. Formally we obtain the next result:

Lemma 2. A method ϕ is a path-generated method from the set F(ADD, DUM,

COORD) if and only if for all demands q ∈ Oα it is the same composition of the in-

cremental and serial methods, and different compositions may correspond to different

orthants.

Proof. The ’only if’ part follows from Lemma 1.

Let ϕ be a path-generated method whose path γ(t, q) from 0 to the demand vector q

satisfies the conditions of the lemma. Let q ∈ Oα ⊂ R
N
+ for some orthant Oα. Then the

path γ(t, q) is piecewise linear, and consists of the pieces being either parts of the edges

of the rectangle [0, q], or intervals such that the coordinates i ∈ S for some S ⊂ N are

equally increasing and others are constant. By the assumption of the lemma the paths

γ(t, q) for all q ∈ Oα consist of the same pieces.

Then the collection of the paths γ(t, q) for demands belonging to each orthant com-

pletely define a path-generated method satisfying COORD. Since any path-generated

method belongs to the set ext F(ADD, DUM), the proof is complete.

Add the symmetry axiom to the conditions of Lemma 1. Let ϕ ∈ extF(ADD, DUM,

SY M, COORD) be an arbitrary method. The path determining the method does not

depend on the cost function, hence, by symmetry, for demands with equal coordinates

for each problem it is the diagonal of the corresponding rectangle [0, q].

In general, the methods from the set ext F(ADD, DUM, SY M, COORD) are not

demand continuous (e.g. the symmetric extension of incremental methods, which pre-

scribe equal average awards to agents with equal demands). The next theorem shows

that the serial method is the unique symmetric and demand continuous method in the

set F(ADD, DUM, SY M, COORD).

Theorem 4. The serial method is the only path generated method from F(ADD, DUM,

SY M, COORD, DCONT ).

Proof. It is clear that the serial method verifies all the properties stated in the theorem.

Let now ϕ be an arbitrary path-generated method, satisfying ADD, DUM, SYM,

COORD, and DCON and not coinciding with the serial method. Let N be fixed and

γ(t, q), t ∈ [0, T ] be the path corresponding to the method ϕ, where maxj∈N qj ≤ T ≤
∑

j∈N qj (for any incremental method T =
∑

j∈N qj , and for the serial method T =

maxj∈N qj .)

Let a sequence qm belong to the same orthant as q, and qm
i → a when m → ∞

for all i ∈ N. Then by Lemma 2 the paths γϕ(t, qm) consist of the same pieces and

by DCONT they should tend to the diagonal of the cube [0, a]N , because of the sym-

metry of the method ϕ. However, since the method ϕ is different from the serial one,

the path γϕ either contains an edge of the rectangle [0, q], and in this case it cannot

tend to the diagonal, or there exists a partition (S1, . . . , Sk), k ≥ 2 of N such that the

path γϕ(t, q) is generated by the serial method on the “sub-rectangles” [0, (qS1
, 0N\S1

)],

[(qS1
, 0N\S1

), (qS1∪S2
), (0N\(S1∪S2))], . . . , [(q∪k−1

i=1
Si

, 0Sk
), q]. If qm → (a, . . . , a), then the

limiting path limm→∞ γϕ(t, qm) would consist of the diagonals of the facets of the cube
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[0, a]N , corresponding to the partition (S1, . . . , Sk). Therefore, in this case the method ϕ

would not satisfy DCONT as well.

Theorem 4 gives an axiomatization of the serial method only on the set of path-

generated methods. In order to obtain a genuine axiomatic characterization it is necessary

to single out extreme points of the set F(ADD, DUM, SY M, COORD, DCONT ).

We give one more Decomposition axiom2 implying the property “to be an extreme

point” among the set F(ADD, DUM) of cost sharing methods.

Decomposition (DECO). A method ϕ satisfies the decomposition property if for every

problem 〈N, C, q〉 for each i ∈ N and zi ∈ (0, qi) there exist zj ∈ [0, qj ], j ∈ N \ {i} such

that for any k ∈ N

ϕk(N, C, q) = ϕk(N, C, z) + ϕk(N, Cz, q − z),(13)

where z = (zi)i∈N , Cz(x) = C(z + x), x ∈ [0, q − z].

Lemma 3.

ϕ ∈ F(ADD, DUM, DECO) =⇒ ϕ ∈ extF(ADD, DUM).

Proof. Let ϕ ∈ F(ADD, DUM, DECO). Then by [3] for every q ∈ R
N
++ there exists a

measure ν on the set Γ(q) of all paths γ(t, q) from 0 to q such that

ϕi(N, C, q) =

∫

Γ(q)

ϕγ(N, C, q)dν(γ),(14)

where ϕγ is the path-generated method for the path γ.

We can apply Decomposition axiom repeatedly. Then we obtain that for each i ∈ N

and partition [0, ti1, . . . , t
i
m, qi] of the interval [0, qi] there are partitions [0, tj1(t

i
1), . . . ,

tjm(tim), qj ] of the intervals [0, qj ] for each j ∈ N \ {i} such that the support of the

measure ν is contained in the set of paths going through the set
m
⋃

j=0

[τ j
i , τ j+1

i ],(15)

where

(τ j
i )k =

{

tki , if j = i,

tkj (tki ) for j 6= i,

where tm+1
j = qj , j ∈ N \ {i}.

The set (15) is the union of a finite set of rectangles [τk
i , τk+1

i ] which may intersect

only in one vertex and, hence, all paths through the set (15) pass through the points

0, τ1
i , . . . , τm

i , q, where τk+1
i ≥ τk

i , k = 1, . . . , m.

Let the partition (0, ti1, . . . , t
i
m, q) become smaller as m → ∞ such that the intervals

between adjacent points of the corresponding partitions (0.ti1, . . . , t
i
m, qi) tend to zero:

tik+1 − tik →m→∞ 0.

2This axiom under the name “Self Consistency” was firstly introduced by M. Koster [5] who
applied it to the characterization of the Sprumont ordinal serial rule [8].
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Then the set of paths Γ(q) in definition (14) tightens to a single path γ formed by the

limit as m → ∞ of the sequence (0, τ1
i , . . . , τm

i , q), and formula (14) implies

ϕ(N, C, q) = ϕγ(N, C, q).

Theorem 4 and Lemma 3 imply the following axiomatization of the serial method:

Theorem 5. The serial method is the only method satisfying ADD, DUM, SYM,

COORD, DCONT, and DECO.

Proof. To prove that the serial method s satisfies all the axioms it suffices only to show

that it satisfies DECO. Let i ∈ N and zi = t ∈ (0, maxi qi). For j ∈ N \ {i} define the

vector z by

zj =

{

zi, if t < qj ,

qj , if t ≥ qj .

Therefore, for j ∈ N such that zj ≥ qj

sj(N, C, q) = sj(N, C, z).

If zj < qj then

sj(N, C, q) =

∫ t

0

∂Cj((te) ∧ q)dt +

∫ qj

t

∂jC((te) ∧ q)dt

= sj(N, C, z) + sj(N, Ct, q − z).

Let now ϕ be an arbitrary method satisfying all the axioms. By Lemma 3 it is path

generated. By Theorem 4 it is the serial method.

The following examples of methods satisfying all the axioms stated in the Theorem

except for any one, prove independence of the axioms.

Without ADD. The Moulin–Shenker serial method [7].

This method sMSh is defined only for the class C1 ⊂ C of cost functions C, whose

partial derivatives are bounded:

C ∈ C1 =⇒ 0 < a(C) ≤ ∂iC ≤ b(C)

for some numbers a(C), b(C). For each problem 〈N, C, q〉 it is generated by the path

γMSh(t, q) such that the incremental costs generated by a small move along the path is

shared equally among the agents not yet fully served:

sMSh
i (N, C, q) =

∫ ∞

0

∂Ci

(

γMSh(t, q)
)

dγi(t, q)

=
C(γMSh(ti, q)

n − i + 1
−

∑

j<i

C(γMSh(tj , q)

(n − j + 1)(n − j)
∀j < i, i ∈ N,

where q1 ≤ q2 ≤ . . . ≤ qn, ti = inf{t | γi(t, q) = qi}, and the path γMSh(t, q) is determined

from differential equations

dγi(t, q)

dt
=

{

1
∂iC(γ(t,q)) if γi(t, q) < qi,

0 otherwise,
∀i ∈ N.
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It is not difficult to extend the method for all cost functions C ∈ C by approximations

Cm → C, Cm ∈ C1. The definition of the path γMSh implies that the Moulin-Shenker

method satisfies Ordinality (and, all the more, Coordinality), Dummy, Symmetry, De-

mand Continuity, and Decomposition.

Without DUM. The direct serial method [7]

sd
i (N, C, q) =

C(q(i))

n − i + 1
−

∑

j<i

C(q(j))

(n − j + 1)(n − j))
∀i ∈ N,

where qj(i) = min{qi, qj}. This method is defined by the same path as the serial method,

however, the agents’ shares are not the sums of integrals of their incremental costs, but

the sum of average total increments. It is clear that the direct serial method satisfies all

the axioms except for Dummy.

Without COORD. The Aumann–Shapley method determined by

xiN, C, q) =

∫ qi

0

∂iC

(

t

qi

· q

)

dt, i ∈ N,

does not satisfy Coordinality, but evidently, satisfies all other axioms.

Without SYM. The incremental methods. Each incremental method is determined by

a permutation π : N → N of agents, and, hence, it is not symmetric. However, all other

axioms are satisfied.

Without DCONT. The anonymous compositions ϕa of incremental and serial methods.

Let N be fixed and ϕπ be the incremental method corresponding to the permutation

π : N → N. Define the method ϕa as follows: let 〈N, C, q〉 be an arbitrary problem,

q ∈ Oπ, i.e. the demand vector q has distinct coordinates ordered in accordance with the

permutation π. Let

ϕa
i (N, C, q) = ϕπ

i (N, C, q) ∀i ∈ N.

Let now q′ be an arbitrary demand vector with distinct coordinates. Then for some

permutation τ : N → N τq′ ∈ Oπ. Put

ϕa
i (N, C, q′) = ϕτ−1

i (N, C, τq′).

It remains to define the method ϕa for demand vectors possessing equal coordinates.

Define the path for demands q where

qπ1 ≤ qπ2 ≤ . . . ≤ qπn.

If qπ1 < qπ2, then link 0 to (qπ1,0). if qπ1 = qπ2, then link 0 to (qπ1, qπ2, . . . , qπk,0),

where qπ1 = qπ2 = . . . = qπk < qπ(k+1). Then repeat the procedure till we come to the

vector q. Since other demand vectors with equal coordinates are some permutations of

vectors from Oπ, we can define the corresponding paths for them as the corresponding

permutations of the paths defined above. Thus, the paths to all vectors q ∈ R
N
+ have been

determined, and the method ϕa is generated by these paths.

It is clear that the method ϕa satisfies ADD, DUM, SYM, COORD. Since the paths

generating the method for each q belong to the closure of the unique orthant Oπ, the

method satisfies DECO.
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Without DECO. The Shapley–Shubik method. This method is not path-generated,

hence it does not satisfy Decomposition. Clearly, it satisfies all other axioms.
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