NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY II BANACH CENTER PUBLICATIONS, VOLUME 89 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2010

ORTHOMODULAR LATTICES AND CLOSURE OPERATIONS IN ORDERED VECTOR SPACES

JAN FLOREK

Institute of Mathematics, University of Economics Komandorska 118/120, 53-345 Wrocław, Poland E-mail: jan.florek@ue.wroc.pl

Abstract. On a non-trivial partially ordered real vector space (V, \leq) the orthogonality relation is defined by incomparability and $\zeta(V, \perp)$ is a complete lattice of double orthoclosed sets. We say that $A \subseteq V$ is an orthogonal set when for all $a, b \in A$ with $a \neq b$, we have $a \perp b$. In our earlier papers we defined an integrally open ordered vector space and two closure operations $A \to D(A)$ and $A \to A^{\perp\perp}$. It was proved that V is integrally open iff $D(A) = A^{\perp\perp}$ for every orthogonal set $A \subseteq V$. In this paper we generalize this result. We prove that V is integrally open iff D(A) = W for every $W \in \zeta(V, \perp)$ and every maximal orthogonal set $A \subseteq W$. Hence it follows that the lattice $\zeta(V, \perp)$ is orthomodular.

1. Introduction. This paper is a complement to our earlier papers [3] and [4]. Let (V, \leq) be a partially ordered real vector space with a positive cone $P = \{b \in V : b \geq 0\}$ such that $P \neq \{0\}$. A set $\{a + \omega b \in V : \omega \in \mathbb{R}\}$, $a, b \in V$, b > 0, is called a *P*-line (see [3]). Let us denote V_P the family of all *P*-lines. We define the orthogonality relation

 $a \perp b \iff a \notin b$ and $b \notin a \Leftrightarrow$ there is no $g \in V_P$ such that $\{a, b\} \subseteq g$.

The pair (V, \perp) is called the *orthogonality space* generated by V. For $a \in A$ and $A \subseteq V$ we denote:

$$a^{\perp} = \{ b \in V : b \perp a \}, \quad A^{\perp} = \bigcap a^{\perp} \quad \text{and} \quad A^{\perp \perp} = (A^{\perp})^{\perp}.$$

The family of double orthoclosed sets $\zeta(V, \perp) = \{A \subseteq V : A = A^{\perp \perp}\}$ partially ordered by set-theoretical inclusion and equipped with the orthocomplemention $A \to A^{\perp}$, with

2000 Mathematics Subject Classification: 06F20, 06C15, 06B30.

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc89-0-7

Key words and phrases: ordered vector space, orthogonality space, orthomodular lattice, strong unit, order topologies.

l.u.b. and g.l.b. given respectively by the formulas

$$\bigvee A_j = (\bigcup A_j)^{\perp \perp}, \quad \bigwedge A_j = \bigcap A_j,$$

forms a complete orthocomplemented lattice (see [1]). This lattice is called *orthomodular* (see [1]) if the following condition is satisfied:

If
$$A \subseteq B$$
 then $B = A \lor (B \land A^{\perp})$.

We say that $A \subseteq V$ is an *orthogonal* set when for all $a, b \in A$ with $a \neq b$, we have $a \perp b$. Foulis and Randall [6] proved that $\zeta(V, \perp)$ is a complete orthomodular lattice iff the following condition is satisfied:

(OM) If
$$W = W^{\perp \perp} \subseteq V$$
 and A is a maximal orthogonal subset of W, then $A^{\perp \perp} = W$.

We consider two closure operations $A \to D(A)$ and $A \to A^{\perp \perp}$, where D(A) is called the *causal closure* of A (see [2]) and $A^{\perp \perp}$ is called the *ortho closure* of A

$$D(A) = \{ b \in V : \forall g \in V_P, \ b \in g \Rightarrow g \cap A \neq \emptyset \},\$$
$$A^{\perp \perp} = \{ b \in V : \forall g \in V_P, \ b \in g \Rightarrow g \cap A^{\perp} = \emptyset \}.$$

Let us notice that $D(A) \subseteq A^{\perp \perp}$.

The space V is called *integrally open* (see [3]) if

$$b > 0$$
 and $a < b \Rightarrow \exists n \in \mathbb{N}, a + nb > 0.$

It was shown in [3] that if V is integrally open, then the lattice $\zeta(V, \perp)$ is orthomodular. In [4] it was proved that V is integrally open iff $D(A) = A^{\perp \perp}$ for every orthogonal set $A \subseteq V$. In this paper we generalize this result. We prove (Theorem 2.1(5)) that V is integrally open iff the following condition is satisfied:

If $W = W^{\perp \perp} \subseteq V$ and A is a maximal orthogonal subset of W, then D(A) = W.

Hence it follows that if V is an integrally open space, then the lattice $\zeta(V, \perp)$ is orthomodular (Corollary 2.1).

The space V is *directed* (see [1]) if

$$\forall a, b \in V \quad \exists c \in V, \quad a \leqslant c \quad \text{and} \quad b \leqslant c.$$

By a strong unit of V we mean an element $a \in V$ such that

$$\forall b \in V \quad \exists n \in \mathbb{N}, \quad na > b.$$

It was proved in [3] that V is integrally open and directed iff every positive element of V is a strong unit. The integrally open concept is closely related to the open set in the Euclidean topology in a finite dimensional ordered vector space (the only topology in which a finite dimensional vector space is a topological vector space). For the case in which V is finite dimensional we proved in [3] that V is integrally open and directed iff $P = P \setminus \{0\}$, where int(P) denotes the interior of P in the Euclidean topology of V. In this paper we complete this result. For the case in which V is finite dimensional we prove (Theorem 3.2) that V is integrally open and directed iff $int(A^+) = A^+ \setminus A$ for every orthogonal set $A \subset V$ (for every maximal orthogonal set $A \subset V$). Hence it follows that

if V is finite dimensional, integrally open and directed, then any maximal orthogonal set in V is closed in the Euclidean topology of V (Corollary 3.1).

2. Ortho and causal closure operations. Let (V, \bot) be the orthogonality space generated by V. For $a \in A$ and $A \subseteq V$ we define:

$$a^{+} = \{b \in V : a \leqslant b\}, \qquad A^{+} = \bigcup a^{+}, \\ a^{-} = \{b \in V : b \leqslant a\}, \qquad A^{-} = \bigcup a^{-}.$$

THEOREM 2.1. The following conditions are equivalent:

- 1. V is an integrally open space.
- 2. $g \in V_P$, $a \in V$, $g \cap a^- \neq \emptyset \iff g \cap a^+ \neq \emptyset$.

3. $g \in V_P$, $a \notin g \Rightarrow g \cap a^+$ has no smallest element.

- 4. $g \in V_P$, $a \notin g \Rightarrow g \cap a^-$ has no largest element.
- 5. If $W = W^{\perp \perp} \subseteq V$ and A is a maximal orthogonal set in W, then D(A) = W.
- 6. $D(A) = A^{\perp \perp}$ for every orthogonal set $A \subseteq V$.
- 7. D(A) = V for every maximal orthogonal set $A \subseteq V$.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ were proved in [3] and implications $(6) \Rightarrow (7) \Rightarrow (1)$ were proved in [4].

 $(2) \wedge (3) \wedge (4) \Rightarrow (5)$. Let $W = W^{\perp \perp}$ and A be a maximal orthogonal set in W. Suppose $g \in V_P$ and $g \cap W \neq \emptyset$. Since A is a maximal orthogonal set in $W, g \cap W \subseteq A^- \cup A^+$. Suppose $g \cap A^+ \cap W \neq \emptyset$ (the proof in the case $g \cap A^- \cap W \neq \emptyset$ is analogous). By condition (2), $g \cap A^-$ and $g \cap A^+$ are nonempty sets. Hence $g \cap A^+$ is a ray with an end point x. First we prove that $x \in W$. Since $x^+ \cap W \neq \emptyset$, then $x^- \cap W^{\perp} = \emptyset$. If there exists $y \in x^+ \cap W^{\perp}$, then x is the largest element of $g \cap y^-$ and we obtain a contradiction with condition (4), because $y \notin g$. Hence $x^+ \cap W^{\perp} = \emptyset$ and $x \in W^{\perp \perp} = W$. Now we prove that $x \in A$. Since $x \in g \cap W \subseteq A^- \cup A^+$, then one of the following cases occurs:

i) $x \in A^+$, ii) $x \in A^-$.

Case i) There exists $s \in A$ such that x is the smallest element of $g \cap s^+$. Hence, by condition (3) $s \in g$ and $x = s \in A$.

Case ii) Since the set A is orthogonal, then there exists $t \in A$ such that x is the largest element of $g \cap t^-$. Hence, by condition (4) $t \in g$ and $x = t \in A$.

 $(5) \Rightarrow (6)$. Let us notice that if A is an orthogonal set, then it is a maximal orthogonal set in $A^{\perp \perp}$.

COROLLARY 2.1. If V is an integrally open space, then $\zeta(V, \perp)$ is a complete orthomodular lattice.

Proof. Suppose V is an integrally open space. Let $W = W^{\perp \perp} \subseteq V$ and A be a maximal orthogonal set in W. Since $D(A) \subseteq A^{\perp \perp} \subseteq W^{\perp \perp} = W$, then by Theorem 2.1(5) $D(A) = A^{\perp \perp} = W$. Hence the implication (OM) is satisfied. \blacksquare

3. Integrally open and directed vector spaces. Let (V, \bot) be the orthogonality space generated by V. For $a, b \in V$, $a \neq b$, (a, b) denotes the set of all points of the form $\alpha a + \beta b$, $\alpha > 0$, $\beta > 0$, $\alpha + \beta = 1$. Let $S \subset V$. A point $a \in S$ is a *core point* of S if for each point $b \in V$, with $b \neq a$, there exists a point $c \in (a, b)$ such that $(a, c) \subset S$. The set of such core points is called the *core* of S (see [6]). A translation of a one dimensional subspace of V is called a *line*.

THEOREM 3.1. The following conditions are equivalent:

- 1. V is an integrally open and directed space.
- 2. Every positive element of V is a strong unit.
- 3. The core of P is $P \setminus \{0\}$.
- 4. If $A \subseteq V$ is an orthogonal set, then the core of A^+ is $A^+ \setminus A$.
- 5. If $A \subseteq V$ is a maximal orthogonal set, then the core of A^+ is $A^+ \setminus A$.
- 6. If $A \subseteq V$ is a maximal orthogonal set and g is a line such that $g \cap A^+ \neq \emptyset$ and $g \cap A^- \neq \emptyset$, then $g \cap A \neq \emptyset$.

Proof. The equivalence $(1) \Leftrightarrow (2)$ was proved in [3] and the equivalence $(1) \Leftrightarrow (3)$ was proved in [4].

 $(3) \Rightarrow (4)$. If A is an orthogonal set, then by (3)

$$\operatorname{core}(A^+) \subseteq A^+ \setminus A \subseteq \bigcup a^+ \setminus \{a\} = \bigcup \operatorname{core}(a^+) \subseteq \operatorname{core}(A^+).$$

 $(4) \Rightarrow (5)$. Obvious.

 $(5) \Rightarrow (6)$. Suppose A is a maximal orthogonal set. Then $\{A^- \setminus A, A, A^+ \setminus A\}$ is a partition of V. If g is a line such that $g \cap (A^+ \setminus A) \neq \emptyset$ and $g \cap (A^- \setminus A) \neq \emptyset$ then by (5) $g \cap (A^- \setminus A)$ and $g \cap (A^+ \setminus A)$ are nonempty open sets in the topology of line g. Hence $g \cap A \neq \emptyset$.

 $\neg(3) \Rightarrow \neg(6). \text{ Suppose } a > 0, \ b \in V \text{ and } g = \{a + \omega b : \omega \in \mathbb{R}\} \text{ is a line such that } g \cap 0^+ \subseteq \{a + \omega b : \omega \ge 0\}. \text{ If } g \cap 0^\perp \neq \emptyset \text{ then there exists } \gamma < 0 \text{ such that } c = a + \gamma b \in g \cap 0^\perp. \text{ Since } c \in 0^\perp \text{ then } a + \lambda c \notin 0^- \text{ for } \lambda > 0. \text{ Hence } a + \lambda c \notin \{\mu c : \mu \le 0\}^- \text{ for } \lambda > 0. \text{ Since } (1 + \lambda)^{-1}(a + \lambda c) = (1 + \lambda)^{-1}(a + \lambda a + \lambda \gamma b) = a + (1 + \lambda)^{-1}\lambda \gamma b \in g \text{ and } \gamma < 0, \text{ we have } (1 + \lambda)^{-1}(a + \lambda c) \notin 0^+ \text{ for } \lambda > 0. \text{ Hence } a + \lambda c \notin \{\mu c : \mu \le 0\}^+ \text{ for } \lambda > 0. \text{ Thus we have }$

 $j) \quad \{a+\lambda c:\lambda>0\}\subseteq \{\mu c:\mu\leq 0\}^{\perp}.$

Since $a + \omega b < a + \omega b + \gamma^{-1} \omega a = a + \gamma^{-1} \omega (a + \gamma b) = a + \gamma^{-1} \omega c \in \{a + \lambda c : \lambda > 0\}$ for $\omega < 0$ and $a + \omega b > \gamma^{-1} \omega a + \omega b = \gamma^{-1} \omega (a + \gamma b) = \gamma^{-1} \omega c \in \{\mu c : \mu \le 0\}$ for $\omega \ge 0$, and $c \in 0^{\perp}$, it follows that

 $jj) \quad \{a+\omega b:\omega<0\}\subseteq \{a+\lambda c:\lambda>0\}^- \quad \text{and} \quad \{a+\omega b:\omega\geq 0\}\subseteq \{\mu c:\mu\leq 0\}^+,$

 $jjj) \quad \{a+\omega b: \omega < 0\} \cap \{a+\lambda c: \lambda > 0\} = \emptyset \quad \text{and} \quad \{a+\omega b: \omega \ge 0\} \cap \{\mu c: \mu \le 0\} = \emptyset.$

Since $c \in 0^{\perp}$, by j) $\{a + \lambda c : \lambda > 0\} \cup \{\mu c : \mu \le 0\}$ is an orthogonal set. Let A be a maximal orthogonal set such that $\{a + \lambda c : \lambda > 0\} \cup \{\mu c : \mu \le 0\} \subseteq A$. By jjj), jj) and j), $g \cap \{a + \lambda c : \lambda > 0\} = \emptyset$ and $g \cap \{\mu c : \mu \le 0\} = \emptyset$. Hence by jj) $g \cap A = \emptyset$. Since $a \in g \cap A^+$ and $c \in g \cap A^-$ the implication (6) is not satisfied.

If $g \cap 0^{\perp} = \emptyset$, let A be a maximal orthogonal set such that $0 \in A$. Since $0 \notin g \subseteq 0^+ \cup 0^-$, we have $g \cap A = \emptyset$. Hence the implication (6) is not satisfied because $g \cap 0^+ \neq \emptyset$ and $g \cap 0^- \neq \emptyset$.

Suppose V is a finite dimensional real vector space. Valentine [6] proved that if $S \subseteq V$ is a convex set then int(S) = core(S), where int(S) denotes the interior of S in the Euclidean topology of V. Hence, in this case, Theorem 3.1 has the following formulation:

THEOREM 3.2. If V is a finite dimensional vector space, then the following conditions are equivalent:

- 1. V is an integrally open and directed space.
- 2. Every positive element of V is a strong unit.
- 3. The interior of P is $P \setminus \{0\}$.
- 4. If $A \subseteq V$ is an orthogonal set, then $int(A^+) = A^+ \setminus A$.
- 5. If $A \subseteq V$ is a maximal orthogonal set, then $int(A^+) = A^+ \setminus A$.
- 6. If $A \subseteq V$ is a maximal orthogonal set and g is a line such that $g \cap A^+ \neq \emptyset$ and $g \cap A^- \neq \emptyset$, then $g \cap A \neq \emptyset$.

COROLLARY 3.1. If V is finite dimensional, integrally open and directed, then any maximal orthogonal set in V is closed in the Euclidean topology of V.

Proof. If $A \subseteq V$ is a maximal orthogonal set, then A is the complement set of the union $(A^- \setminus A) \cup (A^+ \setminus A)$. By Theorem 3.2(5), $A^- \setminus A = int(A^-)$ and $A^+ \setminus A = int(A^+)$. Hence A is a closed set in the Euclidean topology of V.

Let us notice that if $V = R^2$ as a lexicographically ordered vector space, then V is not integrally open (because $int(P) \neq P \setminus \{0\}$) but every maximal orthogonal set in V is closed in the Euclidean topology of R^2 (because every maximal orthogonal set is a one point set).

References

- G. Birkhoff, *Lattice Theory*, Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1967.
- [2] W. Cegła and J. Florek, Ortho and causal closure as a closure operations in the causal logic, Int. J. Theor. Phys. 44 (2005), 11–19.
- J. Florek, Orthomodular lattices in ordered vector spaces, Algebra Universalis 56 (2007), 57–68.
- [4] —, Ortho and causal closure operations in ordered vector spaces, Algebra Universalis 58 (2008), 493–496.
- [5] D. J. Foulis and C. H. Randall, *Lexicographic Orthogonality*, J. Comb. Theory 11 (1971), 157–162.
- [6] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1959.