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Abstract. General quantum measurements are represented by instruments. In this paper the

mathematical formalization is given of the idea that an instrument is a channel which accepts

a quantum state as input and produces a probability and an a posteriori state as output. Then,

by using mutual entropies on von Neumann algebras and the identification of instruments and

channels, many old and new informational inequalities are obtained in a unified manner. Such

inequalities involve various quantities which characterize the performances of the instrument

under study; in particular, these inequalities include and generalize the famous Holevo’s bound.

1. Introduction. The following problem appears in the field of quantum communica-

tion and in quantum statistics: a collection of statistical operators with some a priori

probabilities (initial ensemble) describes the possible initial states of a quantum system

and an observer wants to decide in which of these states the system is by means of a

quantum measurement on the system itself. The quantity of information given by the

measurement is the classical mutual information Ic of the input/output joint distribution

(Shannon information). Interesting upper and lower bounds for Ic, due to the quantum

nature of the measurement, are given in the literature [12, 28, 26, 25, 10, 16], where the

measurement is described by a generalized observable or positive operator valued (POV)
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measure; an exception is the paper [25], which considers also the information left in the

post-measurement states.

With respect to a POV measure, a more detailed level of description of the quantum

measurement is given by an instrument [6, 19]: given a quantum state (the preparation) as

input, the instrument gives as output not only the probabilities of the outcomes but also

the state after the measurement, conditioned on the observed outcome (the a posteriori

state). We can think the instrument to be a channel: from a quantum state (the pre-

measurement state) to a quantum/classical state (a posteriori state plus probabilities).

The mathematical formalization of the idea that an instrument is a channel is given

in Section 2, together with a new construction of the a posteriori states. In Section 3,

by using the identification of the instrument with a channel and the notion of quantum

mutual entropy, we are able to give a unified approach to various bounds for Ic and for

related quantities, which can be thought to quantify the informational performances of the

instrument. One of the most interesting inequality is the strengthening (48) of Holevo’s

bound (49); in the finite case it has been obtained in [25] where the authors introduce

a specific model of the measuring process (without speaking explicitly of intruments)

and use the strong subadditivity of the von Neumann entropy. The introduction of the

general notion of instrument, the association to it of a channel and the use of Uhlmann’s

monotonicity theorem allows us to obtain the same result in a more direct way and to

extend it to a more general set up. In Section 4 a new upper bound (89) for the classical

mutual information Ic is obtained by combining an idea by Hall [10] and inequality (48).

We already gave some results in [3], mainly in the discrete case. Here we give the gen-

eral results, which are based on the theory of relative entropy on von Neumann algebras

[18]. Continuous parameters appear naturally in quantum statistical problems, but also

in the quantum communication set up infinite dimensional Hilbert spaces and general

initial ensembles are needed [27, 13]. Some of the informational quantities presented here

have been studied in [1, 2] in the case of instruments describing continual measurements.

1.1. Notations and preliminaries

1.1.1. Bounded operators. We denote by L(A;B) the space of bounded linear operators

from A to B, where A, B are Banach spaces; moreover we set L(A) := L(A;A).

1.1.2. Quantum states. Let H be a separable complex Hilbert space; a normal state on

L(H) is identified with a statistical operator, T (H) and S(H) ⊂ T (H) are the trace-class

and the space of statistical operators on H, respectively, and 〈ρ, a〉 := TrH{ρa}, ρ ∈ T (H),

a ∈ L(H).

More generally, if a belongs to a W ∗-algebra and ρ to its dual M∗ or predual M∗,

the functional ρ applied to a is denoted by 〈ρ, a〉.
1.1.3. A quantum/classical algebra. Let (Ω,F , Q) be a measure space, where Q is a

σ-finite measure. By Theorem 1.22.13 of [24], the W ∗-algebra L(H)⊗L∞(Ω,F , Q) (W ∗-

tensor product) is naturally isomorphic to the W ∗-algebra L∞(Ω,F , Q;L(H)) of all the

L(H)-valued Q-essentially bounded weakly∗ measurable functions on Ω. Moreover ([24],

Proposition 1.22.12), the predual of this W ∗-algebra is L1(Ω,F , Q; T (H)), the Banach

space of all the T (H)-valued Bochner Q-integrable functions on Ω, and this predual is
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naturally isomorphic to T (H)⊗L1(Ω,F , Q) (tensor product with respect to the greatest

cross norm—[24], pp. 45, 58, 59, 67, 68).

Let us note that a normal state Σ on L∞(Ω,F , Q;L(H)) is a measurable function

ω 7→ Σ(ω) ∈ T (H), Σ(ω) ≥ 0, such that TrH{Σ(ω)} is a probability density with respect

to Q.

1.1.4. Quantum channels. A channel Λ ([18] p. 137), or dynamical map, or stochastic

map is a completely positive linear map which transforms states into states; usually the

definition is given for its adjoint Λ∗. The channels are usually introduced to describe noisy

quantum evolutions, but we shall see that also quantum measurements can be identified

with channels.

Definition 1. Let M1 and M2 be two W ∗-algebras. A linear map Λ∗ from M2 to M1

is said to be a channel if it is completely positive, unital (i.e. identity preserving) and

normal (or, equivalently, weakly∗ continuous).

Remark 1. Due to the equivalence of w∗-continuity and existence of a preadjoint Λ [8],

Definition 1 is equivalent to: Λ is a completely positive linear map from the predual M1∗

to the predual M2∗, normalized in the sense that 〈Λ[ρ],12〉2 = 〈ρ,11〉1, ∀ρ ∈ M1∗. Let

us note also that Λ maps normal states on M1 into normal states on M2.

Remark 2. Note that the composition of channels gives again a channel. If we have three

channels Λ∗
1 : M2 → M1, Λ∗

2 : M3 → M2, Λ∗
3 : M3 → M1 and such that Λ2 ◦ Λ1 = Λ3,

following [18] we say that Λ3 is a coarse graining of Λ1 or that Λ1 is a refinement of Λ3.

1.2. Entropy

1.2.1. Relative entropies. The general definition of the relative entropy S(Σ|Π) for two

states Σ and Π is given in [18]; here we give only some particular cases of the general

definition.

Given a separable Hilbert space H and two states σ, τ ∈ S(H) the quantum relative

entropy of σ with respect to τ is defined by

(1) Sq(σ|τ ) := TrH{σ(log σ − log τ )}.
Given two normal states Pi on L∞(Ω,F , Q), i.e. two probability measures such that

Pi(dω) = qi(ω)Q(dω), the classical relative entropy of P1 with respect to P2, or Kullback-

Leibler divergence, is

(2) Sc(P1|P2) :=

∫

Ω

Q(dω) q1(ω) log
q1(ω)

q2(ω)
≡

∫

Ω

P1(dω) log
P1(dω)

P2(dω)
.

Given two normal states Σk on L∞(Ω,F , Q;L(H)), the relative entropy of Σ1 with

respect to Σ2 is

(3) S(Σ1|Σ2) =

∫

Ω

Q(dω) TrH{Σ1(ω)(log Σ1(ω) − log Σ2(ω))}.

Let us define the two probabilities Pk(dω) := TrH{Σk(ω)}Q(dω) and the two measurable

families of density operators σk(ω) := Σk(ω)/TrH{Σk(ω)} (these definitions hold where

the denominators do not vanish and are completed arbitrarily where the denominators
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vanish). Then, eq. (3) gives immediately

(4) S(Σ1|Σ2) = Sc(P1|P2) +

∫

Ω

P1(dω)Sq(σ1(ω)|σ2(ω)).

Finally, let us denote by Sq(η) the von Neumann entropy, i.e.

(5) Sq(η) = −TrH{η log η}, η ∈ S(H).

All the relative entropies and entropies take values in [0,+∞]. Note that we have used

a subscript “c” for classical quantities, a subscript “q” for purely quantum ones and no

subscript for general quantities, eventually of a mixed character.

1.2.2. Convexity properties. A key result which follows from the convexity properties of

the relative entropy is Uhlmann’s monotonicity theorem ([18], Theor. 1.5 p. 21), which

implies that channels decrease the relative entropy.

Theorem 1. If Σ and Π are two normal states on M1 and Λ∗ is a channel from M2 →
M1, then S(Σ|Π) ≥ S(Λ[Σ]|Λ[Π]).

Remark 3. Note also that the operation of restricting the states to some subalgebra is a

channel; so, if Σ12 and Π12 are two normal states on M1 ⊗M2 and Σk and Πk are their

restrictions to Mk, then S(Σ12|Π12) ≥ S(Σk|Πk), k = 1, 2.

1.2.3. Mutual entropies. The classical notion of mutual entropy can be immediately gen-

eralized to states on von Neumann algebras. Let Σ12 be a normal state on M1 ⊗ M2

and let us denote by Σ1 and Σ2 its marginals, i.e. its restrictions to M1 and M2, respec-

tively. The mutual entropy of Σ12 is by definition the relative entropy S(Σ12|Σ1 ⊗ Σ2) of

the state with respect to the tensor product of its marginals. We shall use the following

results on mutual entropies.

Remark 4. Let Σ123 be a normal state on M1 ⊗M2 ⊗M3 and denote all its possible

marginals by Σij (i < j with i = 1, 2 and j = 2, 3), Σj (j = 1, 2, 3). From Corollary 5.20

of [18] we obtain the chain rules

(6) S(Σ123|Σ1 ⊗ Σ2 ⊗ Σ3) =





S(Σ123|Σ1 ⊗ Σ23) + S(Σ23|Σ2 ⊗ Σ3)

S(Σ123|Σ13 ⊗ Σ2) + S(Σ13|Σ1 ⊗ Σ3)

S(Σ123|Σ12 ⊗ Σ3) + S(Σ12|Σ1 ⊗ Σ2)

and from Remark 3 we obtain

(7) S(Σ123|Σ1 ⊗ Σ23) ≥
{
S(Σ12|Σ1 ⊗ Σ2)

S(Σ13|Σ1 ⊗ Σ3)

and the similar inequalities given by permutation of the indices.

2. Instruments, channels and a posteriori states

2.1. Instruments. The notion of instrument is central in quantum measurement theory;

an instrument gives the probabilities and the state changes [7, 6, 19].

Definition 2. Let H1, H2 be two separable complex Hilbert spaces and (Ω,F) be a

measurable space. An instrument I is a map valued measure such that
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(i) I : F → L(T (H1); T (H2)),

(ii) I(F ) is completely positive, ∀F ∈ F ,

(iii) (normalization) TrH2
{I(Ω)[ρ]} = TrH1

{ρ}, ∀ρ ∈ T (H1),

(iv) (σ-additivity) for every countable family {Fi} of pairwise disjoint sets in F
∑

i

〈I(Fi)[ρ], a〉2 =
〈
I
( ⋃

i

Fi

)
[ρ], a

〉

2
, ∀ρ ∈ T (H1), ∀a ∈ L(H2).

Unlike the usual definitions of instrument we have introduced two Hilbert spaces, an

initial one H1 and a final one H2; we allow the Hilbert space where the quantum system

lives to be changed by the measurement, which is the standard set up when quantum

channels are considered [18] and which is useful when we shall construct something similar

to the compound state of Ohya [17].

Remark 5. The map F 7→ EI(F ) := I(F )∗[12] turns out to be a positive operator

valued (POV) measure on H1 (the observable associated with the instrument I). For

every ρ ∈ S(H1) the map F 7→ Pρ(F ), with

(8) Pρ(F ) := 〈ρ,EI(F )〉1 ≡ 〈ρ, I(F )∗[12]〉1 ≡ TrH2
{I(F )[ρ]},

is a probability measure: Pρ(F ) is the probability that the result of the measurement

be in F when the pre-measurement state is ρ. Moreover, given the result F , the post-

measurement state is (Pρ(F ))−1I(F )[ρ].

Remark 6. It is easy to show that all the measures Pρ, ρ ∈ S(H1), are absolutely

continuous with respect to Pξ, where ξ is any faithful normal state on L(H1). So, we can

fix also a σ-finite measure Q on (Ω,F) such that all the probabilities measures Pρ are

absolutely continuous with respect to Q. Moreover we complete (Ω,F , Q) and extend the

instrument to the extended σ-algebra in the same way as ordinary measures are extended

([4] Problem 3.10, p. 49): for any set A in the extended σ-algebra, there exist B,C ∈ F
such that A △ B ⊂ C (△ is the symmetric difference) with Q(C) = 0 and we define

I(A) = I(B). For the extended objects we use the same symbols as for the original ones.

It is always possible to take for Q a probability measure, but it is convenient to leave more

freedom; for instance, in the case of a discrete Ω one takes for Q the counting measure or

in the case of a measurement of position and/or momentum one takes for Q the Lebesgue

measure.

2.2. The instrument as a channel. From now on H1, H2 are two separable complex

Hilbert spaces, (Ω,F , Q) is a complete σ-finite measure space, I is an instrument as in

Definition 2 and the associated probabilities (8) are such that

(9) Pρ ≪ Q , ∀ρ ∈ S(H1).

Then, we introduce the W ∗-algebras

(10)
M1 := L(H1) , M2 := L(H2) , M3 := L∞(Ω,F , Q) ,

M23 := M2 ⊗M3 ≡ L∞(Ω,F , Q;L(H2)) .

Theorem 2. Let us set

(11) 〈ρ, Λ∗
I [a⊗ f ]〉1 :=

∫

Ω

f(ω)〈I(dω)[ρ], a〉2 , ∀ρ ∈ T (H1), ∀a ∈ M2 , ∀f ∈ M3 ;



70 A. BARCHIELLI AND G. LUPIERI

by linearity and continuity the map Λ∗
I can be extended to a channel

(12) Λ∗
I : M23 → M1 .

Vice versa, the instrument I is uniquely determined by the channel.

Proof. Let us note that by approximating f with simple functions we get from (11)

〈ρ, Λ∗
I [a⊗f ]〉1 ≤ ‖ρ‖T (H1)

‖a‖L(H2)
‖f‖L∞ ; then, the direct statement follows by standard

arguments. Viceversa, given a channel Λ∗
I , an instrument I is defined by: ∀F ∈ F

(13) 〈I(F )[ρ], a〉2 := 〈ρ, Λ∗
I [a⊗ 1F ]〉1 , ∀ρ ∈ T (H1), ∀a ∈ M2 .

The σ-additivity follows from the weak∗ continuity of the channel; all the other properties

are more or less evident.

2.3. A posteriori states. Now, let us consider the preadjoint of the channel we have

constructed

(14) ΛI : T (H1) → L1(Ω,F , Q; T (H2)).

The quantity ΛI [ρ] is an equivalence class of Bochner integrable T (H2)-valued functions

of ω; let ω 7→ ΛI [ρ](ω) be a representative. If ρ ≥ 0, then ΛI [ρ](ω) ≥ 0, Q-a.s., and in this

case we take the representative to be positive everywhere; we required the completeness

of Q just to have the freedom of making modifications inside null sets without having to

take care of measurability. Moreover, if ρ is normalized, also ΛI [ρ] is normalized. So, we

have ∀ρ ∈ S(H1)

ΛI [ρ](ω) ≥ 0 , ∀ω ∈ Ω ,

∫

Ω

TrH2
{ΛI [ρ](ω)}Q(dω) = 1 ,(15)

Pρ(dω)

Q(dω)
= TrH2

{ΛI [ρ](ω)} (Radon-Nikodym derivative),(16)

∫

F

ΛI [ρ](ω)Q(dω) = I(F )[ρ] , ∀F ∈ F , (Bochner integral).(17)

Let us normalize the positive trace-class operators ΛI [ρ](ω) by setting

(18) πρ(ω) :=

{
(TrH2

{ΛI [ρ](ω)})−1ΛI [ρ](ω) if TrH2
{ΛI [ρ](ω)} > 0

ρ̃ (ρ̃ ∈ S(H2), fixed) if TrH2
{ΛI [ρ](ω)} = 0

By eqs. (16)–(18) we have

(19)

∫

F

πρ(ω)Pρ(dω) = I(F )[ρ] , ∀F ∈ F , (Bochner integral).

This construction gives directly the result by Ozawa on the existence of a family of a

posteriori states [20, 21], with the small generalization of the use of two Hilbert spaces.

Proposition 1. Let H1, H2, I be as above. For any ρ ∈ S(H1) there exists a Pρ-a.s.

unique family of a posteriori states {πρ(ω), ω ∈ Ω} for (ρ, I), which means that the

function πρ : Ω → S(H2) is measurable and that eq. (19) holds.

Theorem 2 and Proposition 1 generalize immediately to the case of L(H1), L(H2)

substituted by von Neumann algebras with separable predual; the separability is needed

in the results quoted in Subsection 1.1.3 and taken from [24] and which are at the base

of the whole construction.
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3. Instruments, mutual entropies, informational bounds

3.1. The letter states and the measurement. In quantum statistics, the following problem

of identification of states is a natural one. There is a parametric family of quantum states

ρi(α) (the subscript “i” stands for “initial”), where α belongs to some parameter space

A and it is distributed with some a priori probability Pi. The experimenter has to make

inferences on α by using the result of some measurement on the quantum system. In

quantum communication theory, the problem of the transmission of a message through

a quantum channel is similar. A message is transmitted by encoding the letters in some

quantum states, which are possibly corrupted by a quantum noisy channel; at the end of

the channel the receiver attempts to decode the message by performing measurements on

the quantum system. So, one has an alphabet A and the letters α ∈ A are transmitted

with some a priori probabilities Pi. Each letter α is encoded in a quantum state and we

denote by ρi(α) the state associated to the letter α as it arrives to the receiver, after the

passage through the transmission channel.

Let us give the formalization of both problems; we use the language of the quantum

communication set up. First of all, we have a σ-finite measure space (A,A, ν); A is the

alphabet and the a priori probabilities for the letters are given by Pi(dα) = qi(α)ν(dα),

where qi is a suitable probability density with respect to ν. The letter states are ρi(α) ∈
S(H1) with α 7→ ρi(α) measurable and the mixture

(20) ηi =

∫

A

Pi(dα) ρi(α) ≡
∫

A

ν(dα) qi(α)ρi(α) ∈ S(H1) (Bochner integral)

can be called the initial a priori state. One calls {Pi, ρi} the initial ensemble. It would

be possible to take Pi as ν; then, qi(α) = 1. However, it is convenient to distinguish Pi

and ν, mainly for the cases when one has more initial ensembles. Note that α 7→ ρi(α) is

nothing but a random variable in the probability space (A,A, Pi) with value in S(H1).

Let the decoding measurement be represented by the instrument I of the previous

section with the associated POV measure EI . By using the notations of Section 2 and,

in particular, the Radon-Nikodym derivative (16), we can construct the following proba-

bilities, conditional probabilities and densities: ∀F ∈ F , ∀B ∈ A

Pf|i(F |α) := Pρi(α)(F ), qf|i(ω|α) :=
Pf|i(dω|α)

Q(dω)
= TrH2

{ΛI [ρi(α)](ω)},(21)

Pf(F ) :=

∫

A

Pf|i(F |α)Pi(dα) = Pηi
(F ), qf(ω) :=

Pf(dω)

Q(dω)
= TrH2

{ΛI [ηi](ω)},(22)

Pif(dα× dω) := Pf|i(dω|α)Pi(dα), qif(α, ω) :=
Pif(dα× dω)

ν(dα)Q(dω)
= qf|i(ω|α)qi(α),(23)

Pi|f(B|ω) :=
Pif(B × dω)

Pf(dω)
, qi|f(α|ω) :=

Pi|f(dα|ω)

ν(dα)
=
qif(α, ω)

qf(ω)
;(24)

the subscript “f” stays for “final”.

If we apply the measurement, but we do not do any selection on the system, we obtain

the post-measurement a priori states

(25) ηα
f := I(Ω)[ρi(α)], ηf := I(Ω)[ηi] =

∫

A

Pi(dα) ηα
f .
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By applying the definition (18) we can introduce two families of a posteriori states:

(26) ρα
f (ω) := πρi(α)(ω), ρf(ω) := πηi

(ω).

By using eqs. (19) for F = Ω, (20)–(26), one obtains

(27)

∫

Ω

Pf|i(dω|α) ρα
f (ω) = ηα

f ,

∫

A

Pi|f(dα|ω) ρα
f (ω) = ρf(ω),

∫

Ω

Pf(dω) ρf(ω) = ηf ,

∫

A×Ω

Pif(dα× dω) ρα
f (ω) = ηf ;

here and in the following integrals on states are in the Bochner sense. Let us stress that

the states ρi(α), ηα
f are uniquely defined Pi-almost surely, ρf(ω) Pf -a.s. and ρα

f (ω) Pif -a.s.

3.2. Algebras and states. With respect to the algebras given in (10) we have one more

von Neumann algebra, L∞(A,A, ν); then, we set

(28)
M0 := L∞(A,A, ν), Mij := Mi ⊗Mj , i < j,

Mijk := Mij ⊗Mk , i < j < k, M0123 := M01 ⊗M23 ;

in particular, we have the identification

(29) M01 = M0 ⊗M1 = L∞(A,A, ν;L(H1)).

The states are represented by densities with respect to
∫

A
ν(dα) . . ., TrH1

{. . .}, TrH2
{. . .},∫

Ω
Q(dω) . . .

3.2.1. The initial state. It is easy to see that the initial ensemble {Pi, ρi} can be seen as

a normal state on M01. By using a superscript which indicates the algebras on which a

state is acting, we can write

(30) Σ01
i := {qi(α)ρi(α)}, Σ0

i = {qi(α)}, Σ1
i = {ηi},

for the initial state and its marginals.

3.2.2. The final state. We already constructed the channel Λ∗
I : M23 → M1; by dilating

it with the identity we obtain the measurement channel

(31) Λ∗ : M023 → M01 , Λ∗ := 1⊗ Λ∗
I .

By applying the measurement channel to the initial state we obtain the final state

(32) Σ023
f := Λ[Σ01

i ] = {qi(α)ΛI [ρi(α)](ω)} = {qif(α, ω)ρα
f (ω)},

whose marginals are

(33)
Σ02

f = {qi(α)ηα
f }, Σ03

f = {qif(α, ω)}, Σ23
f = {qf(ω)ρf(ω)},

Σ0
f = Σ0

i = {qi(α)}, Σ2
f = {ηf}, Σ3

f = {qf(ω)}.
Let us note that

(34) Λ[Σ0
i ⊗ Σ1

i ] = Σ0
f ⊗ Σ23

f .
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3.3. Mutual entropies, Holevo’s bound and other inequalities

3.3.1. χ-quantities. Holevo’s bound (49) involves a mean quantum relative entropy,

which is often called Holevo’s chi-quantity, given by

(35) χ{Pi, ρi} :=

∫

A

Pi(dα)Sq(ρi(α)|ηi).

In general, given a probability space (B,B, P ) and a measurable family β 7→ τ (β) of

statistical operators on some Hilbert space H, the χ-quantity of the ensemble {P, τ} is

defined by

(36) χ{P, τ} :=

∫

B

P (dβ)Sq(τ (β)|σ), σ :=

∫

B

P (dβ) τ (β);

in this definition the set B could be S(H) itself, see [13] pp. 2–4. By using the definition

(1) of the quantum relative entropy and the definition of von Neumann entropy, when

Sq(σ) <∞, one has

(37) χ{P, τ} = Sq(σ) −
∫

B

P (dβ)Sq(τ (β)).

The expressions of the mutual entropies we shall need will contain the χ-quantities

χ{Pi, ρi}, χ{Pi, η
•
f }, χ{Pf , ρf}, χ{Pif , ρ

•
f } and the mean χ-quantities

(38)

∫

Ω

Pf(dω)χ{Pi|f(•|ω), ρ•f (ω)} =

∫

A×Ω

Pif(dα× dω)Sq(ρ
α
f (ω)|ρf(ω)),

(39)

∫

A

Pi(dα)χ{Pf|i(•|α), ρα
f } =

∫

A×Ω

Pif(dα× dω)Sq(ρ
α
f (ω)|ηα

f );

the mixtures appearing in these χ-quantities are given by eqs. (20), (25), (27).

3.3.2. Mutual entropies. By using the definitions above and property (4), it is easy to

compute all the mutual entropies involving the initial and the final state. First of all we

get that Holevo’s χ-quantity is the initial mutual entropy

(40) S(Σ01
i |Σ0

i ⊗ Σ1
i ) = χ{Pi, ρi}

and that the mutual entropy involving only the classical part of the final state is the

Shannon input/output classical mutual entropy, i.e. the classical information on the input

extracted by the measurement:

(41) S(Σ03
f |Σ0

f ⊗ Σ3
f ) = Sc(Pif |Pi ⊗ Pf) =: Ic{Pi, ρi;EI}.

Then, the remaining mutual entropies turn out to be

(42) S(Σ02
f |Σ0

f ⊗ Σ2
f ) = χ{Pi, η

•
f }, S(Σ23

f |Σ2
f ⊗ Σ3

f ) = χ{Pf , ρf},

(43)

S(Σ023
f |Σ03

f ⊗ Σ2
f ) = χ{Pif , ρ

•
f },

S(Σ023
f |Σ0

f ⊗ Σ23
f ) = Ic{Pi, ρi;EI} +

∫

Ω

Pf(dω)χ{Pi|f(•|ω), ρ•f (ω)},

S(Σ023
f |Σ02

f ⊗ Σ3
f ) = Ic{Pi, ρi;EI} +

∫

A

Pi(dα)χ{Pf|i(•|α), ρα
f }.
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3.3.3. Identities. By the chain rules (6) we get

(44) S(Σ023
f |Σ0

f ⊗ Σ2
f ⊗ Σ3

f ) = S(Σ023
f |Σ0

f ⊗ Σ23
f ) + S(Σ23

f |Σ2
f ⊗ Σ3

f )

= S(Σ023
f |Σ02

f ⊗ Σ3
f ) + S(Σ02

f |Σ0
f ⊗ Σ2

f ) = S(Σ023
f |Σ03

f ⊗ Σ2
f ) + S(Σ03

f |Σ0
f ⊗ Σ3

f ),

which gives the expression of the “tripartite” mutual entropy

(45) S(Σ023
f |Σ0

f ⊗ Σ2
f ⊗ Σ3

f ) = Ic{Pi, ρi;EI} + χ{Pif , ρ
•
f }

and the identities

(46) χ{Pif , ρ
•
f } = χ{Pf , ρf} +

∫

Ω

Pf(dω)χ{Pi|f(•|ω), ρ•f (ω)}

= χ{Pi, η
•
f } +

∫

A

Pi(dα)χ{Pf|i(•|α), ρα
f }.

3.3.4. The generalized Schumacher-Westmoreland-Wootters inequality. Uhlmann’s mo-

notonicity theorem (see Theorem 1) and eqs. (32), (34) give us the inequality

(47) S(Σ01
i |Σ0

i ⊗ Σ1
i ) ≥ S(Λ[Σ01

i ]|Λ[Σ0
i ⊗ Σ1

i ]) = S(Σ023
f |Σ0

f ⊗ Σ23
f );

by eqs. (40), (42) this inequality becomes

(48) χ{Pi, ρi} ≥ Ic{Pi, ρi;EI} +

∫

Ω

Pf(dω)χ{Pi|f(•|ω), ρ•f (ω)}.

In [25] this inequality was found in the discrete case; in [3] it was derived, again in the

discrete case, by using relative entropies as here and the general case was announced.

Roughly, eq. (48) says that the quantum information contained in the initial ensemble

{Pi, ρi} is greater than the classical information extracted in the measurement plus the

mean quantum information left in the a posteriori states. Inequality (48) can be seen also

as giving some kind of information-disturbance trade-off, a subject to which the paper

[5], which contains a somewhat related inequality, is devoted.

Holevo’s bound [12], generalized to the continuous case in [28], is

(49) Ic{Pi, ρi;EI} ≤ χ{Pi, ρi},

or, in terms of mutual entropies,

(50) S(Σ03
f |Σ0

f ⊗ Σ3
f ) ≤ S(Σ01

i |Σ0
i ⊗ Σ1

i ).

The derivation of Holevo’s bound given in [28] is based on a measurement channel in-

volving only the POV measure, not the whole instrument; the fact that inequality (48)

is stronger than Holevo’s bound (49) is a consequence of the fact that our channel Λ is a

refinement of the channel used in [28] (see the discussion given in [3]).

By using one of the identities (46), the inequality (48) can be rewritten in an equivalent

form, which is slightly more symmetric:

(51) Ic{Pi, ρi;EI} ≤ χ{Pi, ρi} + χ{Pf , ρf} − χ{Pif , ρ
•
f }.

3.3.5. A lower bound. By restriction of the states (see Remark 3) we get the inequality

(52) S(Σ023
f |Σ0

f ⊗ Σ23
f ) ≥ S(Σ02

f |Σ0
f ⊗ Σ2

f );
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by eqs. (41) and (42) we get [3]

(53) Ic{Pi, ρi;EI} +

∫

Ω

Pf(dω)χ{Pi|f(•|ω), ρ•f (ω)} ≥ χ{Pi, η
•
f },

which says that the classical information extracted in the measurement plus the mean

quantum information left in the a posteriori states is greater than the quantum informa-

tion left in the post-measurement a priori states.

All the other inequalities which can be obtained from the final state are also conse-

quences of inequality (53) and identities (46).

3.3.6. The generalized Groenewold-Lindblad inequality. Given an instrument I and a

statistical operator η, an interesting quantity, which can be called the quantum informa-

tion gain, is

(54) Iq{η; I} := Sq(η) −
∫

Ω

Pη(dω)Sq(πη(ω)) ;

this is nothing but the quantum entropy of the pre-measurement state minus the mean

entropy of the a posteriori states. It is a measure of the gain in purity (or loss, if negative)

in passing from the pre-measurement state to the post-measurement a posteriori states. It

gives no information on the ability of the measurement in identifying the pre-measurement

state, ability which is contained in Ic.

By using the expression of a χ-quantity in terms of entropies and mean entropies, as

in (37), one can see that, when

(55) Sq(ηi) < +∞,

∫

Ω

Pf(dω)Sq(ρf(ω)) < +∞,

inequality (48) is equivalent to

(56) Iq{ηi; I} ≥ Ic{Pi, ρi;EI} +

∫

A

Pi(dα) Iq{ρi(α); I}.

Here the state ηi is given and {Pi, ρi} has to be thought as any demixture of ηi.

An interesting question is when the quantum information gain is positive. Groenewold

has conjectured [9] and Lindblad [15] has proved that the quantum information gain is

non negative for an instrument of the von Neumann-Lüders type. The general case has

been settled by Ozawa, who in [22] has proved the following theorem in the case H1 = H2.

A shorter proof than Ozawa’s is based on inequality (56) [3].

Theorem 3. Let H1, H2 be two separable complex Hilbert spaces, (Ω,F) be a measurable

space and I a completely positive instrument as in Definition 2. Then,

(a) the instrument I sends any pure input state into almost surely pure a posteriori

states

if and only if

(b) Iq{η; I} ≥ 0, for all statistical operators η for which Sq(η) <∞.

Proof. (b) ⇒ (a) is trivial: put a pure state ηi into the definition and you get 0 ≤
Iq{ηi; I} = −

∫
Ω
Pf(dω)Sq(ρf(ω)) ⇒ Sq(ρf(ω)) = 0 Pf -a.s. ⇒ ρf(ω) is pure Pf -a.s.

To see (a) ⇒ (b), we take a demixture of ηi into pure states; then, by (a) also the states

ρα
f (ω) are pure and Iq{ρi(α); I} = 0; then, eq. (56) gives Iq{ηi; I} ≥ S(Pif |Pi⊗Pf) ≥ 0.
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3.4. Compound states and lower bounds on Ic. In [17] Ohya introduced a notion of

compound states which involves the input and output states of a quantum channel. Taking

inspiration from this idea, we are able to produce some inequalities which strengthen a

lower bound on Ic{Pi, ρi;EI} given by Scutaru in [26].

First of all we need some new families of statistical operators and the relationships

among them:

ǫif(ω) :=

∫

A

Pi|f(dα|ω) ρi(α) ⊗ ηα
f ,(57)

ǫi(ω) := TrH2
{ǫif(ω)} =

∫

A

Pi|f(dα|ω) ρi(α),(58)

ǫf(ω) := TrH1
{ǫif(ω)} =

∫

A

Pi|f(dα|ω) ηα
f ,(59)

ηif :=

∫

Ω

Pf(dω) ǫif(ω) =

∫

A

Pi(dα) ρi(α) ⊗ ηα
f ,(60)

TrH2
{ηif} =

∫

Ω

Pf(dω) ǫi(ω) = ηi, TrH1
{ηif} =

∫

Ω

Pf(dω) ǫf(ω) = ηf ,(61)

τf(α) :=

∫

Ω

Pf|i(dω|α) ρf(ω),

∫

A

Pi(dα) τf(α) = ηf ,(62)

γif :=

∫

Ω

Pf(dω) ǫi(ω) ⊗ ρf(ω), TrH2
{γif} = ηi, TrH1

{γif} = ηf .(63)

The state (58) has been introduced by Scutaru [26] and the state (60) is similar to the

compound state introduced by Ohya [17] for quantum channels.

Now, let us construct a first compound state on M0123 and let us give some of its

marginals:

(64)

Π0123 := {qif(α, ω) ρi(α) ⊗ ηα
f },

Π012 = {qi(α) ρi(α) ⊗ ηα
f }, Π123 = {qf(ω)ǫif(ω)},

Π13 = {qf(ω)ǫi(ω)}, Π12 = {ηif}, Π23 = {qf(ω)ǫf(ω)},
Π1 = {ηi}, Π2 = {ηf}, Π3 = {qf(ω)}.

For this state we have S(Π0123|Π012 ⊗ Π3) = Ic{Pi, ρi;EI} and Remark 3 gives the

inequalities

(65) S(Π0123|Π012 ⊗ Π3) ≥ S(Π123|Π12 ⊗ Π3) ≥
{
S(Π13|Π1 ⊗ Π3),

S(Π23|Π2 ⊗ Π3),

which give

(66) Ic{Pi, ρi;EI} ≥ χ{Pf , ǫif} ≥
{
χ{Pf , ǫi},
χ{Pf , ǫf}.

Ic{Pi, ρi;EI} ≥ χ{Pf , ǫi} is Scutaru’s bound. Let us note that, by I(Ω)[ǫi(ω)] = ǫf(ω),

I(Ω)[ηi] = ηf , one gets immediately Sq(ǫi(ω)|ηi) ≥ Sq(ǫf(ω)|ηf) and

(67) χ{Pf , ǫi} ≥ χ{Pf , ǫf}.
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Let us give also a second compound state and some of its marginals:

(68)

Γ0123 := {qif(α, ω) ρi(α) ⊗ ρf(ω)}, Γ012 = {qi(α)ρi(α) ⊗ τf(α)},
Γ23 = {qf(ω)ρf(ω)}, Γ01 = {qi(α)ρi(α)}, Γ2 = {ηf},
Γ123 = {qf(ω) ηi(ω) ⊗ ρf(ω)}, Γ1 = {ηi}, Γ12 = {γif}.

As before we get the inequalities

(69) S(Γ0123|Γ01 ⊗ Γ23) ≥
{
S(Γ123|Γ1 ⊗ Γ23)

S(Γ012|Γ01 ⊗ Γ2)

}
≥ S(Γ12|Γ1 ⊗ Γ2),

(70) Ic{Pi, ρi;EI} ≥
{
χ{Pf , ǫi}
χ{Pi, τf}

}
≥ Sq(γif |ηi ⊗ ηf).

It is possible to obtain these inequalities also by constructing suitable channels and

by using the idea of the refinement of a channel [3].

4. Hall’s upper bound for Ic and generalizations. In [10] Hall exhibits a trans-

formation on the initial ensemble and on the POV measure which leaves invariant Ic but

not the initial χ-quantity and in this way produces a new upper bound on the classical

information. Inspired by Hall’s transformation, a new instrument can be constructed in

such a way that the analogous of inequality (48) produces an upper bound on Ic stronger

than both Hall’s and Holevo’s ones.

For simplicity in the following we assume that ηi has finite von Neumann entropy and

is invertible:

(71) ηi ∈ S(H1), Sq(ηi) < +∞, η−1
i ∈ L(H1).

All the traces will be over H1.

4.1. A new instrument J . Let us set

(72) M(α) :=
√
qi(α) ρi(α)1/2η

−1/2
i , G(α)[τ ] := M(α)τM(α)∗ , ∀τ ∈ T (H1);

by eq. (20) the operators M(α) satisfy the normalization condition

(73)

∫

A

ν(dα)M(α)∗M(α) = 1 .
Then, the position

(74) J (dα) := ν(dα)G(α)

defines an instrument from T (H1) into T (H1) with value space (A,A). The instrument

J has been constructed by using only the old initial ensemble {Pi, ρi}. The associated

POV measure is

(75) EJ (dα) = ν(dα)M(α)∗M(α) = Pi(dα) η
−1/2
i ρi(α)η

−1/2
i .

Now, we can construct the associated channel and a posteriori states, as in Section 2.

By looking at eq. (11) one has immediately

(76) ΛJ [τ ](α) = G(α)[τ ] = M(α)τM(α)∗, ∀τ ∈ T (H1)



78 A. BARCHIELLI AND G. LUPIERI

and by looking at eq. (18) one has that, for ρ ∈ S(H1),

(77) π̃ρ(α) :=

{
(Tr{M(α)∗M(α)ρ})−1M(α)ρM(α)∗ if Tr{M(α)∗M(α)ρ} > 0

ρ̃ (ρ̃ ∈ S(H1)) if Tr{M(α)∗M(α)ρ} = 0

is a family of a posteriori states for (ρ,J ). Let us stress that J sends pure states into

a.s. pure a posteriori states; therefore, by Theorem 3 one has

(78) Iq{ρ;J } ≡ Sq(ρ) −
∫

A

Tr{EJ (dα)ρ}Sq(π̃ρ(α)) ≥ 0, ∀ρ ∈ S(H1).

4.2. A new initial ensemble. Let {ψk} be a c.o.n.s. of eigenvectors of ηi, so that we

can write ηi =
∑

k ek|ψk〉〈ψk|, with ek > 0 and
∑

k ek = 1. As in Remark 6 one can

show that the complex measures 〈ψk|EI(dω)ψr〉 are absolutely continuous with respect

to Pf(dω) = Tr{ηiEI(dω)} =
∑

m em〈ψm|EI(dω)ψm〉; therefore the Radon-Nikodym

derivatives 〈ψk|EI(dω)ψr〉/Pf(dω) exist and the position

(79) σi(ω) :=
∑

kr

√
eker |ψk〉

〈ψk|EI(dω)ψr〉
Pf(dω)

〈ψr|

defines a family of statistical operators; in an abbreviated way we write

(80) σi(ω) = η
1/2
i

EI(dω)

Pf(dω)
η
1/2
i .

Now we consider {Pf , σi} as initial ensemble for J ; note that one gets

(81)

∫

Ω

Pf(dω)σi(ω) = ηi .

Let us consider now Holevo’s bound for the new set up:

(82) Ic{Pf , σi;EJ } ≤ χ{Pf , σi}.

The POV measure EJ and the states σi(ω) have been constructed just in order to have

(83) Tr{EJ (dα)σi(ω)} = Pi|f(dα|ω),

as it is easy to verify; this implies immediately

(84) Ic{Pf , σi;EJ } = Ic{Pi, ρi;EI}.

Therefore, we have

(85) Ic{Pi, ρi;EI} ≤ χ{Pf , σi} ≡
∫

Ω

Pf(dω)Sq(σi(ω)|ηi),

which is the “continuous” version of Hall’s bound (eq. (19) of [10]). This bound, in the

discrete case, is discussed also in [11, 14, 23].

4.3. The new upper bound for Ic. Having defined a new instrument and not only a POV

measure, we obtain from (48) the inequality

(86) χ{Pf , σi} ≥ Ic{Pi, ρi;EI} +

∫

A

Pi(dα)χ{Pf|i(•|α), π̃σi(•)(α)},
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which gives a stronger bound than Hall’s one (85). In order to render more explicit this

bound, it is convenient to start from the equivalent form (56), which now reads

(87) Iq{ηi;J } ≥ Ic{Pi, ρi;EI} +

∫

Ω

Pf(dω) Iq{σi(ω);J }.

By eqs. (72) and (77) we obtain π̃ηi
(α) = ρi(α); together with eqs. (78), (75), (37), this

gives

(88) Iq{ηi;J } = χ{Pi, ρi}.
Therefore, eq. (87) gives the new bound

(89) Ic{Pi, ρi;EI} ≤ χ{Pi, ρi} −
∫

Ω

Pf(dω) Iq{σi(ω);J };

let us stress that Iq{σi(ω);J } ≥ 0 because of eq. (78). More explicitly, by eqs. (75), (80),

(78), we have

(90)

∫

Ω

Pf(dω) Iq{σi(ω);J }

=

∫

Ω

Pf(dω)Sq(σi(ω)) −
∫

A×Ω

Pif(dα× dω)Sq(π̃σi(ω)(α)),

where σi(ω) is given by (80) and, by eqs. (72), (77), (80),

(91) π̃σi(ω)(α) = ρi(α)1/2 EI(dω)

Pf|i(dω|α)
ρi(α)1/2 ;

this last quantity is defined similarly to (79), by starting from the diagonalization of

ρi(α).

Let us stress that the upper bound in (89) involves the initial ensemble {Pi, ρi} and

the POV measure EI , not the full instrument I, while the bound (48) involves {Pi, ρi},
EI and also the a posteriori states of I. Both bounds (48) and (89) are stronger than

Holevo’s bound (49).
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