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Abstract. The coefficients of the moments of the monotone Poisson law are shown to be a type

of Stirling number of the first kind; certain combinatorial identities relating to these numbers

are proved and a new derivation of the Cauchy transform of this law is given. An investigation is

begun into the classical Azéma-type martingale which corresponds to the compensated monotone

Poisson process; it is shown to have the chaotic-representation property and its sample paths

are described.

1. Introduction. If X is a random variable distributed according to the monotone

Poisson law, i.e., Muraki’s monotonic law of small numbers [16, Section 4], with mean

t > 0 then [4, Section 4]

(1) E[Xn+1] = t +
n∑

m=1

( ∑

26j1<···<jm6n+1

j1 · · · jm

) tm+1

(m + 1)!
∀n > 1.

The coefficients appearing in (1) are shown below to be a type of generalized Stirling

number. Using a method of proof from our earlier work, closed forms for exponential

generating functions of such Stirling numbers are derived; it seems these have appeared

previously in the literature only for sporadic examples [19]. The Cauchy transform for

the monotone Poisson law, found by Muraki in [16], is derived in a novel manner from

the recurrence relation satisfied by the moment coefficients.

In [4] the monotone Poisson process was realised as a vacuum-adapted semimartingale;

the corresponding regular quantum semimartingale, i.e., its HP-adapted projection [3],

is used to construct a classical semimartingale y = (yt)t>0 distributed according to the

monotone Poisson law. It is shown that yt = xt + t for all t > 0, where x is a normal

martingale (the compensated monotone Poisson process) which satisfies the structure

equation

(2) x0 = 0, d[x]t = (1 − t − xt−) dxt + dt ∀ t > 0.
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This martingale x is shown to have the chaotic-representation property and to be purely

discontinuous, with sample paths as follows: if gt := sup{s ∈ [0, t] : xs = 1− s} is the last

time up to t that xs = 1 − s then

xt = −W•(− exp(−1 − t + gt)) − t ∀ t > 0,

where W• is one of the two real branches of the Lambert W function (i.e., the multi-

valued inverse to the function z 7→ zez). A numerical simulation is employed to produce

approximations to these paths.

1.1. Notation. The set of natural numbers is denoted by N and equals {1, 2, 3, . . .}; the

set of non-negative integers is denoted by Z+ and equals {0, 1, 2, . . .}. If {fα : α ∈ A}
is a collection of real-valued functions with common domain Ω then σ(fα : α ∈ A) is

the smallest σ-algebra on Ω to make each function measurable. If A is a subset of some

algebra then the subalgebra that it generates is denoted by alg A.

1.2. Conventions. An empty sum equals 0; an empty product equals 1. A function

f : A → B has domain Dom f = A and range Ran f = f(A) ⊆ B. The binomial co-

efficient
( n

m

)
equals 0 if m < 0.

2. A recurrence relation

Definition 1. For all a ∈ Z+ define
∣∣∣

∣∣∣
a
: N × N → Z+; (n, m) 7→

∣∣∣ n

m

∣∣∣
a

by setting
∣∣∣n
1

∣∣∣
a

= 1 for all n ∈ N,
∣∣∣ n

m

∣∣∣ = 0 if m > n and by using the recurrence relation

(3)
∣∣∣ n + 1

m + 1

∣∣∣
a

=
∣∣∣ n

m + 1

∣∣∣
a

+ (n − 1 + a)
∣∣∣ n

m

∣∣∣
a

∀n, m ∈ N.

These numbers are generalized Stirling numbers of the first kind ; this terminology is

justified by Remark 5 and Remark 6 below.

Proposition 2. The function
∣∣∣

∣∣∣
a

is well defined for all a ∈ Z+ and satisfies

∣∣∣n
n

∣∣∣
a

=

n−2∏

j=0

(j + a) =

{
δn
1 if a = 0,

(n − 2 + a)!/(a − 1)! if a ∈ N,

for all n ∈ N, where δ is the Kronecker delta (δa
b = 1 if a = b and 0 otherwise).

Proof. Induction.

The recurrence relation (3) and the boundary conditions provide a quick method for

the computation of
∣∣∣

∣∣∣
a
; a range of values for

∣∣∣
∣∣∣
2

is given in Table 1.

Proposition 3. ∣∣∣ n + 1

m + 1

∣∣∣
a

=
∑

a6j1<···<jm6n−1+a

j1 · · · jm

for all n, m ∈ N, where the summation is taken over integral j1, . . . , jm.
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n
m

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0

2 1 2 0 0 0 0 0 0 0 0

3 1 5 6 0 0 0 0 0 0 0

4 1 9 26 24 0 0 0 0 0 0

5 1 14 71 154 120 0 0 0 0 0

6 1 20 155 580 1044 720 0 0 0 0

7 1 27 295 1665 5104 8028 5040 0 0 0

8 1 35 511 4025 18424 48860 69264 40320 0 0

9 1 44 826 8624 54649 214676 509004 663696 362880 0

10 1 54 1266 16884 140889 761166 2655764 5753736 6999840 3628800

Table 1.
∣∣∣ n

m

∣∣∣
2

for n, m = 1, . . . , 10.

Proof. Define fa : N × N → Z+ by setting fa(n, 1) = 1 for all n ∈ N and

fa(n + 1, m + 1) =
∑

a6j1<···<jm6n−1+a

j1 · · · jm ∀n, m ∈ N;

note that fa(n, m) = 0 if m > n. Furthermore, if n, m ∈ N are such that 2 6 m 6 n then

fa(n + 1, m + 1) =
∑

a6j1<···<jm6n−2+a

j1 · · · jm +
∑

a6j1<···<jm−16n−2+a

j1 · · · jm−1(n − 1 + a)

= fa(n, m + 1) + (n − 1 + a)fa(n, m);

this identity also holds if m > n or m = 1:

fa(n + 1, m + 1) = 0 = 0 + 0 = fa(n, m + 1) + fa(n, m) ∀m > n

and

fa(n + 1, 2) =

n−1+a∑

j1=a

j1 = fa(n, 2) + (n − 1 + a) = fa(n, 2) + (n − 1 + a)fa(n, 1).

Thus fa and
∣∣∣

∣∣∣
a

both satisfy the recurrence relation (3), with the same boundary

conditions; the result follows.

Corollary 4. If X is a random variable with the monotone Poisson distribution and

mean t > 0 then

E[Xn] =
∞∑

m=1

∣∣∣ n

m

∣∣∣
2

tm

m!
∀n ∈ N.

Proof. This is immediate from Proposition 3 and (1).

The definition of
∣∣∣

∣∣∣
2

extends to Z+ × Z+ by setting
∣∣∣0
0

∣∣∣
2

= 1 and
∣∣∣n
0

∣∣∣
2

=
∣∣∣ 0

n

∣∣∣
2

= 0

for all n ∈ N; the identity (3) holds for all n, m ∈ Z+ and, in the notation of Corollary 4,

E[Xn] =
∞∑

m=0

∣∣∣ n

m

∣∣∣
2

tm

m!
∀n ∈ Z+.
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Remark 5. By Proposition 3, if n ∈ N then

n−1∏

j=0

(x + j + a) = xn +

n∑

m=1

( ∑

a6j1<···<jm6n−1+a

j1 · · · jm

)
xn−m =

n∑

m=0

∣∣∣ n + 1

m + 1

∣∣∣
a
xn−m.

Hence, in the notation of Mitrinović [15] (who appears to have been the first to study

such numbers),
∣∣∣ n + 1

m + 1

∣∣∣
a

= Rn−m
n (−a,−1) = (−1)n−mRn−m

n (a, 1) ∀n ∈ N, m = 0, . . . , n.

In terms of Broder’s r-Stirling numbers of the first kind [5],
∣∣∣ n + 1

m + 1

∣∣∣
a

=
[ n + a

n + a − m

]
a

∀n, m ∈ Z+

and, in the unified approach of Hsu and Shiue [12],
∣∣∣ n + 1

m + 1

∣∣∣
a

= S1(n, n − m;−1, 0, a) = R1(n, n − m, a) ∀n ∈ Z+, m = 0, . . . , n,

where R1(n, k, λ) is the r-Stirling polynomial of the first kind due to Carlitz [6, 7].

Remark 6. If
[ ]

denotes the unsigned Stirling numbers of the first kind, following

Karamata via Graham, Knuth and Patashnik [10], then
[ n

m

]
=

∣∣∣ n + 1

n + 1 − m

∣∣∣
0

∀n ∈ Z+, m ∈ Z∩] −∞, n].

Gupta [11, Chapter 5] introduces numbers G(n, m) such that G(n, m) =
∣∣∣ n + 1

m + 1

∣∣∣
1

for

all n, m ∈ Z+. Since

n+1∑

m=0

∣∣∣ n + 2

m + 1

∣∣∣
0
xn+1−m =

n∏

j=0

(x + j) = x
n−1∏

j=0

(x + j + 1) =
n∑

m=0

∣∣∣ n + 1

m + 1

∣∣∣
1
xn+1−m ∀n ∈ N,

∣∣∣ n + 2

m + 1

∣∣∣
0

=
∣∣∣ n + 1

m + 1

∣∣∣
1

for all n ∈ N and all m ∈ Z+ with m 6 n. It is readily verified that

this identity holds for all n, m ∈ Z+ and

G(n, m) =
∣∣∣ n + 1

m + 1

∣∣∣
1

=
∣∣∣ n + 2

m + 1

∣∣∣
0

=
[ n + 1

n + 1 − m

]
,

i.e., Gupta’s numbers are unsigned Stirling numbers of the first kind.

A result of Mitrinović [15, (1.4)] implies that

∣∣∣ n

m

∣∣∣
a

=
m−1∑

j=0

∣∣∣ n

m − j

∣∣∣
0

(n − m + j

n − m

)
aj ∀ a ∈ Z+.

The following transformation theorem is a generalization of this result.

Theorem 7. If a, b ∈ Z+ then

∣∣∣ n

m

∣∣∣
a

=

m−1∑

j=0

∣∣∣ n

m − j

∣∣∣
b

(n − m + j

n − m

)
(a − b)j ∀n, m ∈ N.
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Proof. If n ∈ N then, by Remark 5,

n−1∏

j=0

(x + j + b) =

n∑

m=0

∣∣∣ n + 1

m + 1

∣∣∣
b
xn−m =

n∑

l=0

∣∣∣ n + 1

n + 1 − l

∣∣∣
b
xl

and so, since x + j + a = (x + a − b) + j + b,

n−1∏

j=0

(x + j + a) =

n∑

l=0

∣∣∣ n + 1

n + 1 − l

∣∣∣
b
(x + a − b)l

=
n∑

l=0

∣∣∣ n + 1

n + 1 − l

∣∣∣
b

l∑

m=0

( l

m

)
(a − b)l−mxm

=
n∑

m=0

n∑

l=m

∣∣∣ n + 1

n + 1 − l

∣∣∣
b

( l

m

)
(a − b)l−mxm.

Hence, if m ∈ Z+ is such that 0 6 m 6 n,

∣∣∣ n + 1

n + 1 − m

∣∣∣
a

=

n∑

l=m

∣∣∣ n + 1

n + 1 − l

∣∣∣
b

( l

m

)
(a − b)l−m

=

n−m∑

j=0

∣∣∣ n + 1

n + 1 − m − j

∣∣∣
b

(m + j

m

)
(a − b)j

and the result follows. (The cases m > n and m = n = 1 are verified immediately upon

inspection.)

Remark 8. Theorem 7, with b = 0, and Remark 6 yield the identities

∣∣∣n + k + 1

n + 1

∣∣∣
a

=

n∑

j=0

[n + k

j + k

]( j + k

k

)
aj ∀n, k, a ∈ Z+,

which correspond, in the cases a = 2, . . . , 4, k = 1, . . . , 4 (and k = 5 if a = 2) to formulae

[19, A001705–A001709, A001711–A001714, A001716–A001719, A001721–A001724] given

by Crstici.

3. Generating functions. Recall that the exponential generating function for a se-

quence (bn)n>0 is the function determined by the power series
∑∞

n=0 bnzn/n!.

Definition 9. For all a ∈ Z+ define

ga,n(w) :=
∞∑

m=1

∣∣∣ n

m

∣∣∣
a

wm

m!
=

n∑

m=1

∣∣∣ n

m

∣∣∣
a

wm

m!
∀n ∈ N, w ∈ C.

Note that ga,n(0) = 0, ga,1(w) = w and

ga,n+1(w) = w +

∞∑

m=2

∣∣∣n + 1

m

∣∣∣
a

wm

m!
= w +

∞∑

m=2

∣∣∣ n

m

∣∣∣
a

wm

m!
+ (n − 1 + a)

∞∑

m=2

∣∣∣ n

m − 1

∣∣∣
a

wm

m!
,

so

(4) (ga,n+1 − ga,n)′ = (n − 1 + a)ga,n ∀n ∈ N.
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Theorem 10. If a ∈ N and

(5) ha,n(w, z) :=
1

n!

(
∂

∂z

)n−1
(w − log(1 − z))n

(1 − z)a
(w ∈ C, |z| < 1)

for all n ∈ N (where log denotes the principal branch of the natural logarithm) then

ga,n(w) = ha,n(w, 0) for all n ∈ N and all w ∈ C.

Proof. Note first that ha,1(w, 0) = w and [10, (5.56)]

(6)
1

(1 − z)a
=

∞∑

l=0

( l + a − 1

a − 1

)
zl (|z| < 1).

Next, letting ∂m
z := ∂m

∂zm et cetera,

nha,n(w, z) =
1

(n − 1)!

n−1∑

m=0

(n − 1

m

)
∂m

z (w − log(1 − z))n∂n−1−m
z

∞∑

l=0

( l + a − 1

a − 1

)
zl

=

n−1∑

m=0

1

m!
jm,n(w, z)

((n − m + a − 2

a − 1

)
+ (n − m)

(n − m + a − 1

a − 1

)
z + · · ·

)

=

n−1∑

m=0

(n − m + a − 2)!

m!(n − m − 1)!
jm,n(w, z)(1 + (n − m + a − 1)z + · · · ),

where jm,n(w, z) = ∂m
z (w − log(1 − z))n and the ellipses denote a term of order z2. If

ra,n := ∂w(ha,n+1 − ha,n) − (n − 1 + a)ha,n = (∂z − ∂w − (n − 1 + a))ha,n

then

nra,n(w, 0) =

n−1∑

m=0

(n − m − 2 + a)!

m!(n − m − 1)!
(jm+1,n(w, 0) − njm,n−1(w, 0) − mjm,n(w, 0))

but jm+1,n(w, 0) = mjm,n(w, 0) + njm,n−1(w, 0) [4, Proof of Proposition 4.1] and so

ra,n(w, 0) = 0 for all w ∈ C and all n ∈ N. Thus the differential equation (4) is satisfied,

with ga,n replaced by w 7→ ha,n(w, 0) et cetera; as ha,n(0, 0) = 0 for all n ∈ N, because

jm,n(0, 0) = 0 if 0 6 m < n [4, Proof of Proposition 4.1], the result follows.

Lemma 11. Given any a, k ∈ Z+ not both zero, the power series

(7)

∞∑

n=1

∣∣∣n + k

n

∣∣∣
a

zn

n!

has radius of convergence 1. If a = k = 0, the series (7) equals z.

Proof. If a ∈ N then, by Proposition 3,

(n + k

n

) n−1+a∏

j=a

j 6

∣∣∣n + 1 + k

n + 1

∣∣∣
a

=
∑

a6j1<···<jn6n+k−1+a

j1 · · · jn 6

(n + k

n

) n+k−1+a∏

j=k+a

j

for all k ∈ Z+ and all n ∈ N, so if

bn :=
1

n!

(n − 1 + k

n − 1

) n−2+a∏

j=a

j =
(n − 1 + k

n − 1

) (n − 2 + a)!

n!(a − 1)!
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and

cn :=
1

n!

(n − 1 + k

n − 1

) n+k−2+a∏

j=k+a

j =
(n − 1 + k

n − 1

) (n + k − 2 + a)!

n!(k − 1 + a)!

then bn 6
1

n!

∣∣∣n + k

n

∣∣∣ 6 cn for all n ∈ N; the result follows by the ratio and comparison

tests. If a = 0 then, since
∣∣∣ n + 2

m + 1

∣∣∣
0

=
∣∣∣ n + 1

m + 1

∣∣∣
1

for all n, m ∈ Z+ (Remark 6),

∞∑

n=1

∣∣∣n + k

n

∣∣∣
0

zn

n!
=

∞∑

n=1

∣∣∣n + k − 1

n

∣∣∣
1

zn

n!

has radius of convergence 1 for all k ∈ N; the final case follows from Proposition 2.

The next result was proved by Broder [5, Theorem 15] using combinatorial methods.

Corollary 12. Given any a, k ∈ N, the exponential generating function for the sequence

(bn)n>0, where b0 = 0 and bn =
∣∣∣n + k

n

∣∣∣
a

for all n ∈ N, equals

1

k!

(
d

dz

)k−1
(− log(1 − z))k

(1 − z)a
(|z| < 1).

Proof. If n, k ∈ N then Theorem 10 implies that

∣∣∣n + k

n

∣∣∣
a

=

(
∂

∂w

)n
1

(n + k)!

(
∂

∂z

)n+k−1
(w − log(1 − z))n+k

(1 − z)a

∣∣∣∣
z=0, w=0

=
1

(n + k)!

(
d

dz

)n+k−1
(n + k)!

k!

(− log(1 − z))k

(1 − z)a

∣∣∣∣
z=0

=

(
d

dz

)n(
1

k!

(
d

dz

)k−1
(− log(1 − z))k

(1 − z)a

)∣∣∣∣
z=0

,

as required.

Amusingly, Corollary 12 is also true for k = 0, if (d/dz)−1 is interpreted as integration.

More precisely, if a ∈ N then, by Proposition 2,
∞∑

n=1

∣∣∣n
n

∣∣∣
a

zn

n!
=

∞∑

m=0

(m + a − 1

a − 1

) ∫ z

0

wm dw =

∫ z

0

1

(1 − w)a
dw,

where the second equality follows from (6). Hence

(8)

∞∑

n=1

∣∣∣n
n

∣∣∣
a

zn

n!
=





z if a = 0,

− log(1 − z) if a = 1,

1

a − 1

(
1

(1 − z)a−1
− 1

)
if a > 2.

Remark 13. By Remark 6, Corollary 12 and (8), if k > 2 then

∞∑

n=1

∣∣∣n + k

n

∣∣∣
0

zn

n!
=

∞∑

n=1

∣∣∣n + k − 1

n

∣∣∣
1

zn

n!
=

1

(k − 1)!

(
d

dz

)k−2
(− log(1 − z))k−1

1 − z
,
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∞∑

n=1

∣∣∣n + 1

n

∣∣∣
0

zn

n!
=

∞∑

n=1

∣∣∣n
n

∣∣∣
1

zn

n!
= − log(1 − z) and

∞∑

n=1

∣∣∣n
n

∣∣∣
0

zn

n!
= z.

If k ∈ Z+ then, by Remark 6,
∞∑

n=1

∣∣∣n + k

n

∣∣∣
0

zn

n!
=

∞∑

n=1

[n + k − 1

k

]zn

n!
=

∫ z

0

∞∑

m=0

[m + k

k

]wm

m!
dw

and so [10, (7.50)]
∞∑

n=0

[n + k

k

]zn

n!
=

1

k!

(
d

dz

)k

(− log(1 − z))k ∀ k ∈ Z+.

4. A Cauchy transform. If X is a random variable distributed according to the mea-

sure µ then the Cauchy transform (or Cauchy-Stieltjes transform) of X is

GX : C \ supp µ → C; z 7→
∫

supp µ

dµ(x)

z − x
.

This function is holomorphic on C \ supp µ and, if supp µ ⊆ [a, b],

GX(z) =
1

z

∫ b

a

∞∑

n=0

xn

zn
dµ(x) =

∞∑

n=0

E[Xn]z−n−1 (|z| > max{|a|, |b|}).

Lemma 14. If m ∈ N then the series
∞∑

n=1

∣∣∣ n

m

∣∣∣
2
z−n−1

is absolutely convergent for all z ∈ C such that |z| > 1 and, in that region, has sum

Fm(z) =

(
z

1 − z

d

dz

)m−1
1

z(z − 1)
.

The double series
∞∑

m=1

∞∑

n=1

∣∣∣ n

m

∣∣∣
2
z−n−1 wm

m!

is absolutely convergent in {(z, w) ∈ C2 : |z|1/2 > 1 + |w|1/2}.
Proof. Since

∣∣∣n
1

∣∣∣
2

= 1 for all n ∈ N, the case m = 1 is immediate. If m ∈ N then (working

as in the proof of Lemma 11)

(9)
( n

m

) (m + 1)!

1!
6

∣∣∣ n + 1

m + 1

∣∣∣
2

6

( n

m

) (n + 1)!

(n + 1 − m)!
∀n > m

and the ratio and comparison tests yield convergence as claimed. Furthermore,

Fm+1(z) :=
∞∑

n=m+1

∣∣∣ n

m + 1

∣∣∣
2
z−n−1 =

∞∑

n=m+1

(∣∣∣ n − 1

m + 1

∣∣∣
2

+ n
∣∣∣n − 1

m

∣∣∣
2

)
z−n−1

=
∞∑

l=m

∣∣∣ l

m + 1

∣∣∣
2
z−l−2 −

∞∑

n=m+1

∣∣∣n − 1

m

∣∣∣
2

d

dz
z−n

= z−1Fm+1(z) − F ′
m(z)
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and so

Fm+1(z) =
z

1 − z
F ′

m(z) = · · · =

(
z

1 − z

d

dz

)m

F1(z) (|z| > 1).

For the final claim, note that, by (9), if m ∈ N and |z| > 1 then

N∑

n=1

∣∣∣ n

m

∣∣∣
2
|z|−n−1 |w|m

m!
6

N∑

n=m

( n

m

)2 m

n(n + 1 − m)
|z|−n−1|w|m

6

( ∞∑

n=m

( n

m

)
|z|−(n+1)/2

)2

|w|m = (|z|1/2 − 1)−2(m+1)|w|m

for all m > N ; the last step follows from (6). The result follows by the comparison test.

Definition 15. The Lambert W function (also known as the product logarithm) is the

multi-valued inverse to the map w 7→ wew. Following the conventions of Corless et al. [8],

the branch

W̃ : z 7→
{

W−1(z) if z = −e−1 + reiθ (r > 0, θ ∈]0, π])

W0(z) if z = −e−1 + reiθ (r > 0, θ ∈]π, 2π])

is holomorphic on C\ [−e−1,∞[ and has range containing Π− := {z ∈ C : Im z ∈]−π, 0[}.
Theorem 16. If X is a random variable with monotone Poisson distribution and mean

t > 0, the Cauchy transform of X equals

z 7→ −1

W̃ (−zet−z)
∀ z ∈ Π+ := {z ∈ C : Im z ∈]0, π[},

where W̃ is the branch of the Lambert W function given in Definition 15.

Proof. The function

g : Dom g := {x + iy : x ∈ R, |y| < π} → {x cotx + iy : |y| < x < π} \ [0, 1[;

z 7→ −W0(e
z)

is a holomorphic bijection and

g′(z) = −ezW ′
0(e

z) =
−eze−W0(e

z)

1 + W0(ez)
=

−W0(e
z)

1 − (−W0(ez))
=

g(z)

1 − g(z)
∀ z ∈ Dom g.

If h(z) := z/(1 − z) then h ◦ g = g′ and the chain rule implies that

d

dz
◦ cg = mg′ ◦ cg ◦ d

dz
⇔ d

dz
◦ cg = cg ◦ mh ◦ d

dz
⇔ cg−1 ◦ d

dz
◦ cg = mh ◦ d

dz
,

where mh : f 7→ fh and cg : f 7→ f ◦ g; the above holds when applied to any holomorphic

function with domain including the range of g (which does not include 0 or 1). Hence,

by Lemma 14,

Fm(z) =

(
z

1 − z

d

dz

)m−1
1

z(z − 1)
=

dm−1

dwm−1

1

g(w)(g(w) − 1)

∣∣∣∣
w=g−1(z)

= (1/g)(m)(g−1(z))

for all z ∈ Ran g such that |z| > 1; note that

1

g(z)(g(z) − 1)
= −g′(z)/g(z)2 = (1/g)′(z) ∀ z ∈ Dom g.
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Fix z ∈ Ran g such that |z|1/2 > 1 + t1/2 and let ε > 0 be such that g−1(z) + w ∈ Dom g

for all w ∈ C such that |w| < ε; suppose further that ε1/2 < |z|1/2 − 1. By Taylor’s

theorem and Lemma 14, if |w| < ε then

1

g(g−1(z) + w)
=

1

z
+

∞∑

m=1

(1/g)(m)(g−1(z))
wm

m!
=

1

z
+

∞∑

m=1

∞∑

n=1

∣∣∣ n

m

∣∣∣
2
z−n−1 wm

m!
.

As the first and last functions above are holomorphic functions of w in

{w ∈ C : g−1(z) + w ∈ Dom g} and {w ∈ C : |w|1/2 < |z|1/2 − 1},
respectively, and agree on {w ∈ C : |w| < ε}, which lies in their intersection, they agree

at t. Thus

−1

W0(−zet−z)
=

1

g(g−1(z) + t)
=

1

z
+

∞∑

m=1

∞∑

n=1

∣∣∣ n

m

∣∣∣
2
z−n−1 tm

m!
= GX(z)

for all z ∈ Ran g such that |z|1/2 > 1+t1/2, where the exchange of the order of summation

which yields the last equality is a consequence of absolute convergence. Finally, GX is

holomorphic on C\R and z 7→ −1/W̃ (−zet−z) is holomorphic on Π+; a short calculation

shows that if z ∈ Π+ then −zet−z ∈ Dom W̃ and

−1

W̃ (−zet−z)
=

−1

W0(−zet−z)
∀ z ∈ Ran g ∩ {z ∈ C : Im z > 0}.

Since GX and z 7→ −1/W0(−zet−z) agree on {z ∈ Ran g : |z|1/2 > 1 + t1/2} and this set

meets Π+, the result follows.

The following is contained in [16, Theorem 4.1] and may be proved, as it is there, by

employing the Stieltjes inversion formula; the fact that the monotone Poisson distribution

has an atom only at the origin will be useful later.

Corollary 17. If X is a random variable distributed according to the monotone Poisson

law with mean t > 0 then

P(X ∈ A) = e−tδ0(A) +
1

π

∫

A∩]a,b[

Im
1

W−1(−xet−x)
dx

for any measurable set A ⊆ R, where δ0 is the Dirac measure which is supported at 0,

a = −W0(−e−(1+t)) and b = −W−1(−e−(1+t)).

5. The classical process. It is well known [3, Section 4.4] that monotone Brownian

motion corresponds, via the isomorphism between quantum semimartingale algebras, to

Azéma’s martingale, i.e., the classical normal martingale m = (mt)t>0 which satisfies the

structure equation

m0 = 0, d[m]t = −mt− dmt + dt.

A similar correspondence holds for the monotone Poisson process.

Theorem 18. The quantum stochastic differential equation

(10) Y0 = 0, dY = (I − Y ) dΛ + dA + dA† + dt
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has a unique solution in the class of HP-adapted processes acting on exponential domains;

this solution consists of commuting, self-adjoint operators such that ‖Yt‖ 6 (1+
√

t)2 and,

in the vacuum state, Yt obeys the monotone Poisson law with mean t, for all t > 0.

Proof. If P = (Pt)t>0 is the Ω-adapted process such that

Pt =

∫ t

0

Es( dΛs + dAs + dA†
s + ds) ∀ t > 0,

where E is the conditional-expectation process in Boson Fock space, then Y := π̂(P ),

the HP-adapted projection of P , satisfies (10) [3, Corollary 31]; alternatively, Y can be

viewed as the image of the Poisson process under Attal’s D transform [2]. As P is clearly

bounded and self-adjoint, so is Y , and

‖Yt‖ = ‖Pt‖ 6 ‖E‖∞,t + 2‖E‖2,t + ‖E‖1,t = 1 + 2
√

t + t ∀ t > 0.

Since Yt and Pt have the same moments in the vacuum state, [4, Corollary 4.1] gives the

claim about the distribution of Yt.

For uniqueness, if X is a solution of (10) which acts on some exponential domain E0

then

(X − Y )0 = 0, d(X − Y ) = −(X − Y ) dΛ on E0;

as is well known, this equation admits only the zero process as a solution. Finally, if s > 0

is fixed and Xt := Ymin{s,t} for all t > 0 then the quantum Itô formula yields

d(XY − Y X) = −(XY − Y X) dΛ,

so (XY − Y X)t = 0 for all t > 0 and commutativity follows.

Lemma 19. If M and N are regular quantum semimartingales and t > 0 then
∫ t

0

Ms dNs = lim
n→∞

n∑

i=1

Mtn

i−1
(Ntn

i
− Ntn

i−1
)

strongly on exponential vectors, where 0 = tn0 < tn1 < · · · < tnn = t for all n > 1 are such

that sup{tni − tni−1 : i = 1, . . . , n} → 0 as n → ∞.

Proof. If dN = E dΛ + F dA + G dA† + H dt, M
(n)
t := Mtn

i−1
for t ∈ [tni−1, t

n
i [ (where

i = 1, . . . , n) and f ∈ L2(R+) then [14, VI.1(6.7),(7.4),(7.8)] there exists a constant Cf

such that, for all t > 0,
∥∥∥∥

∫ t

0

(Ms − M (n)
s ) dNsε(f)

∥∥∥∥
2

6 Cf

∫ t

0

(|f(s)|2‖(Ms − M (n)
s )Esε(f)‖2 + ‖(Ms − M (n)

s )Fsε(f)‖2

+ ‖(Ms − M (n)
s )Gsε(f)‖2) ds + 2

( ∫ t

0

‖(Ms − M (n)
s )Hsε(f)‖ ds

)2

→ 0

as n → ∞, by the dominated-convergence theorem; recall that R+ ∋ t 7→ Mt is strongly

continuous on the whole of Fock space. The result follows because

X

∫ t

s

dNr ε(f) =

∫ t

s

X dNr ε(f) ∀X ∈ B(Hs)
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if 0 6 s 6 t (where Hs denotes Boson Fock space up to time s); this is immediate when

E, F , G and H are step functions and approximation with such yields the general case.

Lemma 20. If (Ω,F , P) is a probability space, (zt : Ω → R)t>0 a family of bounded,

F-measurable functions and (Ft := σ(zs : 0 6 s 6 t))t>0 their natural filtration then

alg{1, zs : 0 6 s 6 t} is dense in L2(Ft) for all t > 0.

Proof. If f ∈ L2(Ft) then there exists (tn)n>1 such that f ∈ L2(σ(ztn
: n > 1)); let

Gn := σ(ztm
: 1 6 m 6 n) and note that E[f |Gn] → f as n → ∞ (almost surely and

in the L2 sense). Hence it suffices to prove that An := alg{1, ztm
: 1 6 m 6 n} is dense

in L2(Gn); fix (α1, . . . , αn) ∈ Rn and let (pk)k>1 be a sequence of polynomials such that

pk(x1, . . . , xn) → exp(−i(α1x1 + · · · + αnxn)) locally uniformly on Rn. If g ∈ L2(Gn) is

orthogonal to An then g = h(zt1 , . . . , ztn
) for some Borel-measurable function h : Rn → C

and

0 = E[gpk(zt1 , . . . , ztn
)] → E[g exp(−i(α1zt1 + · · ·+αnztn

))] =

∫

Rn

h(x) exp(−iα ·x) dν(x),

where ν is the distribution of (zt1 , . . . , ztn
); the result follows from the injectivity of the

Fourier transform.

Theorem 21. There exists a martingale x = (xt)t>0 (with respect to a filtration satisfy-

ing the usual conditions) which satisfies the structure equation

(11) x0 = 0, d[x]t = (1 − t − xt−) dxt + dt;

this process x is unique in law and has the chaotic-representation property.

Proof. Identify A, the unital C∗ algebra generated by the family of operators {Yt : t > 0}
from Theorem 18, with C(∆), where ∆ is a compact Hausdorff space, via the Gelfand map

A 7→ Â. If Ω denotes the vacuum vector then Â 7→ 〈Ω, AΩ〉 is a positive linear functional

on C(∆) and the Riesz-Markov-Kakutani theorem yields a unique regular Borel measure

µ on ∆ such that

〈Ω, AΩ〉 =

∫

∆

Âdµ ∀A ∈ A;

since ‖Ω‖ = 1, µ is a probability measure. Thus if Xt := Yt − t then (x◦
t := X̂t)t>0 is a

family of square-integrable random variables on the probability space (∆,B, µ) (where B
is the Borel σ-algebra of ∆).

Let F◦
t denote the σ-algebra generated by {x◦

s : 0 6 s 6 t}, so that (x◦
t )t>0 is adapted

to the filtration (F◦
t )t>0. Since Es(Yt − t)Es = (Ys − s)Es and EsYrEs = YrEs for all

t > s > r > 0, if Ẑ = z ∈ alg{1, x◦
r : 0 6 r 6 s} then EsZEs = ZEs and

∫

∆

z̄(x◦
t − x◦

s) dµ = 〈ZΩ, (Yt − t − Ys + s)Ω〉 = 〈ZΩ, Es(Yt − t − Ys + s)EsΩ〉 = 0

if t > s > 0. Thus (by Lemma 20) E[x◦
t |F◦

s ] = x◦
s and (x◦

t )t>0 is a (F◦
t )t>0-martingale

such that E[(x◦
t )

2] = 〈Ω, X2
t Ω〉 = t for all t > 0, by the quantum Itô formula (or (1)).

Furthermore, E[(x◦
t − x◦

s)
2] = t − s so t 7→ x◦

t is L1-continuous; in particular, it has

a modification (xt)t>0 with càdlàg paths [18, Proposition II.67.6 and Theorem II.66.2]

which is a martingale in the filtered probability space (Ω,F , P, (Ft)t>0), the µ-completion
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of (∆,B, µ) equipped with the usual augmentation of (F◦
t )t>0 (which is right continuous

and such that F0 is P-complete) [18, Definition II.67.3].

The quantum Itô formula also implies that X2
t = Xt +

∫ t

0
(Xs−s) dXs + t for all t > 0,

so if z = Ẑ ∈ Â = C(∆) and t > 0 then, by Lemma 19,
∫

∆

z̄(x2
t − xt − t) dP = 〈ZΩ, (X2

t − Xt − t)Ω〉

= lim
n→∞

〈ZΩ,
n∑

i=1

(Xtn

i−1
− tni−1)(Xtn

i
− Xtn

i−1
)Ω〉

= lim
n→∞

∫

∆

z̄
n∑

i=1

(xtn

i−1
− tni−1)(xtn

i
− xtn

i−1
) dP

=

∫

∆

z̄

∫ t

0

(xs− − s) dxs dP;

since C(∆) is dense in L2(P), x2
t − xt − t =

∫ t

0
(xs− − s) dxs and (xt)t>0 is a normal

martingale which satisfies the structure equation as claimed.

The other results follow from [9, Lemma 7] (with f(t) = 1− t and g(s, t) = −1 for all

s, t > 0), working as in [9, Proof of Proposition 6].

Remark 22. The existence of a solution to (11) also follows from a much more general

result of Taviot [20, Chapitre 4], which uses completely classical methods.

Lemma 23. The martingale x is purely discontinuous.

Proof. Note that, as xc
t =

∫ t

0
1{xs−=1−s} dxs [9, Proposition 1(ii)],

E[[xc]t] = E[

∫ t

0

1{xs−=1−s} ds] =

∫ t

0

P(xs = 1 − s) ds = 0;

this holds since {s : xs−(ω) 6= xs(ω)} is countable almost surely and P(xs = y) is non-zero

if and only if y = −s (note that xs + s is distributed according to the monotone Poisson

law, which is atomic only at 0 by Corollary 17). Thus xc ≡ 0, as claimed.

Theorem 24. If (xt)t>0 is as in Theorem 21 and yt := xt + t then (yt)t>0 is such that

∆yt := yt − yt− ∈ {0, 1 − yt−} for all t > 0. If

gt := sup{s ∈ [0, t] : ys = 1} ∈ {−∞}∪]0, t]

is the last time up to t that y hits 1 then

(12) yt = −W•(− exp(−1 − t + gt)) ∀ t > 0,

where W• equals W0 or W−1 (Definition 15), so yt ∈ [0, 1] or yt ∈ [1,∞[, respectively.

Proof. The statement about jumps follows from [9, Proposition 1(i)], or directly from the

equation

d[y]t = (1 − yt−) dyt + yt− dt;

this (and the identity y2
t = 2

∫ t

0
ys− dys + [y]t) also implies that

(yt − 1)2 = 1 + 2

∫ t

0

ys− ds − [y]t ∀ t > 0.
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As (12) is clear for t = 0, let t > 0 and fix ω ∈ Ω (which will be omitted in what follows,

for the sake of brevity). If gt = −∞ then ys 6= 1 for all s ∈ [0, t], so ∆ys = 0 for all

s ∈ ]0, t] and y is continuous on [0, t]. As x is purely discontinuous, by Lemma 23,

[y]t = [x]t =
∑

0<s6t

∆x2
s =

∑

0<s6t

∆y2
s = 0,

whence

(ys − 1)2 = 1 + 2

∫ s

0

yr dr ∀ s ∈ [0, t].

If s ∈ [0, t] then ys 6= 1, so yr + ys 6= 2 for all r sufficiently near s and

yr − ys

r − s
=

(yr − 1)2 − (ys − 1)2

(yr + ys − 2)(r − s)
=

2

(yr + ys − 2)(r − s)

∫ r

s

yu du → ys

ys − 1

as r → s. Hence dys/ds = ys/(ys − 1) for all s ∈ [0, t] (taking one-sided derivatives at

s = 0 and s = t); from the initial condition y0 = 0 it follows that y ≡ 0 on [0, t], by

Lemma 25, as required.

If gt ∈ ]0, t] then it is readily verified that ygt
= 1; if gt = t then (12) holds, so

suppose that gt < t. This implies that ys 6= 1 for all s ∈ ]gt, t] and y is continuous on

]gt, t]; similar working to the above gives that dys/ds = ys/(ys − 1) for all s ∈ ]gt, t], and

the result follows from Lemma 25 (working on [gt + 1/n, t] and letting n → ∞; note that

ygt+1/n > 0, since ygt
= 1, for sufficiently large n).

Lemma 25. If f : [s, t] → R \ {1} is continuously differentiable, with f(s) = b > 0 and

f ′(r) = f(r)/(f(r)− 1) for all r ∈ [s, t] (taking one-sided derivatives at r = s and r = t),

then

(13) f(r) = −W•(−b exp(−r + s − b)) ∀ r ∈ [s, t],

where • = 0 if b ∈ [0, 1[ and • = −1 if b ∈ ]1,∞[.

Proof. Let g(r) denote the right-hand side of (13); it is readily verified that g(s) = b,

g(r) 6= 1 and g′(r) = g(r)/(g(r)− 1) for all r ∈ [s, t]. If c := sup{|f(r)− 1|−1 : s 6 r 6 t}
and d := sup{|g(r) − 1|−1 : s 6 r 6 t} then the fundamental theorem of calculus implies

that

|(f − g)(r)| 6 cd

∫ r

s

|(f − g)(u)| du 6 · · ·

6
(cd)n(r − s)n

n!
sup{|(f − g)(u)| : s 6 u 6 r} → 0

as n → ∞, for all r ∈ [s, t], which gives the result.

Theorem 26. For all h > 0 there exists a family of random variables (ah,n)n∈Z+
such

that ah,0 = 0,

a2
h,n+1 = h +

(
1 − nh −

n∑

k=0

ah,k

)
ah,n+1 and E[ah,n+1|σ(ah,k : 0 6 k 6 n)] = 0.

If wh,t :=
∑⌊t/h⌋

n=0 ah,n for all t > 0, where ⌊s⌋ denotes the greatest integer less than or

equal to s, then wh := (wh,t)t>0 is a martingale with respect to its natural filtration and
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satisfies

wh,0 = 0, d[wh]t = (1 − t − wh,t−) dwh,t + h d⌊t/h⌋.
There exists a sequence (hn)n>0 such that (whn,t)t>0 converges weakly to the solution of

the structure equation (11).

Proof. If such a family (ah,n)n∈Z+
were to exist and φn := (1 − nh − wh,nh)/2 then

wh,(n+1)h = wh,nh + φh,n + εh,n

√
φ2

h,n + h for all n > 0, where

P(εh,n = ±1|wh,nh) =
1

2

(
1 ∓ φh,n√

φ2
h,n + h

)
,

so (wh,nh)n∈Z+
can be constructed as a non-homogeneous Markov process with these

transition probabilities. The claims about wh are simple to verify; it is straightforward

to check that

w2
h,t = wh,t +

∫ t

0

(wh,s− − s) dwh,s + ⌊t/h⌋h ∀ t > 0.

Finally, that (whn,t)t>0 converges to a solution of (11) for some (hn)n>0 may be proved

using the same techniques as Meyer [13].

Remark 27. Using results of Attal [1] on representable probabilistic interpretations of

Fock space, it can be shown that the classical solution constructed in Theorem 26 gives

rise to the process that satisfies the quantum stochastic differential equation (10).
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Fig. 1. Approximate sample paths of the monotone Poisson process
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Remark 28. The calculation in the proof of Theorem 26 allows a numerical simulation

to be performed: Figure 1 shows some sample paths of

t 7→ ỹh,t :=

⌊t/h⌋∑

n=0

ah,n + (t/h − ⌊t/h⌋)ah,⌊t/h⌋+1 + t,

with h = 0.005 and t ∈ [0, 8[.

Acknowledgements. The combinatorial part of this article had its genesis in a ques-

tion from Dr Romuald Lenczewski at the 25th Conference on Quantum Probability and
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Applications, M. Schürmann and U. Franz (eds.), World Scientific, Singapore, 2005, 105–

114.

[5] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), 241–259.

[6] L. Carlitz, Weighted Stirling numbers of the first and second kind. I, Fibonacci Quart. 18

(1980), 147–162.

[7] L. Carlitz, Weighted Stirling numbers of the first and second kind. II, Fibonacci Quart. 18

(1980), 242–257.

[8] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the

Lambert W function, Adv. Comput. Math. 5 (1996), 329–359.

[9] M. Émery, On the Azéma martingales, in: Séminaire de Probabilités XXIII, J. Azéma,
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