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Abstrat.We show that for the t-deformed semiirle measure, where 1

2
< t ≤ 1, the expansionsof Lp funtions with respet to the assoiated orthonormal polynomials onverge in norm when

3

2
< p < 3 and do not onverge when 1 ≤ p < 3

2
or 3 < p. From this we onlude that naturalexpansions in the non-ommutative Lp spaes of free group fators and of free ommutationrelations do not onverge for 1 ≤ p < 3

2
or 3 < p.1. Introdution. In a reent publiation [7℄ Junge, Nielsen, Ruan and Xu develop atheory of a ertain lass of operator Lp spaes. They are interested in operator spaeswhih an be paved out by omplemented opies of �nite dimensional non-ommutative

Lp spaes in suh a way that the ompletely bounded distane (of the opies, to the�nite dimensional Lp spaes) and the ompletely bounded norms of the projetions areuniformly bounded. Spaes of this lass they all COLp spaes.Among other results they prove that for a von Neumann algebra N with separablepredual and QWEP, the non-ommutative Lp spae Lp(N), where 1 < p < ∞, is a COLpspae i� it has the ompletely bounded approximation property. They prove that in thisase the spae Lp(N) has a Shauder basis with uniformly ontrolled ompletely boundednorm of the basis projetions.The regular von Neumann algebra V N(Fr) of the free group on r ∈ {1, 2, . . . ,∞}generators admits a anonial trae tr(T ) = 〈Tδe, δe〉 (here, and in the sequel, e denotesthe identity of the group and for x ∈ Fr, δx the point mass one at x). It, together with this2000 Mathematis Subjet Classi�ation: Primary 46L51; Seondary 42C10.Marek Bo»ejko was partially supported by KBN grant no 2P03A00723 and RTN HPRN-CT-2002-00279.The paper is in �nal form and no version of it will be published elsewhere.
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118 M. BOŻEJKO AND G. FENDLERfuntional, is a standard example of a non-ommutative probability spae. It ful�ls theabove onditions and for 1 < p < ∞ the spaes Lp(V N(Fr)) = Lp(tr) possess a b-basis.The ompletely bounded approximation property of Lp(V N(Fr)) is a onsequene of theweak amenability of Fr and to establish this, use is made of the natural length funtionwith respet to the generating set. Let Fr be generated by S = {x1, . . . , xr}, then thelength funtion l is de�ned as: l(w) = inf{n : w = xǫ1
i1
· · ·ǫn

in
, xij

∈ S, ǫj ∈ {1,−1}}.Sine ating on l2(Fr) the von Neumann algebra V N(Fr) is in its standard rep-resentation l2(Fr) = L2(V N(Fr)) and we may represent T ∈ L2(V N(Fr)) as T ∼∑
x∈Fr

〈Tδe, δx〉δx as an L2 norm onvergent sum. When r < ∞ we learly an arrangeto sum aording to the length, i.e.
T ∼

∞∑

n=0

∑

{x: l(x)=n}
〈Tδe, δx〉δx.Moreover, when r = 1 then Fr = Z and it is a rather basi fat of Fourier analysis thatan element T ∈ Lp(V N(F1)) = Lp(T), 1 < p < ∞ an be represented by an Lp-normonvergent Fourier sequene

T ∼
∞∑

n=0

(aneinθ + a−ne−inθ)(in fat muh more is known about these representations). Phrasing this in another way,the point masses in the order aording to the length of the group elements are a boundedShauder basis of Lp(V N(F1)), 1 < p < ∞.A question pointed out to us by Xu1 is if for �nite r the point masses, arrangedaording to the length of the group elements, still onstitute a (ompletely) boundedbasis of Lp(V N(Fr)), 1 < p < ∞.In this note we show that for r > 1, and p > 3 or p < 3
2 the partial sum operators

SN (T ) =
∑

{x∈Fr : l(x)≤N}
〈Tδe, δx〉δxare not uniformly bounded on Lp(V N(Fr)), whih answers the question in the negativefor this range of p.Theorem 1. Assume r ≥ 2 and 1 ≤ p < 3

2 or p > 3. Then there exists T ∈ Lp(V N(Fr))suh that
sup
N∈N

‖SN (T )‖p = ∞,aordingly SN (T ) does not onverge in norm as N → ∞.The proof of this will be given after onsidering radial funtions on Fr and propertiesof expansions with respet to ertain orthogonal polynomials in setion 3.In setion 4 we show that this phenomenon also appears for the Lp spaes assoiatedto von Neumann algebras of free ommutation relations.
1We thank Professor Quanhua Xu for pointing out the problem to us.



CERTAIN PARTIAL SUM OPERATORS 1192. Radial funtions. A funtion f : Fr → C is alled radial if its values f(w) dependonly on the length l(w) of the group elements w. Aordingly we all an operator T ∈
V N(Fr) radial if Tδe is a radial l2 funtion. V N(Fr)rad denotes the radial operators in
V N(Fr), and moreover for a spae of funtions E on Fr we denote Erad the subspae ofits radial funtions.For n ∈ N let χn be the harateristi funtion of the set En = {w ∈ Fr : l(w) = n}of elements of length n.For this setion we shall assume r < ∞. Then, as is well known, the summable radialfuntions l1(Fr)rad are, under onvolution, a ommutative ∗-algebra generated by χ1.This is seen from reursion relations:

χ1∗χ1 = χ2 + 2rχ0,

χ1∗χn = χn+1 + (2r − 1)χn, n = 2, 3, . . . .The operator norm losure Cvrad of λ(l1(Fr)rad) is a ommutative C∗-algebra isomorphito C(I), where the interval I = [−2
√

2r − 1], 2
√

2r − 1] is the spetrum of λ(χ1).Let Pn, n ∈ N denote the sequene of polynomials de�ned by the reurrene
P0(x) = 1, P1(x) = x,

xP1(x) = P2(x) + (2r)P0(x),

xPn(x) = Pn+1(x) + (2r − 1)Pn−1(x), n = 2, 3, . . . .Then the ∗-homomorphismˆ: χn → Pn extends to the Gelfand transform of Cvrad. Themeasure dµ(x) = r
π

√
4(2r−1)−x2

4r2−x2 dx represents the trae in the sense that for f ∈ l1(Fr)rad

trλ(f) =

∫

I

f̂(x) dµ(x). (1)Using ‖f‖2
2 = f ∗ f∗(e) = trλ(f ∗ f∗) =

∫
I
(f ∗ f∗)̂ (x) dµ(x) =

∫
I
|f(x)|2 dµ(x) we seethat the Gelfand transform extends to an isometri isomorphism, still denoted ̂ from

l2(Fr)rad onto L2(I, µ).For our purposes it is suitable to renormalise, �rst with respet to the l2 norm, andfurther to the interval [−1, 1] to obtain a sequene of orthonormal polynomials withrespet to the transferred measure. We hoose t = 1 − 1
2r

as a parameter and have for
s ∈ [−1, 1] that Qt,n(s) = ‖χn‖−1

2 Pn(2
√

2r − 1 s) and
dνt(s) =

1

π

r(2r − 1)
√

1 − s2

r2 − (2r − 1)s2
ds =

1

2π

4t
√

1 − s2

1 − 4(1 − t)ts2
ds.These polynomials then satisfy

Qt,0(s) = 1, Qt,1(s) = 2
√

t s, Qt,2(s) = 4
√

ts2 − 1√
t
, (2)

s Qt,n(s) =
1

2
Qt,n+1(s) +

1

2
Qt,n−1(s), n = 2, 3, . . . . (3)The measures νt are examples of t-transformed measures in the sense of Bo»ejko andWysoza«ski. Here we are interested only in the parameter range [ 12 , 1] and we refer forfurther disussion to [5℄.



120 M. BOŻEJKO AND G. FENDLERLemma 1. If r < ∞ then the Banah spaes Lp(V N(Fr))rad and Lp([−1, 1], ν1− 1

2r
) areisometrially isomorphi.Proof. The operator E : f 7→ ∑

n
1

#En

∑
x∈En

f(x)χn initially de�ned on �nitely sup-ported funtions f : Fr → C extends to a onditional expetation from V N(Fr) onto
V N(Fr)rad and to an orthogonal projetion from l2(Fr) onto l2(Fr)rad. Hene for theomplex interpolation method we have [V N(Fr)rad, l2(Fr)rad]θ = ([V N(Fr), l2(Fr)]θ)radfor any θ ∈ [0, 1]. When 2 < p then by [8℄, for θ = 2

p
the right hand side equals

Lp(V N(Fr))rad. On the other hand (1), with our normalisation, shows that V N(Fr)rad =

L∞([−1, 1], ν1− 1

2r
) and l2(Fr)rad = L2([−1, 1], ν1− 1

2r
). This proves the assertion when

2 ≤ p ≤ ∞. For 1 ≤ p ≤ 2 it now follows by duality.3. Orthogonal polynomials. In this setion we shall disuss Lp-boundedness of par-tial sums of expansions with respet to the orthonormal polynomials assoiated to themeasures νt.For t = 1
2 the measure νt has the density 1

π
1√

1−x2
, with respet to Lebesgue measureon the interval [−1, 1], and for t = 1 the density is 2

π

√
1 − x2. In the �rst ase theThebyshe� polynomials of �rst kind

Tn(x) = cosnθ, where cos θ = x.are orthogonal with respet to the measure ν 1

2

. In the seond ase we �nd the Thebyshe�polynomials of seond kind:
Un(x) =

sin(n + 1)θ

sin θ
, where cos θ = x.In both ases they satisfy the reursion

2xYn(x) = Yn+1(x) + Yn−1(x), n = 1, 2, 3 . . . (4)and are then determined by the respetive values
T0(x) = 1, T1(x) = x; U0(x) = 1, U1(x) = 2x. (5)When t ∈ ( 1

2 , 1) the orthonormal polynomials Qt,n, see (3), satisfy this reursionrelation exept for the �rst step n = 1. If we rede�ne Q̃t,0(s) = 1/
√

t and Q̃t,n =

Qt,n, n = 1, 2, . . . then these polynomials satisfy the reursion (4) for all n = 1, 2, . . .and they are still orthogonal with respet to νt. With the exeption of Q̃t,0 they are stillnormalised. From the values (3) and (5) we onlude
Q̃t,n =

2 − 2t√
t

Tn +
2t − 1√

t
Un, n = 0, 1, 2 . . . .For t ∈ [ 12 , 1] and νt-integrable f : [−1, 1] → C de�ne

at,n(f) =

∫ 1

−1

f(s)Q̃t,n(s) dνt(s)and, for N ∈ N let
St,N (f) =

N∑

n=0

at,n(f)Q̃t,n.



CERTAIN PARTIAL SUM OPERATORS 121We are interested in the range of p, 1 ≤ p ≤ ∞, for whih the partial sum operatorsare uniformly Lp-bounded, that is there exists a onstant Ct,p suh that for all f ∈
Lp([−1, 1], νt):

sup
N∈N

(∫ 1

−1

|St,N (f)(s)|p dνt(s)

) 1

p

≤ Ct,p

(∫ 1

−1

|f(s)|p dνt(s)

) 1

p

. (6)If t = 1
2 this range is the open interval (1,∞). This may be seen from the lassial theoremof M. Riesz on Fourier series, beause, by the substitution x = cos θ we are led to theFourier expansions of even funtions on the irle.For the ase that t = 1 Pollard [9℄ proved that the range of validity of (6) inludes

( 3
2 , 3) and that the partial sum operators are not uniformly bounded for p < 3

2 or p > 3.The negative assertion on the onvergene of the partial sums at the points p = 3
2 and

p = 3 is due to Askey and Hirshman [1, Theorem 4℄.Evidently, for any polynomial q, q(x) =
∑deg(q)

n=0 at,n(q)Q̃t,n(x), x ∈ [−1, 1]. Hene forelements of a dense subspae in Lp([−1, 1], νt), 1 ≤ p < ∞, the partial sums onverge in
Lp. If 1 ≤ p < ∞, by the uniform boundedness priniple the uniform boundedness of thepartial sums is equivalent to the Lp onvergene:Theorem 2. Assume t ∈ ( 1

2 , 1]. Then for p in the range 3
2 < p < 3

lim
N→∞

(∫ 1

−1

|f(s) − St,N (f)(s)|p dνt(s)

) 1

p

= 0, ∀f ∈ Lp([−1, 1], νt),whereas for p < 3
2 or p > 3 the Lp onvergene fails.Proof. The proof of this theorem relies on the above ited work of Pollard and that ofAskey and Hirshman.For the positive part we ite Pollard's theorem 5.1 and have to verify its hypotheses(H1)�(H(7) for the weight funtion w(x) = 1

2π
4t
√

1−x2

1−4(1−t)tx2 = 1
2π

t(x)(1−x)
1

2 (1+x)
1

2 , where
t(x) = 4t

1−4(1−t)tx2 is positive and two times ontinuously di�erentiable on [−1, 1]. Hene
w belongs to the lass B of weights onsidered already by Bernstein [2℄. (H1)�(H6) areveri�ed in setion 6 of [9℄.To verify (H7) we onsider the kernels

k±(x, y) =

∣∣∣∣
( 1−y2

1−x2 )±
1

4 (w(y)
w(x) )

1

2
− 1

p − 1

x − y

∣∣∣∣.Lemma 2. Assume 3
2 < p < 3. For f ∈ Lp([−1, 1], dx) let

K±f(x) =

∫ 1

−1

k±(x, y)f(y) dy.Then the operators K± are bounded on Lp([−1, 1], dx).Proof of the Lemma. As in the proof of lemma 7.1 of [9℄ it su�es to show the uniformboundedness, with respet to y, of the integrals
∫ 1

−1

∣∣∣∣
( 1−y2

1−x2 )a( 1−αx2

1−αy2 )γ − ( 1−x2

1−y2 )b

x − y

∣∣∣∣ dx,



122 M. BOŻEJKO AND G. FENDLERwhere α = 4(1− t)t, 0 < a < 1, 0 < b < 1, and γ = ±( 1
2 − 1

p
). This an be done, but it isa little easier to argue as follows: Write

k±(x, y) =

∣∣∣∣
( 1−y2

1−x2 )c±Φ(x, y) − 1

x − y

∣∣∣∣where c± = ±1
4 + 1

2 ( 1
2 − 1

p
) and Φ(x, y) = ( 1−αty

2

1−αtx2 )
1

2
− 1

p = f(y)
f(x) , with αt = 4t(1 − t) and

f(x) = (1 − αtx
2)

1

2
− 1

p . Notie, that for t ∈ ( 1
2 , 1) we have 0 < αt < 1 and 0 < inf{f(x) :

x ∈ [−1, 1]} < 1, furthermore f is in�nitely di�erentiable with bounded derivatives. Now
k±(x, y) ≤

∣∣∣∣
( 1−y2

1−x2 )c±Φ(x, y) − Φ(x, y)

x − y

∣∣∣∣ +

∣∣∣∣
Φ(x, y) − 1

x − y

∣∣∣∣ =: k1
±(x, y) + k2

±(x, y).First
k1
±(x, y) = f(x)−1

∣∣∣∣
( 1−y2

1−x2 )c± − 1

x − y

∣∣∣∣f(y)and, by [9, Lemma 7.1℄, the integral operator
h 7→

∫ 1

−1

k1
±(., y)h(y) dyis bounded on Lp([−1, 1], dx), whenever 3

2 < p < 3.Seond
k2
±(x, y) = f(x)−1

∣∣∣∣
f(y) − f(x)

x − y

∣∣∣∣ < onstsine f is bounded away from zero and has a bounded derivative. Hene the integraloperator with this kernel is bounded on Lp([−1, 1], dx) for any 1 ≤ p ≤ ∞.The negative assertion of the theorem is based on the following lemmata. We willontinue the proof of the theorem �rst and postpone the proof of the lemmata.Lemma 3. There exists ct > 0 suh that for all N ∈ N:
∫

|Q̃t,N (x)| dνt(x) > ct.Lemma 4. Assume 1 ≥ t > 1
2 . If 1 ≤ p < 3

2 then f(x) = (1−x)−1(1−4(1−t)tx2) ∈ Lp(νt)and limN→∞ at,N (f) > 0.For 1 ≤ p < 3
2 and this funtion f we have

‖St,N (f) − St,N−1(f)‖Lp(νt) ≥
(∫

|at,N (f)Q̃t,N (x)|p dνt(x)

) 1

p

≥ at,N (f)

∫
|Q̃t,N (x)| dνt(x) > ct

′ > 0.That the Lp onvergene fails in the range p > 3 now follows by duality.Proof of Lemma 3. The trigonometri relation: 2 cosnθ sin θ = sin(n + 1)θ − sin(n − 1)θimplies that
Q̃t,n(cos θ) =

t√
t

sin(n + 1)θ

sin θ
− 1 − t√

t

sin(n − 1)θ

sin θ
, n = 1, 2, . . . .



CERTAIN PARTIAL SUM OPERATORS 123For t > 1
2 on the n + 1 intervals

Ik =

(
(2k + 1)π

2(n + 1)
− π

n + 1

(
1

2
− 1

4t

)
,
(2k + 1)π

2(n + 1)
+

π

n + 1

(
1

2
− 1

4t

))
, k = 0, . . . , n,in [0, π] we have |sin(n + 1)θ| > 1

2t
. Set E =

⋃
k Ik. Then,

∫ 1

−1

|Q̃t,n(x)| dνt(x)

≥
∫ π

0

∣∣∣∣
t√
t

sin(n + 1)θ

sin θ
− 1 − t√

t

sin(n − 1)θ

sin θ

∣∣∣∣
1

2π

4t sin2 θ

1 − 4(1 − t)t cos2(θ)
dθ

≥
∫

E

∣∣∣∣
t√
t

sin(n + 1)θ

sin θ
− 1 − t√

t

sin(n − 1)θ

sin θ

∣∣∣∣
1

2π

4t sin2 θ

1 − 4(1 − t)t cos2(θ)
dθ

≥ 1

2π

∫

E

(
t√
t

1

2t
− 1 − t√

t

)
4t sin θ

1 − 4(1 − t)t cos2(θ)
dθ

≥ 1

π
(2t − 1)

√
t

∫

E

sin θ dθ > 0.The integral ∫
E

sin θ dθ may be estimated from below by a positive onstant, independentof n, sine roughly n+1
3 of the intervals Ik are in [π

3 , 2π
3 ].Proof of Lemma 4. It is lear that f ∈ Lp([−1, 1], νt), when 1 ≤ p < 3

2 . Let
bt,n =

∫ 1

−1

f(x)Un(x) dνt(x).Then it follows from (9.3.11) and (4.3.3) in [10℄ that bt,n onverges to a limit bt > 0, as
n → ∞. Hene,

at,n =

∫ 1

−1

√
tf(x)Un(x) − 1 − t√

t
f(x)Un−2(x) dνt(x)

=
√

tbt,n − 1 − t√
t

bt,n−2 → 2t − 1√
t

bt > 0.Now the proof of theorem 1 is evident: By lemma 1 we identi�ed a subspae of
Lp(V N(Fr)) as the Lp spae Lp([−1, 1], ν1− 1

2r
) and showed in the orresponding setionthat an expansion of radial Lp operators amounts to an expansion of Lp funtions in thelatter spae with respet to the orthonormal polynomials Qt,n. For those the negativeassertion of theorem 2 disproves the norm onvergene for 1 ≤ p < 3

2 or p > 3.4. Von Neumann algebras of free ommutation relations. Let H be an N -dimen-sional Hilbert spae. The free (or full) Fok spae is F(H) =
⊕∞

n=0 H⊗n, where H⊗0 =

CΩ for some vauum vetor Ω. On it the ommutation relations aia
+
j = δi,j may berepresented, by taking (left) annihilation and reation operators with respet to an or-thonormal basis e1, . . . , eN of H.The von Neumann algebra generated by G1 = a1 + a+

1 , . . . , GN = aN + a+
N we shalldenote A. The vauum expetation

ε(T ) = 〈TΩ, Ω〉, T ∈ B(F(H)),



124 M. BOŻEJKO AND G. FENDLERis a faithful normal trae on A. Moreover, A ating on F(H) is in its standard represen-tation and identifying L2(A, ε) with F(H) any T ∈ L2(A, ε) is of the form
T =

∑

i

αiω(i), where i = (i1, . . . , in), 1 ≤ ij ≤ N,and ω(i) ∈ A ats by ω(i)Ω = ei1 ⊗ . . . ⊗ ein
. One an show (see [6, 4, 3℄) that

ω(i) = ai1 . . . ain
+ a+

i1
ai2 . . . ain

+ . . . + a+
i1

. . . a+
in

.

It follows (see [4, proposition 2.9℄) that for i = (

k1︷ ︸︸ ︷
i1, . . . , i1,

k2︷ ︸︸ ︷
i2, . . . , i2, . . . ,

kn︷ ︸︸ ︷
in, . . . , in)

ω(i) = Uk1
(ω(i1))Uk2

(ω(i2)) . . . Ukn
(ω(in)),where Uk are the Thebyshe� polynomials of seond kind.In this ase it is natural to de�ne the length of a tensor e = ei1 ⊗ . . .⊗ ein

, and of themulti-index i = (i1, . . . , in), 1 ≤ ij ≤ N , as l(e) = n respetively as l(i) = n.We an also ask when for T =
∑

i αiωi ∈ Lp(A, ε) we have onvergene of the partialsums in Lp(A, ε):
SN (T ) =

∑

l(i)≤N

αiωi → T.Theorem 3. If for all T ∈ Lp(A, ε)

‖SN (T ) − T‖Lp(A,ε) → 0,then 3

2
< p < 3.Proof. We onsider the radial elements of A:

χ0 = ω(∅) = id, χ1 =
∑

l(i)=1

ω(i), χn =
∑

l(i)=n

ω(i), n = 2, 3, . . . .It is easy to see that
χ1χn = χn+1 + Nχn−1, n = 1, 2, . . . .Then it follows that

χn =

(
1√
N

)n

Un

(
χ1√
N

)
.The distribution of χ1 with respet to ε is known to be the measure

dµN =
2

πN

√
N − x2 dx.Hene onvergene of SN (T ), for radial T , implies the onvergene of expansions withrespet to the orthogonal polynomials in Lp([−
√

N,
√

N ], µN ). But by a theorem of Pol-lard [9℄ this is false for p not in the range 3/2 ≤ p ≤ 3. If p = 3
2 or p = 3, then Askeyand Hirshman [1, Theorem 4℄ show that the partial sum operators are not boundeduniformly in n. Referenes[1℄ R. Askey and I. J. Hirshman, Mean summability for ultraspherial polynomials, Math.Sand. 12 (1963), 167�177.
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