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Abstrat. Reently, Berovii has introdued multipliative onvolutions based on Muraki'smonotone independene and shown that these onvolution of probability measures orrespond tothe omposition of some funtion of their Cauhy transforms. We provide a new proof of this fatbased on the ombinatoris of moments. We also give a new haraterisation of the probabilitymeasures that an be embedded into ontinuous monotone onvolution semigroups of probabilitymeasures on the unit irle and brie�y disuss a relation to Galton-Watson proesses.
1. Introdution. In quantum probability there exist several natural notions of inde-pendene, see [Mur03℄ and the referenes therein. These allow to de�ne new onvolutionsfor probability measure, f. [VDN92, Voi97, SW97, Mur00℄.Berovii [Ber04℄ de�ned multipliate monotone onvolutions for probability measureson the unit irle and on the half line. He showed that with an appropriate funtion ofthe Cauhy transform these multipliative onvolutions an be alulated by omposi-tion of those funtions, similar to Muraki's result [Mur00, Theorem 3.1℄ for the additivemonotone onvolution. In this paper we give a new proof of Berovii's result basedon the ombinatoris of moments, see Theorem 4.1. Using Berkson and Porta's [BP78℄haraterization of omposition semigroups, one an dedue a haraterization of ontin-uous onvolution semigroups for the monotone onvolution, see [Ber04, Theorem 4.6℄ orTheorem 6.1 for the ase of probability measures on the unit irle.This paper is organized as follows.2000 Mathematis Subjet Classi�ation: Primary 46L50; Seondary 60E10.Key words and phrases: monotone independene, onditionally free produt, monotone on-volutions, Lévy-Khinthine formula.Work supported in part by the European Community's Human Potential Programme underontrat HPRN-CT-2002-00279 QP-Appliations and a DAAD-KBN ooperation.The paper is in �nal form and no version of it will be published elsewhere.
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154 U. FRANZIn Setion 2 we reall the de�nition of monotone independene and the monotoneprodut of algebrai and quantum probability spaes. In Setion 3 we show that themonotone produt is atually a speial ase of the onditionally free produt introduedin [BS91, BLS96℄.Setions 4, 5, and 6 ontain the main results on the multipliative monotone onvo-lution. We formulate a slightly modi�ed version of a theorem by Berovii that showsthat these onvolutions an be alulated by taking the omposition of appropriate fun-tions of the Cauhy transform of the measures, see Theorem 4.1 and Corollaries 4.2 and4.3. We also state a Lévy-Khinthine type haraterization of all ontinuous onvolutionsemigroups for the monotone onvolution of probability measures on the unit irle, seeTheorem 6.1.In Setion 7, we show that the problem of embedding a probability measure on the unitirle into a ontinuous monotone onvolution semigroup is very similar to the problem ofembedding a disrete-time Markovian branhing proess (or Galton-Watson proess) intoa ontinuous-time Markovian branhing proess. In Setion 8 we adapt a haraterizationof embeddable branhing proesses due to Gorya��nov [Gor93℄ to our situation.Finally, in the Appendix we disuss the multipliative monotone onvolution of prob-ability measures on the half line and show that there exist two natural, but inequivalentde�nitions. One of them is equivalent to the de�nition due to Berovii and an be treatedby similar methods as the multipliative monotone onvolution of measures on the unitirle., f. [Ber04℄.2. Monotone independene. In this setion we present the de�nition of monotoneindependene and its main properties.By an algebrai probability spae we mean a pair (A, ϕ) onsisting of a unital algebra Aand a unital funtional ϕ : A → C. Assume that we have two algebrai probability spaes
(A1, ϕ1) and (A2, ϕ2), suh that the �rst algebra has a deomposition A1 = C1 ⊕ A0

1(diret sum as vetor spaes), whereA0
1 is a subalgebra ofA1. Then we de�ne the algebraimonotone produt (A, ϕ) of (A1, ϕ1) and (A2, ϕ2) as follows, see also [Mur01, Mur03℄.The algebra A = A1 ∐A2 is the free produt of A1 and A2 with identi�ation the unitsof A1 and A2. The unital funtional ϕ = ϕ1 ⊲ϕ2 : A → C is determined by the ondition(1) ϕ(b1a1b2 · · · an−1bn) = ϕ1(a1 · · · an−1)ϕ2(b1) · · ·ϕ2(bn)for n ∈ N and all a1, . . . , an−1 ∈ A0

1, b1, . . . , bn ∈ A2.Let now A1,A2 ⊆ B be two suh algebras, whih are ontained in an algebrai prob-ability spae (B,Φ) and denote by j1 : A1 → B, j2 : A2 → B the inlusion maps. Thenthe universal property of the free produt of algebras implies that there exists a uniquehomomorphism j : A1 ∐A2 → B suh that the following diagram ommutes
B

A1

j1

::uuuuuuuuuu

i1

// A1 ∐A2

j

OO

A2

j2

ddIIIIIIIIII

i2

oowhere are i1 : A1 → A1 ∐A2 and i2 : A2 → A1 ∐A2 are the anonial inlusion maps.



MULTIPLICATIVE MONOTONE CONVOLUTIONS 155The subalgebras A1,A2 are alled monotonially independent w.r.t. Φ, if
Φ ◦ j = (Φ ◦ j1) ⊲ (Φ ◦ j2)f. [Fra02℄We will all a triple (A,H,Ω) onsisting of a Hilbert spae H, a unit vetor Ω ∈ H,and a subalgebra A ⊆ B(H) a quantum probability spae.If we have an algebrai probability spae (A, ϕ), whose algebra has an involution suhthat Φ is even a state, and if for all a ∈ A there exists a onstant Ca ≥ 0 suh that theinequality
Φ(x∗a∗ax) ≤ CaΦ(x∗x)holds for all x ∈ A, then the GNS representation (Hϕ, πϕ,Ωϕ) of (A,Φ) yields a quantumprobability spae (πϕ(A), Hϕ,Ωϕ). If two subalgebras A1 = C1⊗A0

1,A2 ⊆ A are mono-tonially independent in (A, ϕ), then πϕ(A0
1) and πϕ(A2) are monotonially independentin (πϕ(A), Hϕ,Ωϕ) in the sense of the following de�nition.Definition 2.1. Let H be a Hilbert spae, Ω ∈ H a unit vetor, and de�ne a state

Φ : B(H) → C on the algebra of bounded operators on H by
Φ(X) = 〈Ω, XΩ〉, for X ∈ B(H).Two subalgebras A1,A2 ⊆ B(H) are alled monotonially independent w.r.t. Ω, if thefollowing two onditions are satis�ed.(a) For all X,Z ∈ A1, Y ∈ A2, we have

XY Z = Φ(Y )XZ.(b) For all Y ∈ A1, X,Z ∈ A2,
Φ(XY Z) = Φ(X)Φ(Y )Φ(Z).Two operators X,Y ∈ B(H) are alled monotonially independent w.r.t. Ω, if the subal-gebras A1 = alg(X) = span{Xk|k = 1, 2, . . .} and A2 = alg(Y ) = span{Y k|k = 1, 2, . . .}are monotonially independent.Proposition 2.1. Let (Ai,Hi,Ωi), i = 1, 2, be two quantum probability spaes, and de-note the states assoiated to Ω1 and Ω2 by Φ1 and Φ2, respetively.Then there exists a quantum probability spae (A,H,Ω) and two injetive state-preser-ving homomorphisms Ji : Ai → A, i = 1, 2, suh that the images J1(A1) and J2(A2) aremonotonially independent w.r.t. Ω.Proof. We set H = H1 ⊗H2 and Ω = Ω1 ⊗ Ω2. Denote by P2 the orthogonal projetionon CΩ2 ⊆ H2.We de�ne the embeddings Ji : Ai → B(H) by

J1(X) = X ⊗ P2, for X ∈ A1,

J2(X) = 1⊗X, for X ∈ A2.For A we take the subalgebra generated by J1(A1) and J2(A2). It is lear that J1 and
J2 are injetive, state-preserving homomorphism.



156 U. FRANZA simple alulation shows that J1(A1) and J2(A2) are monotonially independentw.r.t. Ω. E.g., for produts of the form J1(X1)J2(Y )J1(X2), X1, X2 ∈ A1, Y ∈ A2, weget
J1(X1)J2(Y )J1(X2) = (X1 ⊗ P2)(1⊗ Y )(X1 ⊗ P2) = (X1X2) ⊗ P2Y P2

= Φ
(
J2(Y )

)
J1(X1)J1(X2).On the other hand, for J2(Y1)J1(X)J2(Y2), X ∈ A1, Y1, Y2 ∈ A2, we get

Φ(J2(Y1)J1(X)J2(Y2)) = 〈Ω1 ⊗ Ω2, (1⊗ Y1)(X ⊗ P2)(1⊗ Y2)Ω1 ⊗ Ω2〉
= 〈Ω1 ⊗ Ω2, X ⊗ (Y1PY2)Ω1 ⊗ Ω2〉
= Φ1(X)Φ2(Y1)Φ2(Y2) = Φ(J2(Y1))Φ(J1(X))Φ(J2(Y2)).We will all the quantum probability spae (A,H,Ω) onstruted in the previousproposition the monotone produt of (A1,H1,Ω1) and (A2,H2,Ω2). When there is nodanger of onfusion, we shall identify the algebras A1 and A2 with their images J1(A1)and J2(A2), respetively.The monotone produt is assoiative and an be extended to more than two fators,see [Fra01℄. But it is not ommutative.The embedding J1 : A1 → A is not unital and the produt is not trae-preserving. If

Φ1|A1
is not identially equal to zero, then the alulation

Φ1(X)Φ2(Y1Y2) = Φ(XY1Y2) = Φ(Y2XY1) = Φ1(X)Φ2(Y1)Φ2(Y2)for all X ∈ A1, Y1, Y2 ∈ A2 shows that Φ an only be a trae on A, if Φ2|A2
is ahomomorphism.3. Relation of monotone independene and onditional free independene. Wereall now the de�nition of the onditional free produt of algebrai probability spaesand show that the monotone produt is ontained as a speial ase.Let (A1, ϕ1, ψ1) and (A2, ϕ2, ψ2) be two unital algebras, equipped with two unitalfuntionals. Reall that the onditionally free produt[BS91, BLS96℄ of (A1, ϕ1, ψ1) and

(A2, ϕ2, ψ2) is de�ned as the triple (A, ϕ, ψ), where A = A1 ∐A2 is the free produt of
A1 and A2 with identi�ation the units of A1 and A2. The unital funtionals ϕ and ψon A = A1 ∐A2 an be de�ned by the onditions(2) ϕ(a1a2 · · · an) = ϕǫ(1)(a1) · · ·ϕǫ(n)(an) and ψ(a1a2 · · · an) = 0for all n ∈ N and all ai ∈ Aǫ(i) with ǫ(i) ∈ {1, 2}, ǫ(1) 6= ǫ(2) 6= · · · 6= ǫ(n) and
ψǫ(1)(a1) = · · · = ψǫ(n)(an) = 0. The funtional ψ is simply the free produt ψ1 ∗ ψ2 of
ψ1 and ψ2, f. [VDN92, Voi97℄. We will denote ϕ by

ϕ = ϕ1 ψ1
∗ψ2

ϕ2.The produt de�ned in this way for triples (A, ϕ, ψ) an be shown to be ommutativeand assoiative, f. [BS91, BLS96℄.Taking pairs of the form (A1, ϕ1, ϕ1) and (A2, ϕ2, ϕ2), one obtains the free produtalso for the �rst funtional, i.e.
ϕ1 ϕ1

∗ϕ2
ϕ2 = ϕ1 ∗ ϕ2.



MULTIPLICATIVE MONOTONE CONVOLUTIONS 157Suppose now that the algebras A1 and A2 have deompositions Ai = C1 ⊕A0
i , i = 1, 2,as a diret sum of vetor spaes, suh that the A0

i are even subalgebras. If one de�nesfuntionals δi : Ai → C by(3) δi(λ1 + a0) = λfor λ ∈ C, a0 ∈ A0
i , i = 1, 2, then one obtains the boolean produt

ϕ1 δ1∗δ2 ϕ2 = ϕ1 ⋄ ϕ2,f. [SW97, BLS96℄.Sine the onditionally free produt of triples of the form (A, ϕ, δ) an be shown tobe again of the same form, the ommutativity and assoiativity of the boolean produtfollow immediately from this onstrution.One an also obtain the monotone produt from the onditionally free produt.Proposition 3.1. Let (A1, ϕ1) and (A2, ϕ2) be two algebrai quantum probability spaesand assume A1 has a deomposition A1 = C1 ⊕ A0
1, where A0

1 is a subalgebra of A1.De�ne a unital funtional δ1 : A1 → C as in Equation (3).Then we have
ϕ1 ⊲ ϕ2 = ϕ1 δ1∗ϕ2

ϕ2Proof. Let n ∈ N , ǫ(1), . . . , ǫ(n) ∈ {1, 2} suh that ǫ(1) 6= ǫ(2) 6= · · · 6= ǫ(n), and
a1 ∈ Aǫ(1), · · · , an ∈ Aǫ(n) suh that δ1(ak) = 0 if ǫ(k) = 1 and ϕ2(ak) = 0 if ǫ(k) = 2.This implies ak ∈ A0

1 for ǫ(k) = 1 and therefore by Equation (1)
ϕ1 ⊲ ϕ2(a1a2 · · · an) = ϕ1

( ∏

k:ǫ(k)=1

ak

) ∏

k:ǫ(k)=2

ϕ2(ak) = 0(If the produt a1a2 · · · an does not begin or end with an element of A2, add 1 ∈ A2 inorder to apply Equation (1)).Therefore ϕ1 ⊲ ϕ2 satis�es ondition (2) that de�nes the onditionally free produt
ϕ1 δ1∗ϕ2

ϕ2.With this observation, Muraki's formula [Mur00, Theorem 3.1℄ for the additive mono-tone onvolution an be dedued from the analyti theory of the additive onditionallyfree onvolution developed in [BLS96℄.4. Produts of monotonially independent operators. For a bounded operator Xin a quantum probability spae (B(H),H,Ω) we de�ne
ψX(z) =

〈

Ω,
zX

1 − zX
Ω

〉

and
KX(z) =

ψX(z)

1 + ψX(z)for |z| < 1/||X||.The following theorem is similar to [Ber04, Theorem 2.2℄. Below we provide a newproof.



158 U. FRANZTheorem 4.1. Let (B(H),H,Ω) be a quantum probability spae and A1,A2 ⊆ B(H) twomonotonially independent subalgebras. Let V1, V2 ∈ C1 + A1, suh that V2V1 − 1 ∈ A1and W ∈ A2. Then we have
KV1WV2

(z) = KV1V2

(
KW (z)

)for all |z| < min(1/||V1WV2||, 1/||W ||).Proof. Let M = max(||V1WV2||, ||W ||(||V1V2|| + 2)) and |z| < 1/M . Then we have
zV1WV2

1 − zV1WV2
=

∞∑

n=1

(zV1WV2)
n =

∞∑

n=1

znV1W (X + 1)W · · ·W (X + 1)
︸ ︷︷ ︸

n−1 times

WV2

=

∞∑

n=1

zn
n∑

k=1

∑

ν1,...,νk≥1
ν1+···+νk=n

V1W
ν1XW ν2X · · ·XW νkV2,

where X = V2V1 − 1.Using properties (a) and (b) in De�nition 2.1, we get
ψV1WV2

(z) =

〈

Ω,
zV1WV2

1 − zV1WV2
Ω

〉

=

∞∑

n=1

zn
n∑

k=1

∑

ν1,...,νk≥1
ν1+···+νk=n

〈
Ω, V1X

k−1V2Ω
〉
〈Ω,W ν1Ω〉 · · · 〈Ω,W νkΩ〉

=
∞∑

k=1

〈
Ω, V1(V2V1 − 1)k−1V2Ω

〉 (
ψW (z)

)k

=

∞∑

k=1

〈
Ω, V1V2(V2V1 − 1)k−1Ω

〉 (
ψW (z)

)k

=
∞∑

k=1

〈

Ω, ψW (z)V1V2
1

1 − ψW (z)(V2V1 − 1)
Ω

〉

=

∞∑

k=1

〈

Ω,

ψW (z)
1+ψW (z)V1V2

1− ψW (z)
1+ψW (z)V1V2

Ω

〉

= ψV1V2

(
KW (z)

)
.By uniqueness of analyti ontinuation, we get

KV1WV2
(z) = KV1V2

(KW (z))for all |z| < min(1/||V1WV2||, 1/||W ||).Corollary 4.2. Let U, V be two unitary operators suh that U −1 and V are monoton-ially independent with respet to Ω. Then we have
KUV (z) = KV U (z) = KU (KV (z))for all |z| ∈ D = {z ∈ C : |z| < 1}.Corollary 4.3. Let X,Y be two positive operators suh that X − 1 and Y are mono-tonially independent with respet to Ω. Then we have
K√

XY
√
X(z) = KX(KY (z))for all |z| < min(1/||

√
XY

√
X||, 1/||Y ||).



MULTIPLICATIVE MONOTONE CONVOLUTIONS 1595. Multipliative monotone onvolution for probability measures on the unitirle. For a probability measure µ on S1 we de�ne
ψµ(z) =

\
S1

zx

1 − zx
dµ(x) and Kµ(z) =

ψµ(z)

1 + ψµ(z)for z ∈ D = {z ∈ C : |z| < 1}.We will all Kµ the K-transform of µ, it haraterizes the measure µ ompletely.Furthermore, for a holomorphi funtion K : D → D there exists a probability measure
µ on the unit irle S1 suh that K = Kµ if and only if K(0) = 0. This follows from theHerglotz representation theorem, the proof is similar to [Fra04, Proposition 3.3℄.It is lear that the omposition of two K-transforms is again a K-transform of someprobability measure on the unit irle. In view of Corollary 4.2 this suggests the followingde�nition.Definition 5.1. Let µ, ν be two probability measures on S1, with tranforms Kµ and
Kν . Then the unique probability measure µ⋗ ν on S1 with

Kµ⋗ν = Kµ ◦Kνis alled the monotone onvolution of µ and ν.Remark 5.1. 1. The monotone onvolution is weakly ontinuous.2. The monotone onvolution is assoiative, i.e.
(λ⋗ µ) ⋗ ν = λ⋗ (µ⋗ ν)for all λ, µ, ν, but not ommutative, i.e., in general µ⋗ ν 6= ν ⋗ µ.3. The Dira measure δ1 at 1 is a two-sided unit, δ1 ⋗ µ = µ ⋗ δ1 = µ for all µ. Rightonvolution by a Dira measure δx ats as translation, i.e. µ ⋗ δx = Txµ, where

Tx : S1 → S1 is de�ned by Tx(y) = xy for x ∈ S1. But δx ⋗ µ 6= Txµ in general.4. The monotone onvolution is a�ne in the �rst argument. Togehter with weak onti-nuity this implies the following formula
µ⋗ ν =

\
S1

dµ(x)δx ⋗ ν.

6. Lévy-Khinthine formula for monotone onvolution semigroups. We all aweakly ontinuous one-parameter family (µt)t≥0 of probability measures on the unit irlea ontinuous monotone onvolution semigroup, if
µ0 = δ1 and µs ⋗ µt = µs+tfor all s, t ≥ 0. By de�nition a one-parameter family (µt)t≥ is a ontinuous monotoneonvolution semigroup if and only if the K-transforms Kt = Kµt

, t ≥ 0 form a ontinuoussemigroup w.r.t. to omposition. The ontinuity of the K-transforms is uniform in z onompat sets. Our main tool for haraterizing ontinuous monotone onvolution semi-groups will be Berkson and Porta's [BP78℄ haraterisation of omposition semigroups ofholomorphi maps.



160 U. FRANZTheorem 6.1 ([Ber04, Theorem 4.6℄). Let (µt)t≥0 be a weakly ontinuous family of prob-ability measures on the unit irle, with K-transforms (Kt)t≥0. Then the following areequivalent.(a) (µt)t≥0 is a ontinuous monotone onvolution semigroup.(b) (Kt)t≥0 is a ontinuous semigroups w.r.t. to omposition.() There exists a holomorphi funtion u : D → C with ℜu(z) ≥ 0 for z ∈ D suh that
(Kt)t≥0 is the (unique) solution of

dKt(z)

dt
= −Kt(z)u(Kt(z))for z ∈ D and t ≥ 0, with initial ondition K0(z) = z.Proof. The equivalene between (a) and (b) follows from the de�nition and the ontinuityproperties of the monotone onvolution.The equivalene between (b) and () is an immediate onsequene of [BP78, Theorem(3.3)℄, it su�es to identify the �xed point at zero as the Denjoy-Wol� point of the Kt.Remark 6.2. 1. The funtion u in () an be omputed from the derivative of (Kt)t≥0in t = 0 by

u(z) = −1

z

d

dt

∣
∣
∣
∣
t=0

Kt(z),we will all it the generator of (Kt)t≥0.2. Suh a funtion u has a unique Herglotz representation
u(z) = ib+

\
S1

w + z

w − z
dρ(w),where b is a real number and ρ a �nite measure on S1.7. Relation to Galton-Watson proesses. A probability measure µ on the unit irleis alled in�nitely divisible w.r.t. to the monotone onvolution, if for all n ∈ N there existsa probability measure µn on the unit irle suh that

µ = µn ⋗ · · · ⋗ µn
︸ ︷︷ ︸

n times

.Berovii has shown in [Ber04, Theorem 4.7℄ that all in�nitely divisible probability mea-sures an be embedded into a ontinuous monotone onvolution semigroup, i.e. if µ isin�nitely divisible w.r.t. to the monotone onvolution, then there exists a ontinuousmonotone onvolution semigroup (µt)t≥0 suh that µ = µt for some t ≥ 0. And from theprevious setion it is lear this implies that the K-transform Kµ an be embedded into aontinuous omposition semigroup of K-transforms.A similar problem has been studied in the theory of Galton-Watson proesses.LetXn,k, n, k = 1, 2, . . . be independent, identially distributed random variables withvalues in N with generating funtion
ϕ(z) = E(zXn,k) =

∞∑

m=0

pmz
m for z ∈ D,



MULTIPLICATIVE MONOTONE CONVOLUTIONS 161where pm = P(Xn,k = m). Then the assoiated Galton-Watson proess (Yn)n≥0 is de�nedby Y0 = 1, and
Yn+1 =

Yn∑

k=1

Xn,k, for n ≥ 1.This proess desribes the evolution of a population where after eah step eah individualprodues a random number of o�spring aording to the probabilities (pm)m≥0Its generating funtions form a disrete omposition semigroup,
E(zYn) = ϕn(z), for z ∈ D, n ∈ N.If P(Xn,k = 0) = 0 (i.e. no individual dies without o�spring), then ϕ(0) = 0 and ϕ isthe K-transform of a probability measure µ on S1. If (Yn)n≥0 an be embedded into aontinuous-time Markovian branhing proess (or equivalently, if (ϕn)n≥0 an be embed-ded into a ontinuous omposition semigroup (ϕt)t≥0 of generating funtions), then µ isin�nitely divisible for the monotone onvolution and an be embedded into a ontinuousmonotone onvolution semigroup. The problem of embedding Galton-Watson proesseshas been studied by Gorya��nov [Gor93, Gor00℄.Example 7.1. Continuous-time Markovian branhing proesses with extintion proba-bility 0 an be obtained by hoosing in�nitesimal o�spring probabilities λj ≥ 0 for j ≥ 2suh that α =

∑∞
j=2 λj <∞, setting

v(z) =

∞∑

j=2

λjz
j − αz, for |z| ≤ 1,and solving the di�erential equation

d

dt
ϕt(z) = v(ϕt(z))with initial ondition ϕ0(z) = z, f. [Gor93, Theorem 4℄.A simple example is the Yule proess, where v(z) = α(zk − z) and

ϕt(z) =
ze−αt

k−1

√

1 −
(
1 − e−α(k−1)t

)
zk−1

, t ≥ 0,for some k ∈ N, k ≥ 2. This proess desribes a population were the individuals arereplaed by k new individuals after an exponentially distributed random time.8. On the embedding of probability measures into ontinuous monotone on-volution semigroups. [Gor93, Theorem 6℄ and [Gor93, Theorem 6℄ haraterize prob-ability generating funtions that an be embedded into omposition semigroups of prob-ability generating funtions. In this setion we give a similar haraterization for K-transforms of probability measures on the unit irle that an be embedded into ontin-uous monotone onvolution semigroups.Let (Kt)t≥0 be a ontinuous omposition semigroups of K-transforms. By [BP78℄, Ktis di�erentiable w.r.t. t and satis�es the di�erential equation(4) d

dt
Kt(z) = v(Kt(z)) = v(z)K ′

t(z)



162 U. FRANZfor t ≥ 0, z ∈ D, with v given by
v(z) =

d

dt

∣
∣
∣
∣
t=0

Kt(z).This equation follows from the semigroup property Ks+t = Ks ◦ Kt = Kt ◦ Ks bydi�erentiation w.r.t. s at s = 0.By Theorem 6.1, the funtion v is of the form v(z) = −zu(z), with a holomorphifuntion u : D → C suh that ℜu(z) ≥ 0 for z ∈ D.We will need the following lemma.Lemma 8.1. Let u : D → C, u 6≡ 0, be a holomorphi funtion suh that ℜu(z) ≥ 0 for
z ∈ D and set β = u(0), v(z) = −zu(z) for z ∈ D.Then, for all t ≥ 0, the equation(5) v(f(z)) = v(z)f ′(z), z ∈ D,has a unique solution f with f ′(0) = e−tβ.Proof. The proof of this lemma is borrowed from [Gor93, Lemma 2℄.Let (Kt)t≥0 be a omposition semigroup of K-transforms with generator u. Then all
Kt, t ≥ 0 satisfy Equation (5). Furthermore, the di�erential equation that the Kt satisfy,implies

d

dt
K ′
t(0) = −u(0)K ′

z(0)and therefore K ′
t(0) = e−tβ, sine K0(z) = z and K ′

0(0) = 1. This proves existene.Let now f be an arbitrary solution of Equation (5) with f ′(0) = e−tβ . Sine v has nozeros inside D other than z = 0, we get f(0) = 0 by substituting z = 0 into Equation (5).Di�erentiation Equation (5) k times, we an alulate the higher derivatives of f at zerofrom f ′(0) = e−tβ and the derivatives of v at zero. This proves uniqueness.Remark 8.2. Let (Kt)t≥0 be the K-transforms of a ontinuous monotone onvolutionsemigroup (µt)t≥0 with generator u. Then K ′
t(0) = e−tu(0) is the �rst moment of µt, i.e.

e−tu(0) =
\
S1

xdµt, for t ≥ 0.We ome to the main result of this setion.Theorem 8.3. Let µ be a probability measure on the unit irle S1 that is not onen-trated in one point.Then µ an be embedded into a ontinuous monotone onvolution semigroup if andonly if K ′
µ(z) 6= 0 for all z ∈ D and there exists a loally uniform limit

lim
n→∞

−
Kn
µ (z)

(Kn
µ )′(z)

= v(z),in D that is of the form v(z) = αzu(z) with a non-zero onstant α ∈ C and a holomorphifuntion u : D → C suh that ℜu(z) ≥ 0 for z ∈ D and K ′
µ(0) = e−t0u(0) for some t0 ≥ 0.Proof. The proof of this theorem is similar to that of [Gor93, Theorem 6℄.



MULTIPLICATIVE MONOTONE CONVOLUTIONS 163Suppose that µ an be embedded into a ontinuous monotone onvolution semigroup.ThenKµ an be embedded into a omposition semigroup of K-transforms (Kt)t≥0. There-fore all Kt are injetive and K ′
t(z) 6= 0 for all z ∈ D, t ≥ 0, f. [BP78℄. Denote by u thegenerator of (Kt)t≥0 and de�ne v by v(z) = −zu(z) for z ∈ D. By the Denjoy-Wol�theorem we get limt→∞Kt(z) = 0 and limt→∞K ′

t(z) = 0 loally uniformly for all z ∈ D.Therefore
lim
t→∞

v(Kt(u))

Kt(z)
= v′(0) = −u(0).With the right-hand-side of Equation (4) this implies

lim
n→∞

− Kn
µ (z)

(Kn
µ )′(z)

= lim
t→∞

−Kt(z)

K ′
t(z)

= lim
t→∞

−Kt(z)v(z)

v(Kt(z))
= − v(z)

v′(0)
= −z u(z)

u(0)
.The limit is of the form required in the theorem with the onstant α = 1/u(0).To show the onverse, let now Kµ be a K-transform satisfying the onditions of thetheorem with v(z) = αzu(z), α and u as desribed in the theorem.Let (Kt)t≥0 be the omposition semigroup of K-transforms with generator u. Thenthe Kt satisfy

v(Kt(z)) = v(z)K ′
t(z), for t ≥ 0, z ∈ D.The onditions of the theorem imply that Kµ is also a solution of the same equation,

v(z) = lim
t→∞

−
Kn+1
µ (z)

(Kn+1
µ )′(z)

= lim
t→∞

−
Kn
µ (Kµ(z))

K ′
µ(z)(K

n
µ )′(z)

=
v(Kµ(z))

K ′
µ(z)

.The uniqueness in Lemma 8.1 now implies Kµ = Kt0 .Remark 8.4. Let µ = δx be onentrated in one point x = eiϕ ∈ S1. Then we get
ψδx

(z) = xz
1−xz and Kµ(z) = eiϕz and µ an be embedded into the ontinuous onvolutionsemigroups (µ

(k)
t )t≥0 given by µ(k)

t = δeit(ϕ+2πk) , k ∈ Z.9. Appendix: Multipliative monotone onvolution for probability measureson R+. Just as there are many di�erent ways to de�ne multipliatively a positive op-erator from two given positive operators, there are di�erent de�nitions of multipliativemonotone onvolutions of two probability measures µ and ν on R+. Two possible hoiesare to take positive self-adjoint operators X and Y , whose distributions are given by µand ν, resp., suh that X − 1 and Y − 1 are monotonially independent, and to de�nethe onvolution of µ and ν as the distributions of √XY√
X or √Y X√

Y .By Corollary 4.3 the K-transform of √XY√
X is equal to the omposition of theK-transforms of X and Y . Therefore this de�nition is equivalent to the one hosen byBerovii, f. [Ber04℄.We will show below that hoosing the distribution of √Y X√

Y as the onvolution ofthe distributions of X and Y leads to an inequivalent de�nition.The operators √XY√
X and √

Y X
√
Y have the same spetrum, exept for 0. Morepreisely, σ(

√
XY

√
X)\{0} = σ(

√
Y X

√
Y )\{0}, sine √XY√

X = AB and √
Y X

√
Y =

BA with A =
√
X
√
Y and B =

√
Y
√
X.But the following example shows that, unlike in the free ase where one works withtraial states, here the distributions of √XY√

X and √
Y X

√
Y are in general di�erent



164 U. FRANZand therefore we have two di�erent multipliative monotone onvolutions for probabilitymeasures on R+.Example 9.1. Consider the positive de�nite 2 × 2-matrix
M(a) =

(
1 a

a 1

)

=
1√
2

(
1 1

1 −1

)(
1 + a 0

0 1 − a

)
1√
2

(
1 1

1 −1

)

,with a ∈ (0, 1). Then we have
〈(

0

1

)

, Ak
(

0

1

)〉

=
1

2
((1 − a)k + (1 + a)k)for k ∈ N, i.e. the distribution of A in the vetor state given by ω =

(
0
1

) is equal to
1
2 (δ1−a + δ1+a).A simple alulation yields(6) √

M(a) =
1

2

(√
1 + a+

√
1 − a

√
1 + a−

√
1 − a√

1 + a−
√

1 − a
√

1 + a+
√

1 − a

)

.

Let a, b ∈ (0, 1) and onsider the pair of positive de�nite matries
X = 1 ⊗ 1 +

(
M(a) − 1

)
⊗ Pω =







1 0 0 0

0 1 0 0

0 0 1 a

0 0 a 1






,

Y = 1 ⊗M(b) =







1 0 b 0

0 1 0 b

b 0 1 0

0 b 0 1






,

in M2(C)⊗M2(C) ∼= M4(C) where Pω denotes the orthogonal projetion onto ω =
(

0
1

).With respet to the vetor state given by ω⊗ω, X−1⊗1 and Y −1⊗1 are monotoniallyindependent, with distributions given by 1
2 (δ1−a+ δ1+a) and 1

2 (δ1−b+ δ1+b), respetively.As in Equation (6), we ompute
√
X =








1 0 0 0

0 1 0 0

0 0
√

1+a+
√

1−a
2

√
1+a−

√
1−a

2

0 0
√

1+a−
√

1−a
2

√
1+a+

√
1−a

2







,

√
Y =

1

2








√
1 + b+

√
1 − b 0

√
1 + b−

√
1 − b 0

0
√

1 + b+
√

1 − b 0
√

1 + b−
√

1 − b√
1 + b−

√
1 − b 0

√
1 + b+

√
1 − b 0

0
√

1 + b−
√

1 − b 0
√

1 + b+
√

1 − b







.
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XY

√
X and √

XY
√
X are

λ1 = 1 +
a

2
+

1

2

√

a2 + 4(1 + a)b2,

λ2 = 1 +
a

2
− 1

2

√

a2 + 4(1 + a)b2,

λ3 = 1 − a

2
+

1

2

√

a2 + 4(1 − a)b2,

λ4 = 1 − a

2
− 1

2

√

a2 + 4(1 − a)b2,and therefore their distributions have the same support. But their distributions in thevetor state ω =

( 0

0

0

1

) are di�erent. For example their seond moments di�er,
〈ω,
(√

XY
√
X
)2

ω〉 = 1 + b2 + a2,

〈ω,
(√

Y X
√
Y
)2

ω〉 = 1 + b2 +
a2

2

(

1 +
√

1 − b2
)
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