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Abstrat. We present quantum stohasti alulus in terms of diagrams taking weights in thealgebra of observables of some quantum system. In partiular, we note the absene of non-time-onseutive Goldstone diagrams. We review reent results in Markovian limits in these terms.1. Introdution. Quantum stohasti alulus (QSC) involves an analysis of the funda-mental quantum proesses of reation/annihilation/onservation [1℄ and intuitively thisis somehow related to emission/absorption/sattering of physial quanta as desribed byquantum �eld theory (QFT). Quantum stohasti theory has the advantages, as well asthe limitations, of having a mathematially rigorous setting. It also has the theory oflassial probability to fall bak on for muh of its inspiration. So muh so that the re-lationship with QFT, whih was originally a major motivating fator, is now frequentlyoverlooked. E�etively, the fundamental quantum proesses should be idealizations ofquantum �elds for some suitable �Markovian� regime. They were introdued to desribeopen systems dynamis: here the quantum noise ouples to some quantum system and so,in some sense, we are dealing not just with traditional quantum �elds, but with quantum�elds taking values in the algebra of observables of some quantum system.When presenting his famous list of problems, Hilbert is supposed to have quoted anunnamed olleague as saying that �a mathematial theory should not be onsidered om-plete until one an walk out into the street and explain it to the �rst person you meet�.Let us suppose we did this and, as luk would have it, the �rst person we meet is a physi-ist. Would we sueed in explaining quantum stohasti alulus? My ontention is thatwe should, though we might have to make do with some formal mathematis (presumablyHilbert wouldn't have objeted?). There are many fundamental ideas, familiar to physi-2000 Mathematis Subjet Classi�ation: Primary 81S25; Seondary 81T18.Key words and phrases: diagrammati tehniques, quantum Markov limits.The paper is in �nal form and no version of it will be published elsewhere.
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188 J. GOUGHists, hidden (sometimes too well-hidden!) in the mathematial formalism of quantumstohasti alulus. In this artile, I've tried to present some basi results from quantumstohasti alulus in the language of QFT and, in partiular, in terms of Feynman-typediagrams: the hope being that mathematiians and physiists will learn something fromthe ross-over. Diagrammati tehniques are entral to QFT [2℄, [3℄, yet also of indepen-dent interest from it; they still remain an essential tool for investigating mathematialaspets of quantum theory and ontinue to yield some of the most illuminating insights(see, for instane, the papers [4℄, [5℄, [6℄). I also want to present an aount of a reentpaper [7℄ whih deals with the QSC approximation and whih was originally formulatedin diagrammati language.1.1. Expansions of evolutions. A free-partile (Bosoni) quantum �eld Φt living on aHilbert (Fok) spae H an be deomposed into positive and negative frequeny termsas Φt = Φ
(+)
t + Φ

(−)
t : here we suppress all dependene other than time and understandthe time label to refer to Heisenberg piture of the free dynamis. We take Φ

(+)
t to be anannihilation �eld and Φ

(−)
t to be a reation �eld. If Ω is the Fok vauum vetor, thenwe have the identity(1) Φ

(+)
t Ω = 0,along with the anonial ommutation relations(2) [Φ

(+)
t , Φ(−)

s ] = G(t, s).Here G(t, s) ≡ 〈Ω|ΦtΦs Ω〉. Related to this is the propagator K de�ned as
K(t, s) = 〈Ω|~TΦtΦs Ω〉 = G(t, s)θ(t− s) + G(s, t)θ(s− t),where θ(·) is the Heaviside step funtion. As usual ~T is Dyson's hronologial operationplaing Heisenberg piture operators in inreasing time-order from right to left.Let {Υt : t ≥ 0} be a family of self-adjoint operators on H with Υt being some funtionof Φ

(±)
t We are then interested in the evolution operator(3) Ut = ~T

{

exp−i

∫ t

0

Υsds

}

,by whih we mean the solution to the Shrödinger equation i∂tUt = ΥtUt, U0 = 1.Suppose that we have a polynomial interation
Υt =

∑

ν

1

ν!
λν(Φt)

ν .The standard devie of quantum �eld theory is to expand Ut in terms of diagrams, see,e.g. [2℄ or [8℄. A Wik diagram D is onstruted as follows: hoose n = n(D) labelledpoints (verties), eah vertex will have some labelled legs attahed (we let mν = mν(D)denote the number of verties having ν legs so that n =
∑

ν mν), we join several pairs oflegs to form (undireted) edges, the result is a graph having several external lines and wenow ignore the labelling. A Wik diagram is then the lass of all topologial equivalent



FEYNMAN DIAGRAMS AND THE QUANTUM STOCHASTIC CALCULUS 189graphs. We let c = c(D) denote the number of ways we ould have originally onnetedthe various legs to get the same graph. Now denote by DW the set of all Wik diagramsand de�ne, for eah D ∈ DW , the operator(4) D̂(t) = (−i)n c

n!

∏

ν

(

λν

ν!

)mν

~N

∫

[0,t]n

∏

D

K
∏

D

(Φ(+) + Φ(−))where ~N is normal ordering (plaing all reation �elds Φ(−) to the left of all annihilation�elds Φ(−)) and under the integral we have a fator K(ti, tj) for eah edge (i, j) ourringand a fator Φtk
for eah external line at vertex (k). It is then a basi result of QFT that

Ut admits the expansion
Ut =

∑

D∈DW

D̂(t).Next let PW denote the subset of onneted Wik diagrams then we may list the elementsas P1, P2, · · · and eah D ∈ DW an be deomposed as D ≡ Pn1

1 × Pn2

2 × · · · . Now onereadily heks that D̂(t) = ~N
P̂1(t)

n1

n1!

P̂2(t)
n2

n2!
· · · and so(5) Ut = ~N

∑

n1,n2,···

∞
∏

j=0

P̂j(t)
nj

nj !
= ~N

∞
∏

j=0

∞
∑

n=0

P̂j(t)
nj

nj !
= ~N exp

∑

P∈PW

P̂ (t).What we have managed to do is to express the evolution operator Ut as a normal orderedexponential of a sum over onneted Wik diagrams. The onneted Wik diagrams playthe role of the `primes' amongst the set of all Wik diagrams�indeed the trik of re-plaing a sum of produts by a produt of sums is just the one that goes on when wedevelop a prime number expansion of the Dirihlet series of a multipliative funtion,the Riemann zeta funtion being perhaps the best known example; it is also the trikused to ompute the grand anonial partition funtion for the free Bose gas. The resultshould be understood as an operator theoreti version of the usual umulant momentexpansion.Now let hS be a �xed Hilbert spae. We move the ation up to the Hilbert spae h⊗Hand set(6) Υt =
∑

α,β

Eαβ ⊗ (Φ
(−)
t )α(Φ

(+)
t )β

where we take E†
αβ = Eβα. We now introdue a lass of diagrams known as Goldstonediagrams�they di�er from the previous ones in that the verties are plaed in time order[2℄. Consider times tn > · · · > t2 > t1 in the interval [0, t] and draw these as verties asshown below:
u u u u u u u u u

tn t2 t1tjSuppose that at vertex j we have βj legs oming in from the right, representingannihilators, and αj legs going out to the left, representing reators. For example, the



190 J. GOUGHvertex for E23 ⊗ [Φ
(−)
tj

]2[Φ
(+)
tj

]3 where we have αj = 2 reators and βj = 3 annihilators isskethed as
u

'

'

'
$

$

tj

αj reators βj annihilators
We onstrut a Goldstone diagram D as follows. We take an arbitrary number n =

n(D) verties and draw in an ordered line as above. We then draw reation / annihi-lation lines at eah vertex orresponding to one of the terms appearing in Υ. We thenonnet seleted reation legs to (neessarily later time) annihilation legs: the remain-ing unontrated legs are then direted external lines. We onsider the family DG of all(topologially distint) diagrams obtained in this way. To eah Goldstone diagram D weassoiate the operator(7) D̂(t) = (−i)nEαnβn
· · ·Eα1β1

⊗

∫

∆n(t)

∏

D

Φ(−)
∏

D

G
∏

D

Φ(+)where ∆n(t) is the simpliial region {(tn, · · · , t1) : t > tn > · · · > t2 > t1 > 0} and wehave a fator G(ti − tj) for eah edge (i, j), note ti > tj , a fator Φ
(+)
tk

for eah inomingexternal line to a vertex k and a fator Φ
(−)
tk

for eah outgoing external line. We then �ndthe expansion(8) Ut =
∑

D∈DG

D̂(t).In QFT one is used to swithing between an expansion in terms of Goldstone diagrams
(8) and one in terms of Wik diagrams (5). In the present ase however we have anobstrution: the Eαβ's do not neessarily ommute! This ompliation means that theGoldstone diagrams are more fundamental in the present ase. The problem, of ourse,is that the Dyson operator ~T is reordering the Heisenberg �elds only, while the Eαβ'sremain in their original order.1.2. Zero dimensional QFT. Let a and a† be annihilation operators for a single modeharmoni osillator, We have the ommutation relations [

a, a†
]

= 1 and aΩ = 0. Let usonsider the observable q = za†+z∗a where z is a omplex number. The Baker-Campbell-Hausdor� theorem says that exp {itq} = exp
{

itza†
}

exp
{

−1
2 |z|

2t2
}

exp {itz∗a} whihhere has the same ontent as the expansion (5). We an use a diagrammati presentationbased on two types of vertex: the reation type r

�whih has weight z, and theannihilation type r

�whih has weight z∗. If we take a vauum expetation of
exp {itq} then we need only onsider onneted diagrams having no external lines�andthere is only the one! The umulant expansion is then

〈Ω| exp {itq}Ω〉 = exp

{

(it)2

2!
r r

��}

≡ exp
{

−1
2 t2|z|2

},



FEYNMAN DIAGRAMS AND THE QUANTUM STOCHASTIC CALCULUS 191and we see that q is Gaussian in the vauum state. As is well known, the odd momentsvanish while the even moments are 〈

Ω|q2nΩ
〉

= |z|2n (2n)!
2nn! where the ombinatorial fatorounts the number of ways to partition the 2n (time-ordered) verties into n (ontra-tion) pairs. For instane, the fourth moment involves three disonneted diagrams (ouronvention is that we only onsider the ontrations as edges; the thin horizontal baseline does not a�et onnetivity!)

〈

q4
〉

= r r r r
� �� �+ r r r r

� �
��+ r r r r

� �� �
= 3|z|4.

We may also onsider the variable N = (a+z)†(a+z) = a†a+za†+z∗a+|z|2. We nowintrodue two extra verties: a sattering vertex r

��with weight unity and a onstantvertex r with weight |z|2. To determine the vauum expetation of exp {itN}, weone again sum over all onneted diagrams with no external lines. This gives
〈Ω| exp {itN}Ω〉 = exp

{

(it)

1!
r + (it)2

2!
r r
� �+ (it)3

3!
r r
� �

r
� �

+ · · ·

}

The nth term in the exponential will look like · · ·r r r r r r
� �� �� �� �� �and eah suhterm has weight |z|2�sine the sattering verties all have weight unity. All umulantsare equal and we therefore have

〈Ω| exp {itN}Ω〉 = exp

{

∑

n≥1

(it)n

n!
|z|2

}

= exp
{

|z|2(eit − 1)
}

and we reognize N as having a Poisson distribution of intensity |z|2. The moments ofthe variable N are given as a polynomial of degree n in |z|2, vis.
〈Ω|NnΩ〉 =

n
∑

m=1

S(n, m)|z|2m

and, as is well-known in ombinatorial analysis [9℄, the oe�ients S(n, m) are the Stir-ling numbers of the seond kind: they ount the number of ways to partition n itemsinto m non-empty subsets. To see why they arise here, onsider the following diagramontributing to 〈N7〉:
t7 t6 t5 t4 t3 t2 t1

u u u u u u u

����� �

' $

This diagram partitions the 7 verties into 3 subsets, namely {t7, t6, t5, t3}, {t4, t1}and {t2}, with eah subset forming a onneted sub-diagram. This ontributes (|z|2)3 to
〈N7〉. Consulting a textbook on ombinatoris to get the Stirling numbers, we �nd
〈N7〉 =

7
∑

m=1

S(7, m)(|z|2)m = |z|2 + 63|z|4 + 301|z|6 + 350|z|8 + 140|z|10 + 21|z|12 + |z|14.



192 J. GOUGHAlternatively, we ould draw all B7 = 877 diagrams out! The numbers Bn =
∑n

m=1 S(n, m)ounting the total number of ways to partition the n verties into non-empty subsets (ofonneted Goldstone diagrams) are known as the Bell numbers.2. Quantum stohasti alulus. Remarkably, the equivalene between expansions
(8) and (5) is restored in the non-ommutative ase in one very important situation. Thisis when we onsider the ases α and β taking only the values 0, 1 in (6) and when thetwo-point funtion G is replaed by a delta-funtion. E�etively the �eld is some form ofquantum white noise in time. As α, β is restrited to either 0 or 1, we shall have only fourtypes of vertex: a onstant vertex E00 ⊗ 1, an emission vertex E10 ⊗Φ(−), an absorptionvertex E01 ⊗ Φ(+) and a sattering vertex E11 ⊗ Φ(−)Φ(+).The reason for the algebrai equivalene, despite the fat that the Eαβ need notommute, is that many of the Goldstone diagrams vanish identially. This is due to thesingular nature of the two-point funtion with respet to the simpliial integration in (7).We note that absene of ertain diagrams desribing moments of quantum noises hasourred elsewhere, in partiular, there is an elegant desription of the various forms ofindependent quantum proesses in these terms [11℄.Let us introdue some formal symboli notations [10℄. We make the replaements

Φ
(+)
t →֒ at, Φ

(−)
t →֒ a

†
t , G(t, s) →֒ g(t − s),where g(t − s) = κd+(t − s) + κ∗

−d(t − s). Here κ is a omplex damping onstant with
γ = 2Re {κ} > 0. The objets d±(t−s) are one-sided delta funtions de�ned (for funtions
f possessing left and right hand limits) by(9) ∫ ∞

−∞

f(s)d±(s − t)ds =

∫ ∞

−∞

f(t + u)d±(u)du = f(t±).Let us brie�y indiate how to onvert Ut = ~T exp{−i
∫ t

0
Υsds} to normal order [10℄ where

Υt = Eαβ ⊗ (a†t)
α(at)

β (we use a onvention from now on that repeated Greek indies aresummed over values 0 and 1). When evaluating Goldstone diagrams, we �nd that if theontrations are not time-onseutive, that is, if we enounter g(ti−tj) with i > j+1, thenwe fore the multiple equalities ti = ti−1 = · · · = tj+1 = tj due to the time ordering, andso the ontribution vanishes. Only Goldstone diagrams with time-onseutive ontrationsare non-zero.Starting from the integro-di�erential equation Ut = 1 − i
∫ t

0
ΥsUsds, we have

[at, Ut] = −i

∫ t

0

[at, Υs] Usds = −i

∫ t

0

g(t − s)E1β(at)
βUs = −iκE1β(at)

βUtor atUt = (1 + iκE11)
−1[Utat − iκE10Ut] and so(10) ∂tUt = −iEαβ ⊗ (a†t)

α(at)
βUt ≡ (a†t)

αLαβUt(at)
βwhere(11) Lαβ = −iEαβ − κEα1

1

1 + iκE11
E1β.We may interpret the onversion of the Shrödinger equation to normal ordered form as



FEYNMAN DIAGRAMS AND THE QUANTUM STOCHASTIC CALCULUS 193a hange from a Stratonovih to an It� desription. This agrees with the interpretationgiven originally by von Waldenfels for emission-absorption interations [12℄.Having normal-ordered the Shrödinger equation, we now iterate to get
Ut = 1 +

∫ t

0

(a†s)
αLαβUs(as)

βds(12)
=

∑

n≥0

∫

∆n(t)

(a†tn
)αn · · · (a†t1)

α1(Lαnβn
· · ·Lα1β1

)(at1)
β1 · · · (atn

)βn .This is reasonably familiar to quantum �eld theorists and suh expressions an be foundfor instane in Berezin's book [13℄. If f is a suitable test funtion, we may onsider itsoherent (i.e. exponential) vetor |ε(f)〉 and take at |ε(f)〉 = f(t) |ε(f)〉 and 〈ε(f)| a†t =

〈ε(f)| f(t)∗. As (12) is normal ordered, we have no di�ulty in assigning a meaning to
〈ε(f)|Utε(g)〉. At this stage we ould just as well take (12) as the de�nition of the proess,this is the starting point of the Maassen kernel alulus [14℄. As suh the time-onseutiveontration property is built into QSC, though in a way that is not readily apparent.For the bene�t of quantum probabilists, who may well be a little lost at this stage, weonvert (10) into more familiar language [1℄. Let Λαβ

t =
∫ t

0
(a†s)

α(as)
βds and we interpretthese as the four fundamental quantum proesses: Λ00

t is time, Λ10
t is reation, Λ01

t isannihilation and Λ11
t is onservation. Loosely speaking, we say {Xt, t ≥ 0} is adapted if

[

a♯
s, Xt

]

= 0 whenever s > t. Setting X
(j)
t =

∫ t

0
(a†s)

αx
(j)
αβ(s)(as)

βds where the x
(j)
αβ(·) areadapted, we see that putting to normal order yields

X
(1)
t X

(2)
t =

∫ t

0

(a†s)
α[X(1)

s x
(2)
αβ(s) + x

(1)
αβ(s)X(2)

s + x
(1)
α1 (s)x

(2)
1β (s)](as)

βds.The basi idea goes bak to Hudson and Streater [15℄. In QSC, we usually write
dXt = xαβ(t)dΛαβ

tand the above result is presented as the quantum It� formula
d(X(1)X(2)) = X(1)d(X(2)) + d(X(1))X(2) + d(X(1))d(X(2))along with the quantum It� table dΛα1

t dΛ1β
t = dΛαβ

t . The equation (10) is then inter-preted as the It� quantum stohasti di�erential equation dUt = LαβUtdΛαβ
t with U0 = 1.The oe�ients satisfy the identities Lαβ + L†

βα + γL†
1αL1β = 0 whih are neessary andsu�ient for Ut to be an adapted, unitary quantum stohasti proess. The formula forthe produt of several quantum integrals omes down to a normal ordering problem whihan ultimately be presented as a sum over diagrams, or equivalently, a sum over partitionsof the time indies: for the lassial ase, see [16℄.3. Markov limits. Finally, we wish to omment on how regular quantum �elds anapproximate the singular �elds onsidered above. Let λ 6= 0 be a parameter and on-sider �elds Φ

(±)
t (λ) with a regular two-point funtion Gλ(·) whih beomes a delta-funtion in the limit λ → 0. In partiular, we may take G(·) to be a integrable fun-tion with γ =

∫ ∞

−∞
G and κ =

∫ ∞

0
G and assume that G(−t) = G(t)∗. Then set

Gλ(t, s) = λ−2G((t − s)/λ2). We would then argue that in the limit Gλ onverges to



194 J. GOUGHthe singular funtion g onsider above. We onsider the regular unitary evolution opera-tors
Ut(λ) = ~T exp

{

− i

∫ t

0

Eαβ ⊗ (Φ(−)
s (λ))α(Φ(+)

s (λ))

}

and we laim that for bounded Eαβ, with ‖κE11‖ < 1, Ut(λ) onverges to the singularproess Ut onsidered in the last setion.The �rst remark that we make is that the λ → 0 limit leads to the vanishing ofeah non-time-onseutive Goldstone diagram ontributing to Ut(λ). Moreover, when thesurviving terms are omputed and re-summed, we formally get the orret It� expansion
(12). Note that Lαβ = −iEαβ − i

∑∞
r=1 Eα1(−iκE11)

r−1E1β giving the ontribution toa time-onseutive blok with α outgoing, β inoming lines and a sum over r suessivesatterings in between. We see that the ondition ‖κE11‖ < 1 is neessary to sum thegeometri series.The re-summation is rather tedious, though it helps that we know what answer toexpet! We also have the issue of onvergene, however, we settle this below. We remarkthat it is su�ient to onsider only the vauum onvergene as the more general situationan be inferred from this when we look at onvergene in arbitrary but appropriatelysaled oherent vetor states.3.1. Pulé inequalities (Gaussian). Let us start with the ase where we have emissionand absorption only in the interation. The vauum Goldstone diagrams, as we have seenin setion 2, onsist of n2, say, pair ontrations only. A typial diagram, one of (2n2)!
2n2n2!having 2n2 verties, is skethed below for n2 = 6:

u u u u u u u u u u u u

��
� �� �� �

� �
' $

t1t2tnThere exists a permutation σ of the n = 2n2 time indies whih re-orders to thediagram D0(n) shown below
u u u u u u u u u u u u

� � � �� �� �� �� �

tσ(1)tσ(2)tσ(n)The permutation is moreover unique if it has the indued ordering of the emissiontimes. Not all permutations on the n time indies will arise this way, but the ones thatdo will be termed admissible. We now onsider an estimate of the n-th term in the Dysonseries:
∑

D∈DG

∫

∆n(t)

∏

D

|Gλ| =
∑Admissible permutations ∫∆n(t)

∏

D0(n)

|Gλ ◦ σ|

=

∫

R(t)

n2
∏

k=1

|Gλ(t2k − t2k−1)|where R(t) is the union of simplies {

(tn, · · · , t1) : t > tσ−1(n) > · · · > tσ−1(1) > 0
} overall admissible permutations σ. R(t) will be a subset of [0, t]

2n2 and if we introdue vari-ables t2k and s2k = t2k − t2k−1 for k = 1, · · · , n2 it is easily seen that the above is
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majorized by |κ|n2 ×

max(t, 1)n2

n2!
. This the Pulé inequality [17℄ and learly gives theuniform absolute estimate required to sum the series.3.2. Pulé inequalities (Poissonian). We now onsider sattering, and onstant, terms inthe interation [7℄. As we have seen there will be Bn (the n-th Bell number) Goldstonediagrams ontributing to the n-th term in the vauum Dyson series expansion. The Bellnumbers grow rapidly and have a ompliated asymptoti behaviour. The proliferationof diagrams is due mainly to the multiple sattering that now may take plae.Let us onsider a typial Goldstone diagram. We shall assume that within the diagramthere are n1 singleton verties [· · · r · · · ], n2 ontration pairs [· · · · · ·r r

� �

· · · ], n3ontration triples [· · · · · · · · ·r r r

� �� �

· · · ], et. That is the Goldstone diagram has a totalof n =
∑

j jnj verties whih are partitioned into m =
∑

j nj onneted subdiagrams.For instane, we might have an initial segment of a diagram looking like the following:
r r r

r r r

r r r

u u u u u u u u u u

� �
' $

� �� �
$

$

There will exist a permutation σ of the n verties whih will reorder the verties sothat we have the singletons �rst, then the pair ontrations, then the triples, et., so thatwe obtain a piture of the following type
-�

n1 singletons
-�

n2 pairs
-

n3 triples
q q q

q q q

s s s s s s s s s s s s s s

� �� � � �� � � � � �

The permutation is again unique if we retain the indued ordering of the �rst emissiontimes for eah onneted blok. We now wish to �nd a uniform estimate for the n-th termin the Dyson series, we have(13) ∑Goldstone diagrams ∫∆n(t)

∏

|Gλ| × �weights�where the weights are the operator norms of various produts of the type Eαnβn
· · ·Eα1β1

.In general, the weight is bounded by
‖E11‖

n1+2n2+3n3+··· × Cn1+n2+n3+···where C = maxαβ ‖Eαβ‖. This is beause eah onneted diagram of j verties willtypially have one emission and one absorption, but j − 2 sattering verties. The Puléargument of rearranging the sum over diagrams into a single integral over a region R(t)of [0, t]n again applies and by similar reason we arrive at the upper bound for (13) thistime of the type
∑′

n1,n2,n3,···
‖κE11‖

n1+2n2+3n3+···
× Cn1+n2+n3+··· ×

max(t, 1)n1+n2+n3+···

n1!n2!n3! · · ·
.



196 J. GOUGHHere the sum is restrited so that ∑

j jnj = n. A uniform estimate for the entire seriesis then given by removing this restrition:
Ξ(A, B) =

∑

n1,n2,n3,···

exp{
∑

j(Aj + B)nj}

n1!n2!n3! · · ·where eA = ‖κE11‖ and eB = C max(t, 1). Again we use the trik to onvert a sum ofproduts into a produt of sums
Ξ(A, B) =

∑

n1,n2,n3,···

∏

j

exp{(Aj + B)nj}

nj!
=

∏

j

∑

n

exp{(Aj + B)n}

n!

=
∏

j

exp{e(Aj+B)} = exp
{

∑

j

eAjeB
}

= exp

{

eA+B

1 − eA

}

.where we need eA < 1 to sum the geometri series�this however, is preisely our onditionthat ‖κE11‖ < 1.4. Conlusions. We have established a Markov limit in the sense of [18℄ whih we maywrite as
~T

{

exp−i

∫ t

0

Eαβ ⊗ (Φ(−)
s )α(Φ(+)

s )βds

}

→֒ ~T

{

exp−i

∫ t

0

Eαβ ⊗ (a†s)
α(as)

βds

}

.On the left hand side we have a unitary whih an be expanded as a normal orderedexpression of the quantum �elds in terms of Goldstone diagrams. The right hand sidean be developed as an expansion over time-onseutive an be understood as Hudson�Parthasarathy unitary quantum stohasti proess. We have shown the non-time-onse-utive terms on the left hand side make a negligible ontribution in the Markovian limit.Interpreting Weyl order as Stratonovih form and Wik order as It� form, the aboveresult an be onsidered as a non-ommutative version of the Wong�Zakai limit theoremfor lassial proesses.The same holds for Fermi �elds, however, the proof is ompliated beause we haveto take the limit in matrix elements of appropriately saled number states [19℄. Thesame basi estimates su�e one more and in the limit we end up with the same proessexept with the Λαβ now being Fermioni noises. As one might suspet, we have to botherourselves olleting fators of −1, and one would expet to obtain the same result if wedealt with q-ommutation relations [20℄.We remark that the time-ordered exponentials developed in [21℄ di�er from the notionspresented here, as we are time-ordering quantum white noises and not It� di�erentials,though they do arise in models for Markov limits of disrete time systems [22℄.Finally, we mention that we also have the onvergene of the Heisenberg dynamis
Ut(λ)†(X ⊗ 1)Ut(λ) to U†

t (X ⊗ 1)Ut[7℄. This requires a slightly deeper analysis, however, the basi estimates above are againat the heart of things. We invite the reader to try and imagine the Goldstone diagramexpansion of Ut(λ)†(X ⊗ 1)Ut(λ) to get an idea of what is involved.
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