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Abstrat. Two new examples are given for illustrating the method of quantum deomposition inthe asymptoti spetral analysis for a growing family of graphs. The odd graphs form a growingfamily of distane-regular graphs and the two-sided Rayleigh distribution appears in the limit ofvauum spetral distribution of the adjaeny matrix. For a spidernet as well as for a growingfamily of spidernets the vauum distribution of the adjaeny matrix is the free Meixner law.These distributions are alulated through the Jaobi parameters obtained from strutural dataof graphs.1. Introdution. Let G = (V, E) be a graph, where V is a non-empty set and E asubset of {{x, y} ; x, y ∈ V, x 6= y}. An element of V is alled a vertex and an elementof E is alled an edge. Two verties x, y ∈ V are alled adjaent if {x, y} ∈ E, and inthat ase we write x ∼ y. Throughout this paper a graph is always assumed to be loally�nite and onneted. The adjaeny matrix A = (Axy)x,y∈V is de�ned by

Axy =

{

1, if x ∼ y,
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246 D. IGARASHI AND N. OBATAThen A ats in the Hilbert spae ℓ2(V ) in a natural manner as
Aδx =

∑

y∼x

δy, x ∈ V,where {δx ; x ∈ V } is the anonial orthonormal basis of ℓ2(V ). We are interested in aBorel probability measure µ on R = (−∞, +∞) suh that(1.1) 〈Am〉 ≡ 〈δo, A
mδo〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . ,where o ∈ V is a �xed origin of the graph. Note that 〈δo, A
mδo〉 is nothing but the numberof m-step walks from o to itself. We are also interested in the ase where (1.1) holds inan �asymptoti� sense. This question arises from analysis of a large graph or of a growingfamily of graphs Gν = (V (ν), E(ν)). The problem is to �nd a Borel probability measure µon R suh that(1.2) lim

ν→∞

〈(
Aν

Zν

)m〉

=

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . ,where Zν > 0 is a normalizing onstant.The theory of interating Fok spae (see e.g., Aardi�Bo»ejko [2℄ and referenes itedtherein) and the quantum probabilisti formulation of asymptoti spetral analysis on alarge graph due to Hora [13, 14℄ motivated us to propose a new approah based on thequantum deomposition and quantum entral limit theorem. The idea was �rst appliedto disrete groups by Hashimoto [9℄ and to Hamming graphs by Hashimoto�Obata�Tabei [11℄. During the reent years this new method has been systematized (see e.g.,Hashimoto�Hora�Obata [10℄, Hora�Obata [17℄) and applied to Johnson graphs, Cayleygraphs of Coxeter groups, and another regular graphs, see Hora [15, 16℄ and Hora�Obata[18℄, where deformed vauum states are also studied. More reently various onepts ofindependene in quantum probability theory are found to be related to ertain strutureof graphs, as omb graphs (Aardi�Ben Ghorbal�Obata [1℄) and star graphs (Obata [22℄)illustrate our viewpoint.The main purpose of this paper is to provide two new examples. The odd graphs Okform a growing family of distane-regular graphs and the probability distribution µ inquestion (1.2) is omputed expliitly, whih may be alled the two-sided Rayleigh dis-tribution (Theorems 5.3 and 6.1). This limit measure has not been disussed so far inquantum probability theory, though the odd graphs have attrated attention for someombinatorial interests in algebrai graph theory (Biggs [3, 4℄) and for their spetral prop-erties (Huang�Liu [20℄). The seond example is a spidernet whih is, stritly speaking, notregular but is highly symmetri. The probability distribution µ in question (1.1) as wellas in (1.2) is shown to be a free Meixner law (Theorems 7.3 and 8.2). The free Meixnerlaws form a natural family of one-parameter deformations of the Kesten measures andare related with harmoni analysis on free groups (Cohen�Trenholme [8℄), in�nite divis-ible laws with respet to the free onvolution (Saitoh�Yoshida [24℄), and the free Lévyproesses (Bo»ejko�Bry [5℄).The method of quantum deomposition only requires simple strutural data of a graphand allows us to avoid a heavy ombinatorial argument often neessary to obtain full



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 247desription of spetrum of the adjaeny matrix. We hope that our approah is justi�edwith expliit evidene illustrated by the two examples in this paper together with severalones disussed in the previous papers mentioned above. A self-ontained introdution tothe method of quantum deomposition will be available in the forthoming monographby Hora�Obata [19℄.Aknowledgements. The authors are grateful to Professors M. Bo»ejko, A. Hora andH. Yoshida for helpful omments and referenes.2. Quantum deomposition of the adjaeny matrix. Let G = (V, E) be a graphand A the adjaeny matrix. We always �x an origin o ∈ V . Then the strati�ation(distane partition) of the graph is introdued:(2.1) V =

∞⋃

n=0

Vn, Vn = {x ∈ V ; ∂(o, x) = n},where ∂ stands for the natural distane funtion. For ǫ ∈ {+,−, ◦} we de�ne Aǫ by
(Aǫ)xy =

{

1, if x ∼ y and ∂(o, x) − ∂(o, y) = ǫ,

0, otherwise,where ǫ is assigned the numbers +1,−1, 0 aording as ǫ = +,−, ◦. Then the adjaenymatrix A is deomposed into three parts:(2.2) A = A+ + A− + A◦.We all (2.2) the quantum deomposition of A and Aǫ the quantum omponents. It isshown that A+ and A− are mutually adjoint and A◦ is selfadjoint (equipped with naturaldomains in ℓ2(V )).For eah n = 0, 1, . . . we de�ne a unit vetor in ℓ2(V ) by
Φn = |Vn|−1/2

∑

x∈Vn

δx,whih is alled the n-th number vetor. In partiular, Φ0 = δo is alled the vauumvetor. Let Γ(G) denote the losed subspae spanned by {Φ0, Φ1, . . . }. Note that Γ(G)is not neessarily invariant under the quantum omponents Aǫ. In this paper we shallonentrate on the ase where Γ(G) is invariant under the quantum omponents Aǫ,
ǫ ∈ {+,−, ◦}. The ase where Γ(G) is �asymptotially� invariant is also interesting, seee.g., Hashimoto�Hora�Obata [10℄, Hora�Obata [17, 18℄. Here we reall the followingProposition 2.1. Notations and assumptions being as above, assume that Γ(G) is in-variant under the quantum omponents Aǫ, ǫ ∈ {+,−, ◦}. Then there exists a pair ofsequenes ({ωn}, {αn}) suh that

A+Φn =
√

ωn+1 Φn+1, n = 0, 1, 2, . . . ,

A−Φ0 = 0, A−Φn =
√

ωn Φn−1, n = 1, 2, . . . ,

A◦Φn = αn+1Φn, n = 0, 1, 2, . . . .In partiular, (Γ(G), A+, A−) is an interating Fok spae assoiated with a Jaobi pa-rameter {ωn}.



248 D. IGARASHI AND N. OBATARemark 2.2. If G is a �nite graph, the strati�ation (2.1) terminates at a �nite n, theHilbert spae Γ(G) is of �nite dimension, and both {ωn} and {αn} are �nite sequeneswith ωn > 0. If G is an in�nite graph, then Vn 6= ∅ for all n, the Hilbert spae Γ(G) is ofin�nite dimension, and both {ωn} and {αn} are in�nite sequenes with ωn > 0.The question (1.1) is equivalent to �nding a Borel probability measure µ on R suhthat
∫ +∞

−∞

xmµ(dx) = 〈Φ0, (A
+ + A− + A◦)mΦ0〉, m = 1, 2, . . . .The interating Fok spae struture allows us to use non-ommutativity of the quantumomponents. Although not expliitly written in the literature, a homogeneous tree is theprototype of our onsideration, see Remarks 7.4 and 8.3.3. Quantum entral limit theorem for distane-regular graphs. A graph G =

(V, E) is alled distane-regular if given i, j, k = 0, 1, 2, . . . the intersetion number
pk

ij = |{z ∈ V ; ∂(x, z) = i, ∂(y, z) = j}|is determined independently of the hoie of x, y ∈ V satisfying ∂(x, y) = k.Theorem 3.1. Let G = (V, E) be a distane-regular graph with intersetion numbers
{pk

ij}. Then Γ(G) is invariant under the ation of the quantum omponents Aǫ, ǫ ∈
{+,−, ◦}, of the adjaeny matrix A and

A+Φn =
√

pn+1
1,n pn

1,n+1 Φn+1, n = 0, 1, 2, . . . ,

A−Φ0 = 0, A−Φn =
√

pn
1,n−1p

n−1
1,n Φn−1, n = 1, 2, . . . ,

A◦Φn = pn−1
1,n−1Φn, n = 0, 1, 2, . . . .In partiular, (Γ(G), A+, A−) is an interating Fok spae assoiated with the Jaobi se-quene {pn

1,n−1p
n−1
1,n ; n = 1, 2, . . . }.The proof is straightforward from de�nition. In general,

〈A〉 = 〈δo, Aδo〉 = 0, 〈A2〉 = 〈δo, A
2δo〉 = κ(o),where κ(o) is the degree of o, i.e., the number of verties adjaent to o. For a distane-regular graph we have κ(o) = p0

11 so that A/
√

p0
11 is a proper normalization of theadjaeny matrix A.Theorem 3.2. Let {G(ν) = (V (ν), E(ν))} be a growing family of distane-regular graphs.Let Aν and {pk

ij(ν)} be the adjaneny matrix and the intersetion numbers of Gν , re-spetively. Assume that the limits(3.1) ωn = lim
ν

pn
1,n−1(ν)pn−1

1,n (ν)

p0
11(ν)

, αn = lim
ν

pn−1
1,n−1(ν)
√

p0
11(ν)exist for all n = 1, 2, . . . . Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the interating Fok spaeassoiated with {ωn} and de�ne a diagonal operator B◦ by B◦Ψn = αn+1Ψn. Then for



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 249the quantum omponents Aǫ
ν , ǫ ∈ {+,−, ◦}, of the adjaeny matrix Aν ,(3.2) lim

ν

Aǫ
ν

√

p0
11(ν)

= Bǫ, ǫ ∈ {+,−, ◦},in the stohasti sense.The stohasti onvergene (3.2) means that for any hoie of a �nite number ofsymbols ǫ1, . . . , ǫm, ǫi ∈ {+,−, ◦}, we have
lim

ν

〈

Φ0,
Aǫm

ν
√

p0
11(ν)

. . .
Aǫ1

ν
√

p0
11(ν)

Φ0

〉

= 〈Ψ0, B
ǫm . . . Bǫ1Ψ0〉.Theorem 3.2 does not appear expliitly in the literature, however, the proof is essentiallya ombination of the arguments in Hora�Obata [17, 18℄.One we grasp an interating Fok spae struture, the omputation of µ in the mainquestion falls into a lassial alulus. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the interatingFok spae assoiated with a Jaobi sequene {ωn} and B◦ a diagonal operator de�nedby B◦Ψn = αn+1Ψn, where {αn} is a real sequene. It is easily heked with the help ofthe Hamburger theorem (see e.g., Chihara [7, Chapter II℄, Shohat�Tamarkin [25, Theo-rem 1.2℄) that there exists a Borel probability measure µ on R suh that(3.3) 〈Ψ0, (B

+ + B− + B◦)mΨ0〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .In general, µ is not uniquely determined due to the famous determinate moment problem.Proposition 3.3. If ωn = O((n logn)2) and αn = O(n log n), there exists a unique Borelprobability measure µ satisfying (3.3).Proof. By the Aardi�Bo»ejko formula [2℄ we know that
Mm ≡ 〈Ψ0, (B

+ + B− + B◦)mΨ0〉 =
∑

ϑ∈PNCPS(m)

∏

v∈ϑ
|v|=1

α(dϑ(v))
∏

v∈ϑ
|v|=2

ω(dϑ(v)),

where PNCPS(m) stands for the set of non-rossing pair partitions with singletons of
{1, 2, . . . , m} and dϑ(v) ≥ 1 the depth of a blok v in the partition ϑ. Choose C > 0 suhthat

ωn ≤ C2(n log n + 1)2, αn ≤ C(n log n + 1), n = 1, 2, . . . .Combining the simple estimate |PNCPS(m)| ≤ 3m, we obtain
Mm ≤ (3C)m

(
m + 1

2
log

m + 1

2
+ 1

)m

.Then the ondition of Carleman's moment test (see e.g., Shohat�Tamarkin [25, Theo-rem 1.10℄) is satis�ed:
∞∑

m=1

M
− 1

2m

2m = +∞,so that µ is uniquely determined by its moment sequene {Mm}.



250 D. IGARASHI AND N. OBATA4. The odd graph. Let k ≥ 2 be a �xed integer and put Ω = {1, 2, . . . , 2k − 1}. Let Vbe the set of subsets x of Ω having ardinality k − 1, i.e.,
V = {x ⊂ Ω ; |x| = k − 1},and put

E = {{x, y} ; x, y ∈ V, x ∩ y = ∅}.The graph (V, E) is alled the odd graph of degree k and is denoted by Ok. Obviously,
Ok is a regular graph of degree k.The odd graphs have been studied in algebrai graph theory, as a natural seriesontaining the Petersen graph as O3, and some of their properties are found in Biggs[3, 4℄. For being self-ontained we shall derive neessary properties from the followinguseful desription of the distane funtion. The proof is deferred to Setion A.Proposition 4.1. Let Ok be an odd graph of degree k ≥ 2. For n = 0, 1, 2, . . . , k − 1 wede�ne In by
(4.1) In =







k − 1 − n

2
, if n is even,

n − 1

2
, if n is odd.For a pair of verties x, y ∈ V we have

|x ∩ y| = In ⇔ ∂(x, y) = n.Corollary 4.2. diam (Ok) = k − 1.Proof. As is easily seen from the de�nition (4.1), I is a bijetion from {0, 1, . . . , k − 1}onto itself. Then, the maximal distane between two verties is k − 1.Corollary 4.3. The odd graph Ok is distane-transitive, therefore distane-regular.Proof. Any bijetion π : Ω → Ω indues a bijetion π̃ : V → V in a natural manner. Then
π̃ beomes an automorphism of the graph Ok, sine |x∩y| is kept invariant under π̃. Nowlet x, y, x′, y′ ∈ V suh that ∂(x, y) = ∂(x′, y′) = n. By Proposition 4.1 we may set

x = {α1, . . . , αI , β1, . . . , βJ}, y = {α1, . . . , αI , γ1, . . . , γJ},where I = In, I + J = k − 1, {β1, . . . , βJ} ∩ {γ1, . . . , γJ} = ∅. Similarly,
x′ = {α′

1, . . . , α
′
I , β

′
1, . . . , β

′
J}, y′ = {α′

1, . . . , α
′
I , γ

′
1, . . . , γ

′
J}.Take a bijetion π : Ω → Ω satisfying

π(αi) = α′
i, π(βi) = β′

i, π(γi) = γ′
i.Then the automorphism π̃ satis�es π̃(x) = x′ and π̃(y) = y′, whih means that Ok isdistane-transitive.5. Quantum entral limit theorem for odd graphs. Having observed the oddgraphs {Ok} form a growing family of distane-regular graphs, we shall in this setioninvestigate an asymptoti spetral distribution of the adjaeny matrix Ak as k → ∞ by



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 251applying quantum probabilisti tehniques (Theorem 3.2). Our �rst task is to omputethe intersetion numbers of Ok whih are required in Theorem 3.2.Proposition 5.1. Let {ph
ij} be the intersetion numbers of the odd graph Ok, k ≥ 2. For

1 ≤ n ≤ k − 1,
pn
1,n−1 =







n

2
, if n is even,

n + 1

2
, if n is odd.For 0 ≤ n ≤ k − 2,

pn
1,n+1 =







k − n

2
, if n is even,

k − n + 1

2
, if n is odd.For 0 ≤ n ≤ k − 1,

pn
1,n =







0, if 1 ≤ n ≤ k − 2,

k + 1

2
, if n = k − 1 and k is odd,

k

2
, if n = k − 1 and k is even.Proof. Just a routine appliation of Proposition 4.1. We shall prove the �rst identity only.Let n be an even number suh that 1 ≤ n ≤ k − 1. Without loss of generality we set

o = {1, 2, . . . , k − 1}, x = {1, 2, . . . , In, k, k + 1, . . . , 2k − In − 2}.Then |o∩x| = In so that ∂(o, x) = n. Let us �nd a general form of y suh that ∂(x, y) = 1and ∂(o, y) = n − 1. In order that ∂(x, y) = 1 we have by de�nition(5.1) y ⊂ {In + 1, . . . , k − 1} ∪ {2k − In − 1, . . . , 2k − 1}.Sine |y| = k − 1 and |{In + 1, . . . , k − 1} ∪ {2k − In − 1, . . . , 2k − 1}| = k, the vertex yis obtained by eliminating one element from the right hand side of (5.1). There are twoases: (i) If y is obtained by eliminating one element in {In + 1, . . . , k − 1}, we have
|o ∩ y| = k − In − 2 =

n

2
− 1 =

(n − 1) − 1

2
= In−1,where we used (4.1) with n being even. Hene ∂(o, y) = n − 1. (ii) If y is obtained byeliminating one element in {2k − In − 1, . . . , 2k − 1}, we have

|o ∩ y| = k − In − 1 =
n

2
6= In−1,whih means that ∂(o, y) 6= n − 1. Consequently, a vertex y satisfying ∂(x, y) = 1 and

∂(o, y) = n − 1 is obtained only in the ase (i) and the number of suh y's is
(k − 1) − (In + 1) + 1 = k − In − 1 =

n

2
.This proves that pn

1,n−1 = n/2 for an even n.We are now in a position to state the quantum entral limit theorem for the oddgraphs {Ok}.



252 D. IGARASHI AND N. OBATATheorem 5.2. Let Ak be the adjaeny matrix of the odd graph Ok and Aǫ
k its quantumomponents, ǫ ∈ {+,−, ◦}. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the interating Fok spaeassoiated with a Jaobi sequene de�ned by

{ωn}∞n=1 = {1, 1, 2, 2, 3, 3, 4, 4, . . . }.Then(5.2) lim
k→∞

A±
k√
k

= B±, lim
k→∞

A◦
k√
k

= 0,in the stohasti sense.Proof. Let {ph
ij(k)} denote the intersetion numbers of Ok, k ≥ 2. In view of Theorem 3.2we only need to �nd the limits:

ωn = lim
k→∞

pn
1,n−1(k)pn−1

1,n (k)

p0
11(k)

, αn = lim
k→∞

pn−1
1,n−1(k)
√

p0
11(k)

,whih are omputed with the help of Proposition 5.1. In fat, if n is odd, we have
ωn = lim

k→∞

1

k
· n + 1

2

(

k − n − 1

2

)

=
n + 1

2
.If n is even,

ωn = lim
k→∞

1

k
· n

2

(

k − n

2

)

=
n

2
.Thus, {ωn} = {1, 1, 2, 2, 3, 3, . . . } as desired. Similarly, we obtain {αn ≡ 0}.We now give an intermediate answer to our main question for the odd graphs. (Theomplete answer will be given in Theorem 6.1.)Theorem 5.3. Let Ak be the adjaeny matrix of the odd graph Ok, k ≥ 2. Then thereexists a unique Borel probability measure µ on R suh that(5.3) lim

k→∞

〈(
Ak√

k

)m〉

=

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .The Jaobi parameter of µ is given by
{ωn}∞n=1 = {1, 1, 2, 2, 3, 3, 4, 4, . . . }, {αn ≡ 0}.In partiular, µ is symmetri.Proof. We maintain the notation in Theorem 5.2. Taking Ak = A+

k + A−
k + A◦

k intoaount, we see from Theorem 5.2 that
lim

k→∞

〈(
Ak√

k

)m〉

= 〈Ψ0, (B
+ + B−)mΨ0〉, m = 1, 2, . . . .On the other hand, sine {ωn} and {αn} satisfy the ondition in Proposition 3.3, thereexists a unique Borel probability measure µ on R suh that

〈Ψ0, (B
+ + B−)mΨ0〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .Thus, µ in (5.3) is uniquely determined. That µ is symmetri follows from {αn ≡ 0} andthe uniqueness.



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 253Remark 5.4. Sine Ok = (V, E) is a �nite distane-regular graph, the vauum stateoinides with the trae. Thus,
〈(

Ak√
k

)m〉

=
1

|V | Tr

[(
Ak√

k

)m ]

=
(k − 1)!k!

(2k − 1)!km/2
Tr (Am

k ).

6. Calulating the limit measure µ. We shall obtain an expliit desription of theBorel probability measure µ in Theorem 5.3, where the Jaobi parameter ({ωn}, {αn})is already obtained. Sine µ is uniquely determined by its moment sequene, by generaltheory (see e.g., Shohat�Tamarkin [25, Chapter II℄) the Stieltjes transform of µ admits a(onvergent) ontinued fration expansion:(6.1) G(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z −
1

z −
1

z −
2

z −
2

z −
3

z −
3

z −
4

z −
4

z − · · · ,where z ∈ {Im z 6= 0}.Let us ompute the ontinued fration (6.1). For n = 1, 2, . . . we de�ne a linearfrational transformation:
σn(w) =

n

z − w
.Then the 2n-th approximant is obtained by

(6.2) G2n(z) =
1

z −

2n terms
︷ ︸︸ ︷

1

z −
1

z −
2

z −
2

z − · · · −
n

z −
n

z
= σ1σ

2
1 . . . σ2

n(0).On the other hand, using(6.3) σ2
n(w) =

n

z − σn(w)
=

n

z
+

n2/z

z2 − n − zw
,we obtain

σ2
1 . . . σ2

n(0) =
1

z

{

1 +
12

z2 − 3 −
22

z2 − 5 −
32

z2 − 7 − · · ·−
(n − 1)2

z2 − (2n − 1) −
n2

z2 − n

}

.Then (6.2) beomes
G2n(z) =

z

z2 − 1 −
12

z2 − 3 −
22

z2 − 5 −
32

z2 − 7 − · · ·−
(n − 1)2

z2 − (2n − 1) −
n2

z2 − n
.Sine the ontinued fration in (6.1) onverges, we have

G(z) = lim
n→∞

G2n(z)(6.4)
=

z

z2 − 1 −
12

z2 − 3 −
22

z2 − 5 −
32

z2 − 7 − · · ·−
(n − 1)2

z2 − (2n − 1) − · · · ,for z ∈ {Im z 6= 0}.Here we reall the Stieltjes transform of the exponential distribution:(6.5) ∫ +∞

0

e−x

z − x
dx =

1

z − 1 −
12

z − 3 −
22

z − 5 −
32

z − 7 − · · · , z 6∈ [0, +∞).This is veri�ed as a partiular ase of the ontinued fration expansion for the quotient ofhypergeometri funtions (see Wall [29, Chap. XVIII (92.7)℄), or indiretly through the



254 D. IGARASHI AND N. OBATAJaobi parameter of the exponential distribution. Comparing (6.4) and (6.5), we obtain
G(z) =

∫ +∞

0

ze−x

z2 − x
dx.Then, replaing x with x2 and applying partial fration, we have

G(z) =

∫ +∞

0

2xze−x2

z2 − x2
dx =

∫ +∞

0

xe−x2

z − x
dx +

∫ 0

−∞

−xe−x2

z − x
dx =

∫ +∞

−∞

|x|e−x2

z − x
dx.Consequently, the probability measure µ in (6.1) is given by(6.6) µ(dx) = |x|e−x2

dx,whih may be alled the two-sided Rayleigh distribution following Papoulis [23, p. 78℄,see Figure 2 for the shape. Using the above expliit form, we may rephrase Theorem 5.3.Theorem 6.1. For the adjaeny matrix Ak of the odd graph Ok we have(6.7) lim
k→∞

〈(
Ak√

k

)m〉

=

∫ +∞

−∞

xm|x|e−x2

dx, m = 1, 2, . . . .Calulation of the right hand side of (6.7) is elementary.Proposition 6.2. For the two-sided Rayleigh distribution (6.6) the moments of odd or-ders vanish and those of even orders are given by
∫ +∞

−∞

x2m|x|e−x2

dx = m!, m = 0, 1, 2, . . . .

Remark 6.3. For the two-sided Rayleigh distribution (6.6) we have obtained expli-itly the Jaobi parameter ({ωn}, {αn}) and the moment sequene {Mm}. Applying theAardi�Bo»ejko formula [2℄ (see also the proof of Proposition 3.3), we ome to the om-binatorial identity:(6.8) ∑

ϑ∈PNCP(2m)

∏

v∈ϑ

ω(dϑ(v)) = m!, m = 1, 2, . . . ,where {ωn} = {1, 1, 2, 2, 3, 3, . . . }. A diret proof of (6.8) is not known to the authors. Ifthe left hand side of (6.8) were omputed in a smart manner, we ould avoid ontinuedfrations to obtain the moment sequene. The expliit form of µ in Theorem 5.3 thenfollows from the generating funtion.Remark 6.4. The orthogonal polynomials assoiated with the two-sided Rayleigh dis-tribution are alled the generalized Hermite polynomials with parameter 1/2 by Chihara[7, p. 157℄, see also Szegö [26, p. 380℄.7. Spidernet. We start with some notation. Given a graph G = (V, E) with an origin
o ∈ V , onsider the strati�ation as in (2.1). For x ∈ V we set

ωǫ(x) = |{y ∈ V ; y ∼ x, ∂(o, y) − ∂(o, x) = ǫ}|, ǫ ∈ {+,−, ◦}.



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 255Let κ(x) denote the degree of x ∈ V as usual. Then we have(7.1) κ(x) = ω+(x) + ω−(x) + ω◦(x), x ∈ V.Let a, b, c be integers suh that a ≥ 1, b ≥ 2 and 1 ≤ c ≤ b− 1. A spidernet is a graphwhih satis�es the onditions:
(7.2) 





ω+(o) = a,

ω−(o) = 0,

ω◦(o) = 0,







ω+(x) = c,

ω−(x) = 1,

ω◦(x) = b − 1 − c,

for x 6= o.

Suh a spidernet is denoted by S(a, b, c) though not uniquely determined by (a, b, c) ingeneral. Examples are shown in Figure 1. We note that
κ(x) =

{

a, x = o,

b, x 6= o,whih follows from (7.1) and (7.2). Hene a spidernet is not neessarily a regular graphbut may possess high symmetry. Note also that a spidernet S(a, b, c) with c = b − 1 is atree. The spidernets have been studied for their interesting spetral geometri properties,see e.g., Urakawa [27℄, where a spidernet is alled a semi-regular graph.

Fig. 1. Spidernets S(4, 6, 3) and S(5, 4, 3)

Proposition 7.1. Let A be the adjaeny matrix of a spidernet S = S(a, b, c). Then Γ(S)is invariant under the ation of the quantum omponents Aǫ, ǫ ∈ {+,−, ◦}. Moreover,we have
A+Φ0 =

√
aΦ1, A+Φn =

√
cΦn+1, n = 1, 2, . . . ,(7.3)

A−Φ0 = 0, A−Φ1 =
√

a Φ0, A−Φn =
√

c Φn−1, n = 2, 3, . . . ,(7.4)
A◦Φ0 = 0, A◦Φn = (b − 1 − c)Φn, n = 1, 2, . . . .(7.5)Proof. It is easily derived from (7.2) that

|V0| = 1, |Vn| = acn−1, n = 1, 2, . . . .



256 D. IGARASHI AND N. OBATAFor n = 0, 1, 2, . . . we have
√

|Vn|A+Φn =
∑

x∈Vn

A+δx =
∑

y∈Vn+1

δy =
√

|Vn+1|Φn+1.This proves (7.3). The rest is similarly proved.Proposition 7.1 says that (Γ(S), {Φn}, A+, A−) is an interating Fok spae with Ja-obi parameter(7.6) ω1 = a, ω2 = ω3 = · · · = cand A◦ is a diagonal operator de�ned by A◦Φn = αn+1Φn with(7.7) α1 = 0, α2 = α3 = · · · = b − 1 − c.With the help of Proposition 3.3 we see that there exists a unique Borel probabilitymeasure µ on R suh that(7.8) 〈Am〉 = 〈Φ0, (A
+ + A− + A◦)mΦ0〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .To be slightly more general, with three real numbers p > 0, q ≥ 0, a ∈ R, we mayassoiate a Borel probability measure µp,q,a uniquely spei�ed by(7.9) ∫ +∞

−∞

µp,q,a(dx)

z − x
=

1

z −
p

z − a −
q

z − a −
q

z − a −
q

z − a − · · · .In other words, µp,q,a is haraterized by a Jaobi parameter ({p, q, q, . . . }, {0, a, a, . . . }).Note that µp,q,a has mean zero and variane p. We all the probability measure µp,q,a thefree Meixner law with parameter (p, q, a) after Bo»ejko�Bry [5℄. The density funtion isknown, see Setion B. In partiular, the density funtion of µ4,3,2 shown in Figure 2 isobtained from the spidernet S(4, 6, 3).Remark 7.2. The free Meixner laws of Bo»ejko�Bry [5℄ are parametrized by a ∈ R and
b ≥ −1. Their free Meixner law with parameter (a, b) is normalized to have varianeone and oinides with µ1,b+1,a in our de�nition, see also Bo»ejko�Wysoza«ski [6℄ for apartiular sublass of free Meixner laws.With this notation we laim the followingTheorem 7.3. Let A = Aa,b,c be the adjaeny matrix of a spidernet S(a, b, c). Then

〈Am〉 =

∫ +∞

−∞

xmµa,c,b−1−c(dx), m = 1, 2, . . . ,where µa,c,b−1−c is the free Meixner law with parameter (a, c, b − 1 − c).Proof. The Jaobi parameter of µ in (7.8) is given by (7.6) and (7.7). Hene µ is the freeMeixner law with parameter (a, c, b− 1 − c).Remark 7.4. For κ ≥ 2 the spidernet S(κ, κ, κ − 1) is a homogeneous tree of degree κ.Let Aκ be its adjaeny matrix. As a diret onsequene of Theorem 7.3 we have
〈Am

κ 〉 =

∫ +∞

−∞

xmµκ,κ−1,0(dx), m = 1, 2, . . . .



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 257The probability measure µκ,κ−1,0 appearing in the right hand side was �rst obtained byKesten [21℄ with a di�erent method. A free Meixner law µp,q,0 oinides with the Kestenmeasure with parameter (p, q), where p > 0 and q ≥ 0.8. Quantum entral limit theorem for spidernets. We next onsider a growingfamily of spidernets S(a, b, c) as a → ∞. Sine 〈A〉 = 0 and 〈A2〉 = a, the propernormalization of the adjaeny matrix is A/
√

a. In view of Proposition 7.1 we obtain
A+

√
a

Φ0 = Φ1,
A+

√
a

Φn =

√
c

a
Φn+1, n = 1, 2, . . . ,

A−

√
a

Φ0 = 0,
A−

√
a

Φ1 = Φ0,
A−

√
a

Φn =

√
c

a
Φn−1, n = 2, 3, . . . ,

A◦

√
a

Φ0 = 0,
A◦

√
a

Φn =
b − 1 − c√

a
Φn, n = 1, 2, . . . .Then, with no di�ulty we ome to the followingTheorem 8.1. Let A = Aa,b,c be the adjaeny matrix of a spidernet S(a, b, c). Let q ≥ 0and r ≥ 0 be real numbers. Let (Γ, {Ψn}, B+, B−) be an interating Fok spae with Jaobisequene

ω1 = 1, ω2 = ω3 = · · · = q,and B◦ a diagonal operator de�ned by B◦Ψn = αn+1Ψn with
α1 = 0, α2 = α3 = · · · = r.Then in the limit as a → ∞ with(8.1) c

a
→ q,

b − c√
a

→ r,we have
lim

Aǫ
a,b,c√
a

= Bǫ, ǫ ∈ {+,−, ◦},in the stohasti sense.The next statement is an answer to our main question for the spidernets.Theorem 8.2. Let A = Aa,b,c be the adjaeny matrix of a spidernet S(a, b, c). Let q ≥ 0and r ≥ 0 be real numbers. Then in the limit as a → ∞ with (8.1) we have
lim

〈(
Aa,b,c√

a

)m〉

=

∫ +∞

−∞

xmµ1,q,r(dx), m = 1, 2, . . . ,where µ1,q,r is the free Meixner law with parameter (1, q, r).Remark 8.3. This is a ontinuation of Remark 7.4. Consider a growing family of ho-mogeneous trees {S(κ, κ, κ − 1)} as κ → ∞. It then follows diretly from Theorem 8.2that(8.2) lim
κ→∞

〈(
Aκ√

κ

)m〉

=

∫ +∞

−∞

xmµ1,1,0(dx), m = 1, 2, . . . .



258 D. IGARASHI AND N. OBATAAs is well known, the probability measure µ1,1,0 is the Wigner semiirle law:
µ1,1,0(dx) = ρ(x)dx, ρ(x) =







1

2π

√

4 − x2, |x| ≤ 2,

0, otherwise.In fat, (8.2) is viewed as a prototype of the free entral limit theorem of Voiulesu(see [28℄ and referenes ited therein) beause the adjaeny matrix is deomposed intoa sum of free independent random variables. Use of various onepts of independene inquantum probability theory is a new promising diretion in asymptoti spetral analysis,see Aardi�Ben Ghorbal�Obata [1℄, Obata [22℄.9. Approximation by trees. The argument in Setion 7 suggests a diretion of gen-eralizing the free Meixner laws from the viewpoint of spetral analysis on graphs.Theorem 9.1. Let µ be a Borel probability measure on R and ({ωn}, {αn}) its Jaobiparameter. Assume that ωn is an integer for all n and αn ≡ 0. Then there exists a tree
G = (V, E) with an origin o ∈ V suh that(9.1) 〈Am〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .Proof. We shall onstrut a tree having the desired property. Let V0, V1, V2, . . . be disjointsets suh that(9.2) |V0| = 1, |Vn| = ωn . . . ω2ω1, n = 1, 2, . . . .When ωn > 0 for all n, we obtain an in�nite sequene of non-empty sets. When ωn = 0ours for some n (then, by de�nition ωn+1 = 0), we just obtain a �nite sequene ofnon-empty sets. In any ase we set(9.3) V =

∞⋃

n=0

Vn,whih is the set of verties. We introdue a graph struture in V as follows. First thevertex o ∈ V0 is ombined with eah vertex in V1 by an edge. Suppose n ≥ 1 and edgesin V0 ∪ V1 ∪ · · · ∪ Vn are de�ned. If Vn+1 = ∅, no more edges are de�ned. We assumethat Vn+1 6= ∅. Sine |Vn+1| = ωn+1|Vn|, the set Vn+1 is partitioned into a |Vn| disjointsubsets onsisting of ωn+1 verties:
Vn+1 =

|Vn|
⋃

i=1

Si, |Si| = ωn+1.We onnet eah vertex in Si with the i-th vertex in Vn by an edge. The graph G obtainedin this way is a tree of whih the strati�ation is given by (9.3). The ation of A on Γ(G)is easily obtained: First we note that(9.4) AΦ0 =
∑

x∈V1

δx =
√

ω1Φ1.



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 259For n = 1, 2, . . . we have
√

|Vn|AΦn =
∑

x∈Vn

Aδx =
∑

y∈Vn+1

δy +
∑

z∈Vn−1

ωnδz

=
√

|Vn+1|Φn+1 + ωn

√

|Vn−1|Φn−1.Hene in view of (9.2) we ome to(9.5) AΦn =
√

ωn+1 Φn+1 +
√

ωn Φn−1, n = 1, 2, . . . .We then see from (9.4) and (9.5) that
A+Φn =

√

ωn+1 Φn+1, n = 0, 1, 2, . . . ,

A−Φ0 = 0, A−Φn =
√

ωn Φn−1, n = 1, 2, . . . .Namely, (Γ(G), A+, A−) is an interating Fok spae with Jaobi parameter {ωn} andhene (9.1) holds.Theorem 9.1 suggests that from the viewpoint of spetral analysis a large graph withfew edges lying in a stratum is approximated by trees. For example, a large odd graph
Ok is approximated by a tree with {ωn} = {k, k, 2k, 2k, 3k, 3k, . . . } being the parameterin Theorem 9.1. We expet that a spidernet plays a similar role for a more general µ withnon-vanishing {αn}.A. Proof of Proposition 4.1. As is easily veri�ed from the de�nition (4.1), we have
{I0, I1, . . . , Ik−1} = {0, 1, . . . , k − 1}. In other words, regarded as a map I is a bijetionfrom {0, 1, . . . , k − 1} onto itself. We set

En = {(x, y) ∈ V × V ; |x ∩ y| = In},
Fn = {(x, y) ∈ V × V ; ∂(x, y) = n}.It is su�ient to prove that En = Fn for all n. For n = 0 we have I0 = k − 1 so that

E0 = {(x, y) ∈ V × V ; |x ∩ y| = k − 1}
= {(x, y) ∈ V × V ; x = y}
= {(x, y) ∈ V × V ; ∂(x, y) = 0} = F0.For n = 1 we have I1 = 0 so that

E1 = {(x, y) ∈ V × V ; |x ∩ y| = 0}
= {(x, y) ∈ V × V ; x ∼ y}
= {(x, y) ∈ V × V ; ∂(x, y) = 1} = F1.Thus the assertion is true for n = 0, 1. Assuming that the assertion is true up to n,

1 ≤ n ≤ k − 2, we only need to prove that En+1 = Fn+1.We shall �rst prove that En+1⊂Fn+1. Take (x, y)∈En+1, whih satis�es |x∩y|= In+1.For simpliity we put I = In+1. Note that I 6= I0, I1, i.e., 1 ≤ I ≤ k − 2. We set
x = {α1, . . . , αI , β1, . . . , βJ}, y = {α1, . . . , αI , γ1, . . . , γJ},

{β1, . . . , βJ} ∩ {γ1, . . . , γJ} = ∅,



260 D. IGARASHI AND N. OBATAwhere I +J = k−1, I ≥ 1 and J ≥ 1. In view of |Ω−(x∪y)| = (2k−1)−(I +2J) = I +1we set
Ω − (x ∪ y) = {ω1, . . . , ωI+1}.Suppose �rst that n is even. Then I = In+1 = n/2. Consider
z = {ω1, . . . , ωI , β1, . . . , βJ}.Sine z ∩ y = ∅ we have ∂(z, y) = 1. On the other hand, |x ∩ z| = J = k − 1 − n/2 = Inso that ∂(x, z) = n by assumption of indution. Hene(A.1) ∂(x, y) ≤ ∂(x, z) + ∂(z, y) = n + 1.Suppose next that n is odd. Then I = In+1 = k − 1 − (n + 1)/2 and J = (n + 1)/2.Consider

w = {ω1, . . . , ωI , ωI+1, β1, . . . , βJ−1}.Obviously, w ∩ y = ∅ and hene ∂(w, y) = 1. On the other hand, sine |x ∩ w| = J − 1 =

(n − 1)/2 = In, we have ∂(x, z) = n by assumption of indution and(A.2) ∂(x, y) ≤ ∂(x, w) + ∂(w, y) = n + 1.Combining (A.1) and (A.2), we ome to ∂(x, y) ≤ n + 1 independent of the parity of n.However, ∂(x, y) ≤ n does not happen. In fat, if it happens, by assumption of indu-tion we have (x, y) ∈ F∂(x,y) = E∂(x,y) whih ontradits (x, y) ∈ En+1. Consequently,
∂(x, y) = n + 1 and En+1 ⊂ Fn+1.We prove the onverse inlusion. Let (x, y) ∈ Fn+1, i.e., ∂(x, y) = n + 1. Then thereexists z ∈ V suh that ∂(x, z) = n and ∂(z, y) = 1. By assumption of indution we mayset

x = {α1, . . . , αI′ , β1, . . . , βJ′}, z = {α1, . . . , αI′ , γ1, . . . , γJ′},
{β1, . . . , βJ′} ∩ {γ1, . . . , γJ′} = ∅,where I ′ = In, I ′ + J ′ = k − 1, I ′ ≥ 0 and J ′ ≥ 1. Set

Ω − z = {β1, . . . , βJ′ , ω1, . . . , ωI′+1}.Sine y is adjaent to z, it is obtained from Ω− z by eliminating one element. Namely, yis one of the following types:
y1 = {β1, . . . , βJ′ , ω1, . . . , ωI′+1} − {βi},
y2 = {β1, . . . , βJ′ , ω1, . . . , ωI′+1} − {ωi}.As for y1, by simple alulation based on de�nition we have

|x ∩ y1| = J ′ − 1 = k − 2 − In =

{

In−1 if n is even,

In+1 if n is odd.Similarly,
|x ∩ y2| = J ′ = k − 1 − In =

{

In+1 if n is even,

In−1 if n is odd.



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 261In any ase |x ∩ y| = In±1. But by assumption of indution we see that |x ∩ y| = In−1 isequivalent to ∂(x, y) = n − 1, whih ontradits ∂(x, y) = n + 1. Hene |x ∩ y| = In+1,whih implies that Fn+1 ⊂ En+1.Proposition A.1. The distane on the odd graph Ok is given by(A.3) ∂(x, y) = min{2(k − 1 − |x ∩ y|), 2|x ∩ y| + 1}, x, y ∈ V.In other words,
(A.4) ∂(x, y) =







2|x ∩ y| + 1, if 0 ≤ |x ∩ y| ≤ k − 2

2
,

2(k − 1 − |x ∩ y|), if k − 1

2
≤ |x ∩ y| ≤ k − 1.Proof. We regard In de�ned in (4.1) as a bijetive map from {0, 1, . . . , k − 1} onto itself.To �nd the inverse funtion, we onsider the equation i = In. By de�nition we obtain(A.5) n =

{

2(k − 1 − i), if n is even,
2i + 1, if n is odd,By an elementary observation we see that 2(k − 1 − i) ≤ k − 1 < k ≤ 2i + 1 or 2i + 1 ≤

k − 1 < k ≤ 2(k − 1 − i) happens. In order that 0 ≤ n ≤ k − 1 is ful�lled, we need tohoose the smaller one in (A.5). Thus, the inverse map of I is given by(A.6) I−1(i) = min{2(k − 1 − i), 2i + 1}.Sine |x ∩ y| = I∂(x,y) by Proposition 4.1, applying the inverse map (A.6) we ob-tain (A.3).B. Density funtions of the free meixner laws. The density funtion of the freeMeixner law µp,q,a (p > 0, q ≥ 0, a ∈ R) was omputed in Cohen�Trenholme [8℄ andSaitoh�Yoshida [24℄. Reall that their parametrization is di�erent from ours (and theirpapers ontain small misprints).The free Meixner law µp,q,a is uniquely spei�ed by its Stieltjes transform given bythe onvergent ontinued fration:
G(z) =

1

z −
p

z − a −
q

z − a −
q

z − a −
q

z − a − · · · , Im z 6= 0.The right hand side is easily omputed:(B.1) G(z) =
(2q − p)z + pa − p

√

(z − a)2 − 4q

2(q − p)z2 + 2paz + 2p2
,where the analyti square root is a holomorphi funtion on C− [a− 2

√

q, a + 2
√

q ] andthe branh is hosen in suh a way that √

(z − a)2 − 4q > 0 for z ∈ R with z > a+ 2
√

q.The absolutely ontinuous part of µp,q,a(dx), denoted by ρp,q,a(x), is obtained by theStieltjes inversion formula:(B.2) ρp,q,a(x) =
p

2π

√

4q − (x − a)2

(q − p)x2 + pax + p2
, |x − a| ≤ 2

√

q.We note that ρp,q,−a(x) = ρp,q,a(−x). For simpliity, we set
g(z) = (q − p)z2 + paz + p2,



262 D. IGARASHI AND N. OBATAwhih appears in the denominator of (B.2). Note that the possible real zeroes of g(z) liesoutside the open interval (−2
√

q, +2
√

q ). We onsider the following �ve ases.(Case 1) q = p > 0 and a = 0. Then the density funtion beomes
ρp,p,0(x) =

1

2πp

√

4p − x2, |x| ≤ 2
√

p,whih is the Wigner semiirle law with variane p. There is no atom and
µp,p,0(dx) = ρp,p,0(x)dx.(Case 2) q = p > 0 and a 6= 0. The density funtion beomes

ρp,p,a(x) =
1

2π

√

4p − (x − a)2

ax + p
, |x − a| ≤ 2

√

p.Moreover, µp,p,a may possess one atom at the zero of g(z), i.e., at x = λ0 = −p/a. Theweight is obtained from the residue of G(z). For example, if a > 0, noting the signatureof √

(z − a)2 − 4q for z = λ0 ≤ a − 2
√

p, we have
lim

z→λ0

(z − λ0)G(z) =
1

2a

(

a − p

a
+

∣
∣
∣
∣
a − p

a

∣
∣
∣
∣

)

,whih is 1 − p/a2 for a2 > p, and 0 for a2 ≤ p. After similar omputation for a < 0 weobtain
µp,p,a(dx) =







ρp,p,a(x)dx for a2 ≤ p,

ρp,p,a(x)dx +

(

1 − p

a2

)

δ−p/a for a2 > p.In fat, the above result overs (Case 1). We see that µp,p,a is an a�ne transformation ofthe free Poisson law with parameter p/a2 (see e.g., Hiai-Petz [12, Setion 3.3℄).We now ome to the ase where q 6= p, that is g(z) is a quadrati funtion. Set
D = a2 − 4(q − p)and onsider the following three ases aording to the signature of D.(Case 3) D < 0, that is, 0 ≤ a2 < 4(q − p). Then g(z) has no real zeroes so that(B.3) µp,q,a(dx) = ρp,q,a(x)dx.(Case 4) D = 0, that is, 0 < a2 = 4(q− p). Then g(z) has a real multiple zero outside

[a − 2
√

q, a + 2
√

q ], nevertheless µp,q,a has no atom and (B.3) holds.(Case 5) D > 0, that is, 4(q − p) < a2. Then g(z) has two real zeroes:
λ± =

p

2(q − p)
(−a ±

√
D)and µp,q,a is of the form:(B.4) µp,q,a(dx) = ρp,q,a(x)dx + w+δλ+

+ w−δλ−
.To desribe w± we de�ne(B.5) ν+ =

1√
D

(
qλ+

p
− p

λ+

)

, ν− =
1√
D

(
qλ−

p
− p

λ−

)

.



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 263(Case 5-1) 0 < 4(q − p) < a2. Then λ− < λ+ and both lie in the same half line
(−∞, a − 2

√
q ] or [a + 2

√
q, +∞). The weights are given as follows:

w+ =

{

0, a ≤ −2
√

q − p, 2
√

q − p < a ≤ (2q − p)/
√

q,

ν+, a ≥ (2q − p)/
√

q,

w− =

{

−ν−, a ≤ −(2q − p)/
√

q,

0, −(2q − p)/
√

q ≤ a < −2
√

q − p, 2
√

q − p < a.(Case 5-2) 0 ≤ q < 2q < p. Note that λ+ < a− 2
√

p and λ− > a + 2
√

p. The weights
w± are given as follows:

w+ =

{

0, a ≤ −(p − 2q)/
√

q,

ν+, a ≥ −(p − 2q)/
√

q,
w− =

{

−ν−, a ≤ (p − 2q)/
√

q,

0, a ≥ (p − 2q)/
√

q.(Case 5-3) 0 ≤ q < p < 2q. The situation is similar to (Case 5-2) and the weights aregiven as follows:
w+ =

{

0, a ≤ (2q − p)/
√

q,

ν+, a ≥ (2q − p)/
√

q,
w− =

{

−ν−, a ≤ −(2q − p)/
√

q,

0, a ≥ −(2q − p)/
√

q.In fat, (Case 5-2) and (Case 5-3) an be uni�ed:
w+ =

1

2
(|ν+| + ν+), w− =

1

2
(|ν−| − ν−).

Fig. 2. Two-sided Rayleigh distribution and free Meixner distribution µ4,3,aNote added in proof. Another Carleman's moment test [25, Set. 2.17℄ veri�es that Proposi-tion 3.3 remains valid without assuming any ondition on {αn}.
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